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Kähler currents (reminder)

DEFINITION: A compact complex manifold is called Fujiki class C if it is

bimeromorphic to a Kähler manifold.

DEFINITION: Let M be a compact complex manifold, and ω a Hermitian

form. A Kähler current is a closed, positive (1,1)-current η on M such that

η − εω is positive for some ε > 0.

THEOREM: (Demailly, Pǎun)

A compact complex manifold is Fujiki class C if and only if it admits a

Kähler current.

REMARK: This theorem is highly non-trivial; we will not use it.

In Lecture 18 we proved

THEOREM: Any complex surface admitting a Kähler current is Kähler.
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Cohomology classes represented by Kähler currents

REMARK: Let ω be a Gauduchon metric on a complex n-manifold, and
η a closed (1,1)-form. We define the degree degω η ∶= ∫M η ∧ ωn−1. Since

∫M ddcf ∧ ωn−1 = 0, this number depends only on the cohomology class [η] ∈
H

1,1
BC(M,R).

THEOREM: (Ahcène Lamari, Lecture 14)
Let M be a compact complex n-manifold. A non-zero class η ∈ H

1,1
BC(M,R)

can be represented by a positive, closed current if and only if degω η > 0
for any Gauduchon metric ω.

This lecture we prove another theorem, also due to Lamari.
THEOREM: (Ahcène Lamari)
Let (M,ω) be a compact Hermitian complex manifold. A non-zero class
η ∈ H

1,1
BC(M,R) can be represented by a Kähler current if and only if

there exists ε > 0 such that ∫M ωn−11 ∧ η > ε ∫M ωn−11 ∧ ω for any Gauduchon
metric ω1.
REMARK: The number ∫M ωn−11 ∧ η = degω1 η is a cohomological invariant
of the Bott-Chern class of η and the Aeppli class of ωn−11 . The number

∫M ωn−11 ∧ ω has no cohomological meaning, it depends on the choice of
ωn−11 in its Aeppli cohomology class. The inequality ∫M ωn−11 ∧η > ε ∫M ωn−11 ∧ω
is given by continuously many conditions, enumerated by the Gauduchon
forms.
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Open subsets in currents

REMARK: The topology on currents is “Tychonoff-type”, it is the weak
topology, with a base of open sets obtained as finite intersections of Uτ(]a, b[) ∶=
{x ∈ D∗(M) ∣ ⟨x, τ ⟩ ∈]a, b[}. This is why (for instance) the cone of Kähler
currents is not open.

DEFINITION: Let (M,ω) be a compact Hermitian complex n-manifold, and
ε < 1 a positive real number. Define a neighbourhood of zero Bε ⊂D

n−1,n−1
R (M)

consisting of all Ξ which satisfy ∣∫M Ξ ∧ω∣ < ε. Let Pos ⊂ Dn−1,n−1
R (M) be the

cone of positive (n−1, n−1)-currents. For any x ∈ Pos, consider the open ball
B(x) = x +Bε, where ε = ∫M x ∧ ω. Define Posε(ω) ∶= ⋃x∈PosBx. Clearly, Posε is
open.

CLAIM: The set Posε(ω) is convex.
Proof: For any x,y ∈ Pos, the set B(x+y) contains B(x)+B(y) because ∫M(x+
y) ∧ω = ∫M x ∧ω + ∫M y ∧ω.

CLAIM: The intersection ⋂ε⋂ωPosε(ω) over all ε ∈]0,1[ and all Hermitian ω
is equal to the positive cone.

Proof: Clearly, positive cone is the set of all currents η such that ⟨η,ω⟩ ⩾ 0
for all ω which are Hermitian. Since η ∈ Posε(ω) implies ⟨η,ω⟩ ⩾ 0, this means
that all elements of ⋂ε⋂ωPosε(ω) satisfy ⟨η,ω⟩ ⩾ 0 for all Hermitian ω.
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Countable, dense sets of Gauduchon forms

LEMMA: The space of all Gauduchon forms on a compact complex n-

manifold M has countable, dense subset.

Proof. Step 1: Gauduchon theorem provides a natural continuoups map Ψ

from the set of all Hermitian forms on M to the set of all Gauduchon forms

(to fix the ambiguity with the constant multiplier, we choose Ψ(ω) in such

a way that ∫M ωn = ∫MΨ(ω)n. Therefore, it would suffice to show that the

space of all Hermitian forms has a dense, countable subset.

