Complex surfaces

lecture 18: Manifolds of Fujiki class C

Misha Verbitsky

IMPA, sala 236

February 17, 2024, 17:00

Bimeromorphic map

DEFINITION: Meromorphic map $\varphi : Z \rightarrow Z_1$ of complex analytic varieties is a map, defined outside of a nowhere dense subvariety, which in local coordinates can be expressed by meromorphic functions.

DEFINITION: A meromorphic map $\varphi : X \rightarrow Y$ is called **bimeromorphic** if there exists a meromorphic map $\psi : Y \rightarrow X$ such that $\varphi \circ \psi$ and $\psi \circ \varphi$ are identities in each point where these compositions are defined.

CLAIM: A bimeromorphic map $\varphi : X \rightarrow Y$ induces an isomorphism between a Zariski open subset of X and a Zariski open subset of Y.

REMARK: Equivalently, one could define a bimeromorphic map as a subvariety $Z \subset X \times Y$ which projects to X and Y properly and bijectively outside of a Zariski closed set. These definitions are equivalent.

Weak factorization theorem

THEOREM: (Abramovich, Karu, Matsuki, Włodarczuk) Let $\varphi : X_1 \rightarrow X$ be a bimeromorphic map. Then φ can be decomposed onto a composition of blow-ups and blow-downs with smooth center.

Proof: see https://arxiv.org/pdf/math/0002084 (Kenji Matsuki, Lectures on Factorization of Birational Maps) ■

REMARK: Generally speaking, we take blow-ups, then blow-downs, then blow-ups again and so on. It is conjectured ("strong factorization conjecture") that we could decompose φ onto a composition of a few blow-ups and then a few blow-downs, but this conjecture is still open.

For surfaces, the strong factorization conjecture was proven by Zariski.

THEOREM: (Zariski, 1931)

Let $\varphi : X_1 \rightarrow X$ be a bimeromorphic map of complex surfaces. Then one can decompose φ onto a composition of a few blow-ups and then a few blow-downs (in this order). More precisely, φ can be decomposed onto a composition of blow-ups of (smooth) points and blow-downs of smooth rational curves with self-intersection (-1).

Manifolds of Fujiki class C

DEFINITION: A compact complex manifold is called **Fujiki class C** if it is bimeromorphic to a Kähler manifold.

DEFINITION: Let *M* be a compact complex manifold, and ω a Hermitian form. **A Kähler current** is a closed, positive (1,1)-current η on *M* such that $\eta - \varepsilon \omega$ is positive for some $\varepsilon > 0$.

THEOREM: (Demailly, Păun)

A compact complex manifold is Fujiki class C if and only if it admits a Kähler current.

REMARK: This theorem is highly non-trivial; we will not use it.

Today we prove **THEOREM: A complex surface of Fujiki class C is Kähler.**

The proof will follow if we prove that a blow-up of a Kähler surface is Kähler and the blow-down of a Kähler surface is Kähler.

We also prove CLAIM: Any Fujiki class C manifold admits a Kähler current.

THEOREM: Any complex surface admitting a Kähler current is Kähler.

Blow-up of a Kähler surface

PROPOSITION: A blow-up of a Kähler manifold in a point is Kähler.

Proof. Step 1: Let $x \in (M, \omega)$ be a point, and $\pi : \tilde{M} \to M$ a blow-up of M in x. Choose an appropriate coordinate system in a neighbourhood U of x and a cut-off function ψ with support in a small open ball $B_{\varepsilon}(x)$, equal to 1 in $B_{\varepsilon}(x)$. Denote by l the logarithm of the Euclidean distance to x; the function ψl cal be smoothly extended to M, because it is supported in $B_{2\varepsilon}(x)$.

Step 2: For a sufficiently small ε , the current $dd^c(\varepsilon\psi l) + \omega$ is positive. Indeed, it is positive on $B_{\varepsilon}(x)$, because $dd^c l = dd^c(\psi l)$ is positive there. it is positive outside of $B_{2\varepsilon}(x)$, because $\psi = 0$ there, and on the annulus $B_{2\varepsilon}(x) \setminus B_{\varepsilon}(x)$, the form $dd^c(\psi l)$ is bounded, hence satisfies $\omega + \varepsilon dd^c(\psi l)$ for ε sufficiently small.

Step 3 Let $E \,\subset \, \tilde{M}$ be the exceptional set of the blow-up; it is isomorphic to $\mathbb{C}P^{n-1}$. On the blow-up, $dd^c(\varepsilon \psi l) + \omega$ is Kähler outside of E (Step 2) and smooth and Kähler on E by Excerise 4.7 (Assignment 4).

M. Verbitsky

Pushforward of a Kähler form

CLAIM: Let ψ : $(M_1, \omega_1) \longrightarrow (M, \omega)$ be a proper surjective bimeromorphic holomorphic map of complex Hermitian *n*-manifolds. Then $\psi_*\psi^*\alpha = \alpha$ for any smooth form $\alpha \in \Lambda^*(M)$.

Proof: By definition, $\langle \psi_* \psi^* \alpha, \tau \rangle = \langle \psi^* \alpha, \psi^* \tau \rangle = \int_{\widetilde{M}} \psi^* \alpha \wedge \psi^* \tau = \int_M \alpha \wedge \tau = \langle \alpha, \tau \rangle$, because ψ is bijective outside of a measure 0 set.

