Complex surfaces

lecture 17: Poincaré-Lelong formula and regularization of currents

Misha Verbitsky

IMPA, sala 236

February 14, 2024, 17:00

Cauchy formula

PROPOSITION: (Cauchy formula)

Let f be a smooth function on a unit disk $\Delta \subset \mathbb{C}$. Then

$$f(w) = \frac{1}{2\pi\sqrt{-1}} \int_{\partial\Delta} \frac{f(z)}{z-w} dz - \int_{\Delta} \frac{1}{\pi(z-w)} \frac{\partial f}{\partial \overline{z}} \operatorname{Vol}, \quad (*)$$

where $Vol = dx \wedge dy$ is the standard volume form.

Proof. Step 1: For any subset K of \mathbb{C} with smooth boundary, not containing w,

$$\frac{1}{2\pi\sqrt{-1}}\int_{\partial K}\frac{f(z)}{z-w}dz = \int_{K}\frac{1}{\pi(z-w)}\frac{\partial f}{\partial \overline{z}} \operatorname{Vol}$$

by Stokes' formula, because $d\left(\frac{f(z)}{z-w}dz\right) = -\frac{\partial f}{\partial \overline{z}}\frac{1}{(z-w)}dz \wedge d\overline{z}$. Therefore, (*) remains true if we replace a disk by any other open set, containing w, such as a disk with center in w. Therefore, it suffices to prove (*) when w = 0.

Cauchy formula (2)

PROPOSITION: (Cauchy formula)

Let f be a smooth function on a unit disk $\Delta \subset \mathbb{C}$. Then

$$f(w) = \frac{1}{2\pi\sqrt{-1}} \int_{\partial\Delta} \frac{f(z)}{z-w} dz - \int_{\Delta} \frac{1}{\pi(z-w)} \frac{\partial f}{\partial \overline{z}} \operatorname{Vol}, \quad (*)$$

Proof. Step 1: ...it suffices to prove (*) when w = 0.

Step 2: Let Δ_{ε} be a disk of radius ε centered in 0. From Step 1, it follows that

$$\frac{1}{2\pi\sqrt{-1}}\int_{\partial\Delta_{\varepsilon}}\frac{f(z)}{z}dz - \int_{\Delta_{\varepsilon}}\frac{1}{\pi(z)}\frac{\partial f}{\partial\overline{z}}\operatorname{Vol}$$

is independent on ε . Therefore, to prove (*) it would suffice to show that

$$f(0) = \lim_{\varepsilon \to 0} \left[\frac{1}{2\pi\sqrt{-1}} \int_{\partial \Delta_{\varepsilon}} \frac{f(z)}{z} dz - \int_{\Delta_{\varepsilon}} \frac{1}{\pi(z)} \frac{\partial f}{\partial \overline{z}} \operatorname{Vol}. \right]$$

The second integral converges to zero, because the function $\frac{1}{z}$ is locally integrable on \mathbb{C} (its integral on any circle centered in 0 is 2π). The first integral gives

$$\int_{0}^{2\pi} \frac{f(\varepsilon e^{\sqrt{-1}\,\theta})}{\varepsilon e^{\sqrt{-1}\,\theta}} d(\varepsilon e^{\sqrt{-1}\,\theta}) = \int_{0}^{2\pi} f(\varepsilon e^{\sqrt{-1}\,\theta}) d\theta. \blacksquare$$

Poincaré-Lelong formula on $\ensuremath{\mathbb{C}}$

PROPOSITION: (Poincaré-Lelong formula on C)

Consider the function $l(z) := \log |z|$ on a disk $\Delta \subset \mathbb{C}$. Then l is plurisubharmonic, and $\frac{1}{4\pi}dd^c l$ is equal to the δ -function δ_0 . **Proof. Step 1:** Since $\partial \overline{\partial} \log(z\overline{z}) = \partial \overline{\partial} \log z + \partial \overline{\partial} \log \overline{z}$, the current $dd^c l = 0$ vanishes everywhere outside of 0. Then $\langle dd^c l, f \rangle = 0$ unless the support of f contains 0. Therefore, it suffices to evaluate the current $dd^c l$ on a function with support in an arbitrary small open neighbourhood of 0. Step 2: Take f with support in Δ and apply the Cauchy formula obtained in the previous slide. It gives