Step 2: Since Hermitian forms are open in the space of all smooth (1,1)-

forms, it suffices to show that the space Λ1,1(M,R) of (1,1)-forms has a

dense countable subset. Since open sets in Λ1,1(M,R) are open sets in one of

the Ci-topologies, it would suffice to show that (Λ1,1(M,R),Ci) has a dense,

countable subset. We leave this as an exercise to discuss in class.
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Compactness of positive currents with bounded mass

REMARK: Let ω be a Hermitian form on a compact complex n-manifold.

Recall that the mass of a positive current η is M(η) ∶= ∫M η ∧ωn−1.

PROPOSITION: The set of all positive (1,1)-currents η with M(η) ⩽ C is

compact.

Proof: Positive currents are positive (1,1)-forms with measure coefficients;

the condition M(η) ⩽ C means that these measures are bounded by a constant,

and the space of such measures is compact by Banach-Alaoglu theorem.
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Aeppli cohomology (reminder)

DEFINITION: Let M be a complex manifold, and Hp,q
AE(M) the space of ddc-

closed (p, q)-forms modulo ∂(Λp−1,qM) + ∂(Λp,q−1M). Then H
p,q
AE(M) is called

the Aeppli cohomology of M .

THEOREM: (A. Aeppli)

Let M be a compact complex n-manifold. Then the Aeppli cohomology is

finite-dimensional. Moreover, the natural pairing

H
p,q
BC(M) ×H

n−p,n−q
AE (M)Ð→H2n(M) = C,

taking x,y to ∫M x ∧ y is non-degenerate and identifies H
p,q
BC(M) with the

dual Hn−p,n−q
AE (M)∗.

Proof: Use the same argument as used to prove Serre’s duality and Poincaré

duality.

DEFINITION: Let M be a compact complex n-manifold. Its Gauduchon

cone is the set of all Aeppli classes of ωn−1, where ω is a Gauduchon form.

REMARK: A (n − 1, n − 1)-current is Aeppli cohomologous to 0 if and only

if it is (n − 1, n − 1)-part of an exact current.
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Intersection of all Posε(ω) with Gauduchon ω

Proposition 1: The intersection ⋂ε⋂ωPosε(ω) over all ε ∈]0,1[ and all Gaudu-
chon ω is equal to Pos1,1+ddcD0

R(M), where Pos1,1 is the cone of positive
(1,1)-currents.
Proof. Step 1: Clearly, Pos1,1+ddcD0

R(M) paired with a Gauduchon form is
positive. This implies that Pos1,1+ddcD0

R(M) ⊂ ⋂ε⋂ωPosε(ω).
Step 2: Conversely, let {ωα} be a dense countable set of Gauduchon forms.
We order the set {ωα} × {2−1,2−2, ...} obtaining a sequence {Posεi(ωi)} such
that ⋂iPosεi(ωi) = ⋂ε⋂all Gauduchon ωPosε(ω), and limi εi = 0. Note that for
each ωi, there are many instances of Pos2−k(ωi) in {Posεi(ωi)}, for countably
many different k.
Step 3: The set Posεi(ωi) is a union of all a + b, where a is positive, and b
satisfies the inequality ∣ ∫M b ∧ ωn−1i ∣ ⩽ εi ∫M b ∧ ωn−1i . Then ⋂ki=1Posεi(ωi) is the
set of all currents of form a + b, where a is positive, and b satisfies the
inequality ∣ ∫M b ∧ωn−1i ∣ ⩽ εi ∫M b ∧ωn−1i for all i = 1, ..., k.

Step 4: If η ∈ ⋂ki=1Posεi(ωi), this means that η = ak + bk, where ak is positive
and ∣ ∫M bk ∧ ω

n−1
i ∣ ⩽ εi ∫M ak ∧ ω

n−1
i for ωi = ω1, ..., ωk. This condition implies, in

particular, that

∫
M
η ∧ωn−11 = ∫

M
(an + bn) ∧ω

n−1
1 ⩾ (1 − ε1)∫

M
an ∧ω

n−1
1 .