THEOREM: Let $\tilde{M} \rightarrow M$ be a holomorphic, birational, proper map of complex manifolds. Then **a pushforward of a Kähler form is a Kähler current**

Proof: Clearly, $\tilde{\omega} \ge \pi^* \omega$ for any Hermitian form ω on M such that

$$\pi: (\tilde{M}, \tilde{\omega}) \longrightarrow (M, \omega)$$

is Lipschitz. Since $||D\pi||$ is bounded, it is *C*-Lipschitz for *C* sufficiently big; rescaling ω , we may always assume that π is Lipschitz. Since $\tilde{\omega} \ge \pi^* \omega$, we have also $\pi_* \tilde{\omega} \ge \pi_* \pi^* \omega = \omega$. This implies that **pushforward of a Kähler form is a Kähler current**.

REMARK: The same argument proves that **a pushforward of a Kähler form is a Kähler current**, for any proper surjective holomorphic map of complex *n*-manifolds (left as an exercise).

Blow-down of a Kähler surface

PROPOSITION: A blow-down of a Kähler surface is Kähler. In other words, consider a blow-up map $\pi : \tilde{M} \to M$ where $(\tilde{M}, \tilde{\omega})$ is a Kähler surface; then M is also Kähler.

Proof. Step 1: Since *M* is a surface, $\pi: \tilde{M} \to M$ is a composition of blow-ups. Therefore, it would suffice to show that *M* is Kähler when π is a blow-up of *M* in $x \in M$. The pushforward current is smooth and satisfies $\pi_*\tilde{\omega} \ge \omega$ outside of *x*, but it is singular in *x*. Let $E \subset \tilde{M}$ be the blow-up curve. Using the local dd^c -lemma, we can assume that $\pi_*\tilde{\omega} = dd^c f$ in some neighbourhood $U \ni x$. **The function** *f* **satisfies** $f(x) = -\infty$, because otherwise π^*f restricted to *E* is bounded; however, $dd^c\pi^*f = \tilde{\omega}$, which is impossible, because $\int_E \tilde{\omega} > 0$.

Step 2: Let g be a a potential of a Kähler form on U; it always exists, if U is an open ball. Then $\max_{\varepsilon}(g-C, f)$ is equal to g-C in a small neighbourhood of x, where $f \leq -C$, and is equal to f in a set $U_1 \subset U$, obtained from U by removing a small neighbourhood of x. Then $dd^c \max_{\varepsilon}(g-C, f)$ is a Kähler form on U which is equal to $\pi_*\tilde{\omega}$ outside of U_1 ; we extend it to $\pi_*\tilde{\omega}$ on $M \setminus U_1$, and obtain a Kähler form on M.

Regularization of positive currents

DEFINITION: Let η be a closed (1,1)-current on a complex manifold M. We say that η has algebraic singularities if for every point $x \in M$ there is a neighbourhood $U \ni x$ and a collection of holomorphic functions $f_1, ..., f_n \in$ $H^0(\mathcal{O}_U)$ such that $\eta = dd^c \log (\sum_i |f_i|^2) + \eta_0$, where η_0 is smooth.

THEOREM: (The Demailly's Regularization Theorem)

Let T be a positive, closed (1,1)-current on a compact complex Hermitian manifold (M,ω) , which satisfies $T \ge \gamma$ for some smooth (1,1)-form γ . Then T is a limit of a sequence $\{T_k\}$ of closed (1,1)-currents with algebraic singularities in the same cohomology class, such that $T_k + \varepsilon_k \omega$, is positive, $T_k \ge \gamma - \varepsilon_k \omega$, and $\lim_k \varepsilon_k = 0$. Moreover, for each $x \in M$, the Lelong numbers $\nu_x(T_k)$ converge to $\nu_x(T)$ monotonously.

THEOREM: (Siu decomposition theorem)

Let Θ be a positive (1,1)-current on a complex *n*-manifold, and Z_i the (n-1)-dimensional components of its Lelong sets, with Lelong numbers c_i (at generic point). Then $\Theta = \sum_i c_i [Z_i] + R$, where R is closed, positive, and all Lelong sets of R have dimension $\leq n-2$.

REMARK: For surfaces, this means that for any Kähler current η on a surface, $\eta = \eta_0 + \sum_i c_i[Z_i]$, where η is a Kähler current with all Lelong sets **O-dimensional**, and $Z_i \subset M$ complex curves.

Kähler current on a complex surface

REMARK: When we say "singularities" of a current which is locally given by $dd^c f$, where f is smooth outside of the set S where it is equal to $-\infty$, the "singular set" of this current is S.

THEOREM: Let M be a complex surface admitting a Kähler current T. **Then** M is Kähler.

Proof. Step 1: Using Demailly regularization, we may replace T by T_k which has algebraic singularities. Indeed, $T \ge \gamma$, where γ is Hermitian, and $T_k \ge \gamma - \varepsilon_k \omega$, with ε_k converging to 0, hence T_k is Kähler for $k \gg 0$. From Siu decomposition, we may also assume that all singularities of T_k are 0-dimensional. Finally, there are finitely many such singularities, because for any current $dd^c \log (\sum_i |f_i|^2) + \eta_0$, with isolated algebraic singularities, its Lelong set is the set of common zeros of f_i , which is finite, because it is complex analytic. It remains to prove the theorem when T is a Kähler current with isolated singularities.

Step 2: Let $z_1, ..., z_n$ be these singularities, and $dd^c f_i = T$ its potential in a small neighbourhood V_i of each z_i . Then $f_i = -\infty$ in z_i . Choose a Kähler potential ψ_i for a smooth Kähler form in each V_i , and replace f_i by $f'_i := \max_{\varepsilon} (f_i, \psi_i - C)$, $C \gg 0$. Then $dd^c f'_i$ is smooth, Kähler, and equal to T outside of a small neighbourhood W_i of $\bigcup_i \{z_i\}$. Gluing $dd^c f'_i$ inside W_i to T outside if W_i , we obtain a Kähler form on M.