$$f(0) = \frac{1}{2\pi\sqrt{-1}} \int_{\partial\Delta} \frac{f(z)}{z} dz - \int_{\Delta} \frac{1}{\pi(z)} \frac{\partial f}{\partial \overline{z}} \operatorname{Vol},$$

the first term vanishes because f = 0 on the boundary of Δ , and the second term gives

$$f(0) = -\frac{1}{\pi} \int_{\Delta} \frac{1}{z} \frac{\partial f}{\partial \overline{z}} \operatorname{Vol} = \frac{1}{\pi} \int_{\Delta} f \frac{\partial z^{-1}}{\partial \overline{z}} \operatorname{Vol}. \quad (**)$$

by Stokes' theorem. Since

$$\overline{\partial}\partial \log(|z|^2) = \overline{\partial}(z^{-1}dz) = \frac{\partial z^{-1}}{\partial \overline{z}} d\overline{z} \wedge dz,$$
(**) immediately brings $f(0) = \frac{1}{2\pi\sqrt{-1}} \int_{\Delta} f(z)\partial\overline{\partial} \log|z|.$

Poincaré-Lelong formula

The main result today:

THEOREM: (Poincaré-Lelong formula)

Let f be a holomorphic function on a complex manifold M. Then $dd^c \log |f|$ is plurisubharmonic. If, in addition, 0 is a regular value of f, then $\frac{1}{2\pi\sqrt{-1}}dd^c \log |f|$ is equal to the integration current of the zero divisor of f. Proof: Let $l(z) := \log |z|$. Clearly, $f^*(l) = \log |f|$. Then

$$\langle dd^c \log |f|, \tau \rangle = \langle \log |f|, dd^c \tau \rangle = \langle f^*(l), dd^c \tau \rangle = \langle l, dd^c f_* \tau \rangle = = \langle dd^c l, f_* \tau \rangle = \langle \delta_0, f_* \tau \rangle = \frac{1}{2\pi\sqrt{-1}} f_* \tau(0),$$

with $f_*\tau(0)$ being the integral of τ over $f^{-1}(0)$, because the pushforward of a form is its fiberwise integral.

COROLLARY: Let $f_1, ..., f_n$ be a collection of holomorphic functions on a complex manifold. Then $\log \left(\sum_i |f_i|^2 \right)$ is plurisubharmonic. **Proof:** Let $u_i := \log |f_i|^2$; by Poincaré-Lelong, this function is plurisubharmonic. Then $\log \left(\sum_i |f_i|^2 \right) = \log \left(\sum_i e^{u_i} \right)$ is also plurisubharmonic (Lecture 16).

The rest of this lecture omits most proofs; proofs can be found in books by J.-P. Demailly, https://www-fourier.ujf-grenoble.fr/~demailly/documents.html: "Complex analytic and differential geometry" and "Analytic Methods in Algebraic Geometry"

Regularized maximum

DEFINITION: (Demailly)

Let μ : $\mathbb{R}^2 \longrightarrow \mathbb{R}$ be a smooth, convex function, monotonous in both arguments. Suppose that for all $|x - y| \ge \varepsilon$, one has $\mu(x, y) = \max(x, y)$, and also $\mu(x, y) = \mu(y, x)$, $\mu(y + \alpha, x + \alpha) = \mu(x, y)$. Then μ is called a regularized maximum and denoted as $\max_{\varepsilon}(x, y)$.

REMARK: A regularized maximum of smooth plurisubharmonic functions is smooth and psh.

DEFINITION: A nef current is a positive current obtained as a weak limit of closed, positive forms.

EXAMPLE: Let $x \in M$ be a point on a Kähler manifold, and dist_x the corresponding distance function. It is easy to see that **around** x, $dd^c \log dist_x$ **is plurisubharmonic.** Since

$$\operatorname{og\,dist}_x = \lim_{C \longrightarrow -\infty} \max_{\varepsilon} (\operatorname{log\,dist}_x, C),$$

 $dd^c \log dist_x$ is a nef current, in a neighbourhood of x where it is positive.