The set of such ak is compact, because ak is a positive current with
bounded mass.
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Intersection of all Posε(ω) with Gauduchon ω

Proposition 1: The intersection A ∶= ⋂ε⋂ωPosε(ω) over all ε ∈]0,1[ and all
Gauduchon ω is equal to Pos1,1+ddcD0

R(M), where Pos1,1 is the cone of
positive (1,1)-currents.

Steps 2-4: We proved that any element η ∈ ⋂ki=1Posεi(ωi) satisfies η = ak+bk,
where ak is positive and ∣ ∫M bk ∧ω

n−1
i ∣ ⩽ εi ∫M ak ∧ω

n−1
i for ωi = ω1, ..., ωk; also,

{ak} belongs to a compact set of currents.

Step 5: Replace {ai} by a converging subsequence, and let a ∶= limi ai. Since
limi ∣ ∫M(η−ai)∧ω

n−1
k
∣ = 0 for all k, and {ωk} are dense in the set of all Gauduchon

forms, this implies that ∫M(η − a) ∧ω
n−1 = 0 for all Gauduchon ω.

Step 6: It remains to show that any real (1,1)-current b which satisfies

∫
M
b ∧ωn−1 = 0 for all Gauduchon ω (∗)

belongs to ddcD0
RM. However, Gauduchon forms generate the space of all

ddc-closed forms, which contains the set of all (n−1, n−1)-parts of exact forms.
Therefore ⟨b, imd⟩ = 0, hence db = 0. Since ⟨b,u⟩ = 0 for any ddc-closed u, this
implies that the Bott-Chern class of b, paired with any Aeppli (n − 1, n − 1)-
class, vanishes. By duality between Aeppli and Bott-Chern classes, this
implies that b is Bott-Chern exact, that is, b ∈ ddcD0

RM
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Weak dual spaces

DEFINITION: Let X be a topological vector space, and X∗ the space of all

continuous linear functionals. The weak topology on X∗ is the weakest on

X∗ such that for all x ∈X, the map λÐ→ λ(x) is continuous.

LEMMA: Let (X∗w)∗ be the dual space to X∗, where X∗w is taken with the

weak topology. Then the natural map X Ð→ (X∗w)
∗ is bijective.

Proof. Step 1: The topology on V ∗w is defined by a system of seminorms

νx(λ) = ∣λ(x)∣. Therefore, the continuity of a linear functional ζ on X∗w means

that it satisfies the inequality ∣ζ ∣ ⩽ ∑i ∣νxi∣, for a finite collection of points

x1, ..., xn ∈ V . This implies that ζ vanishes on the space W ∶= ⟨x1, x2, ...⟩
� ⊂

V ∗, of functionals which vanish on x1, ..., xn.

Step 2: Clearly, V ∗/W = ⟨x1, x2, ...⟩
∗. Since a finite-dimensional space sat-

isfies L∗∗ = L, this implies that a natural map ⟨x1, x2, ...⟩
Ψ
Ð→ (V ∗/W )∗ is an

isomorphism. Therefore, ζ ∈ imΨ.
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Hahn-Banach theorem (reminder)

DEFINITION: We say that a hyperplane in a topological vector space V

is a closed codimension 1 subspace H ⊂ V .

THEOREM: (Hahn-Banach separation theorem)

Let V be a locally convex topological vector space, A ⊂ V an open convex

subset, and W ⊂ V a closed subspace. Assume that W ∩A = ∅. Then there

exists a continuous functional ξ ∈ V ∗ such that ξ(W ) = 0 and ξ(A) > 0.
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Gauduchon positive forms

DEFINITION: Let (M,ω) be a compact complex Hermitian n-manifold. A

(1,1)-form α is Gauduchon positive if there exists a number ε > 0 such that

for any positive, ddc-closed ψ ∈ Λn−1,n−1R (M), one has

∫
M
α ∧ψ > ε∫

M
ω ∧ψ. (∗ ∗ ∗)

REMARK: Clearly, the set A ⊂ Λ1,1
R (M) of all Gauduchon positive forms is a

convex cone.

REMARK: Later today we will prove that a Bott-Chern class [v] ∈H1,1
BC(M,R)

contains a Kähler current if and only if it contains a Gauduchon positive

closed (1,1)-form.
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The open cone of Gauduchon positive forms

PROPOSITION: Let (M,ω) be a compact complex manifold equipped with

a Hermitian metric ω, and A ⊂ Λ1,1
R (M) the set of Gauduchon positive forms.