Lelong sets

DEFINITION: Let α be a positive, closed current, and η a nef current, $\eta = \lim \eta_i$, with η_i smooth, positive and closed. Define the product $\alpha \wedge \eta := \lim \alpha \wedge \eta_i$. This limit exists by compactness, it is closed and positive.

A caution: The limit may be non-unique.

DEFINITION: Choose $\eta = dd^c \log \operatorname{dist}_x$ and η_i its approximation constructed using the regularized maximum. For a closed, positive (p, p)-current Θ , define **the Lelong number** $\nu_x(\Theta)$ as a mass of a measure $\Theta \wedge (dd^c \log \operatorname{dist}_x)^{n-p} :=$ $\lim_i (\Theta \wedge \eta_i)^{n-p}$ carried at x.

REMARK: In this particular case, the limit $\lim_i \Theta \wedge \eta_i^{n-p}$ is actually unique, as follows from the Chern-Levine-Nirenberg inequality.

DEFINITION: Let $s \in \mathbb{R}^{>0}$. The Lelong set Z_s of η is the set of all $x \in M$ such that $\nu_x(\Theta) \ge s$.

THEOREM: For any current Θ and any s > 0, **The Lelong set** Z_s is complex analytic (Y.-T. Siu, 1974).

Siu's decomposition formula: Let Θ be a positive (p, p)-current, and Z_i the *p*-dimensional components of its Lelong sets, with Lelong numbers c_i (at generic point). Then $\Theta = \sum_i c_i [Z_i] + R$, where *R* is closed, positive, and all Lelong sets or *R* are less than *p*-dimensional.

The multiplier ideals

DEFINITION: Let f be a real locally integrable function on a complex manifold, such that $dd^c f + \alpha$ is a positive current, for some smooth (1,1)-form α . Then f is called **almost plurisubharmonic**.

DEFINITION: Let *L* be a line bundle and *h* a smooth Hermitian metric on *L*. For any almost plurisubharmonic function *f*, we call he^{-f} a singular metric on *L*. Its curvature is equal to $\Theta_h + dd^c f$.

DEFINITION: Let f be an almost plurisubharmonic function, and e^{-f} the corresponding singular metric on a trivial line bundle \mathcal{O}_M . The multiplier ideal of f a sheaf of L^2 -integrable holomorphic sections of \mathcal{O}_M .

THEOREM: (Nadel) It is a coherent sheaf.

REMARK: The multiplier ideal of f is determined uniquely by the corresponding current $dd^c f$. **REMARK:** $e^{-2\varphi}$ is integrable in x if and only if the multiplier ideal of φ is trivial in x. **REMARK:** Supports of multiplier ideals I_{λ} for $e^{-\lambda f}$ belong to the Lelong sets Z_c of the current $dd^c f$ fpr appopriate c > 0. Conversely, every Z_c belongs to the support of I_{λ} for λ sufficiently big.

Demailly's regularization theorem

DEFINITION: Let η be a closed (1,1)-current on a complex manifold M. We say that η has algebraic singularities if for every point $x \in M$ there is a neighbourhood $U \ni x$ and a collection of holomorphic functions $f_1, ..., f_n \in$ $H^0(\mathcal{O}_U)$ such that $\eta = dd^c \log \left(\sum_i |f_i|^2\right) + \eta_0$, where η_0 is smooth.

THEOREM: (The Demailly's Regularization Theorem)

Let T be a positive, closed (1,1)-current on a compact complex Hermitian manifold (M, ω) . Then T is a limit of a sequence $\{T_k\}$ of closed (1,1)currents with algebraic singularities in the same cohomology class, such that $T_k + \varepsilon_k \omega$ is positive, and $\lim_k \varepsilon_k = 0$. Moreover, for each $x \in M$, the Lelong numbers $\nu_x(T_k)$ converge to $\nu_x(T)$ monotonously.

COROLLARY: A current *T* with zero Lelong numbers is nef.

Proof: By regularization theorem, $T = \lim_k T_k + \varepsilon_k \omega$, but the singular set of each T_k is empty, because currents with non-trivial algebraic singularities have positive Lelong numbers. **Therefore, each current** $T_k + \varepsilon_k \omega$ is smooth.