Then A is a cone, open in C0-topology.

Proof. Step 1: The set A is closed under addition and multiplication

by a positive constant. Indeed, if α satisfies (***) with constant ε, then Aα

satisfies (***) with constant Aε; also, if α1,α2 satisfy (***) with constant

ε1, ε2, then α1 +α2 satisfies (***) with constant ε1 + ε2.

Step 2: Let g be the Riemannian metric associated with ω, and u a (1,1)-

form which satisfies supM ∥u∥g ⩽ δ. Then there exists a g-orthonormal basis

such that u is orthogonal in this basis with eigenvalues ∣δi∣ < δ. Therefore, for

any positive (n − 1, n − 1)-form ρ, we have ∣ ∫M u ∧ ρ∣ ⩽ δ ∫M u ∧ ρ. This implies

that for any Gauduchon positive form η which satisfies (***) with constant

ε, we have

∫
M
(α + u) ∧ψ > ε∫

M
ω ∧ψ − ∣∫

M
u ∧ψ∣ ⩾ (ε − δ)∫

M
ω ∧ψ.

This implies that α + u is Gauduchon positive for δ < ε, and therefore A

is open.
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Gauduchon positive forms and positive currents

Proposition 2: Let (M,ω) be a compact complex manifold equipped with a

Hermitian metric ω. Let β ∈ Λ1,1
R (M) be a Gauduchon positive form. Then

there exists a generalized function f ∈ D0(M) such that β + ddcf is a

positive current.

Proof. Step 1: Choose a Hermitian form ω1, and let Posε(ω1) ⊂ D1,1(M)

the open cone defined above. If β +ddcD0(M)∩Posε(ω1) = ∅, by Hahn-Banach

theorem there exists a form ρ ∈D1,1(M)∗ = Λn−1,n−1R (M), positive on Posε(ω1),

such that ∫M(β + dd
cf) ∧ ρ = 0, for any f ∈ D0(M). Positivity on Posε(ω1)

implies that the form ρ is positive, because Posε(ω1) contains the cone of

positive currents.

Step 2: Since ∫M ω ∧ ρ > 0, the condition ∫M β ∧ ρ = 0 contradicts Gauduchon

positivity of β. This implies that β + ddcD0(M) ∩Posε(ω1) ≠ ∅ for all ε,ω1.

Step 3: Clearly, Posε(ω1) = Posε(ω1) + ddcD0(M) when ω1 is Gauduchon.

Therefore, β + ddcD0(M) is contained in ⋂ε⋂all Gauduchon ω1
Posε(ω1). This

intersection is equal to Pos+ddcD0(M) by Proposition 1.
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Cohomology classes represented by Kähler currents

Proposition 3: Let (M,ω) be a compact complex Hermitian n-manifold, and
[v] ∈ H

1,1
BC(M). Then [v] can be represented by a Kähler current if and

only if there exists ε > 0 such that

∫
M
[v] ∧ψ > ε∫

M
ω ∧ψ (∗∗)

for any positive, ddc-closed (n − 1, n − 1)-form ψ on M .

Proof. Step 1: Let v be a Kähler current, v > εω. Then ∫M v ∧ψ ⩾ ε ∫M ω ∧ψ.

Step 2: Conversely, let [v] be a cohomology class which satisfies (**), and
α a (1,1)-form representing [v]. Then α′ ∶= α− 1

2εω is Gauduchon positive. By
Proposition 2, α′ = a + ddcf , where a is a positive current, and f a generalized
function. This implies that α − ddcf = a + 1

2εω, where a + 1
2εω is a Kähler

current.

COROLLARY: A compact complex manifold M admits a Kähler current if
and only if there exists a closed, Gauduchon positive (1,1)-form.

Proof: Any such form satisfies (**), hence it is Bott-Chern cohomologous
to a Kähler current.
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Nef-pluriharmonic currents

DEFINITION: A current η ∈ Dn−1,n−1(M) is called nef-pluriharmonic if η =
limiω

n−1
i , where all ωi are Gauduchon forms.

Lemma 4: Let (M,ω) be a compact complex Hermitian n-manifold. Then a
non-zero current is nef-pluriharmonic if and only if it is strictly positive
on all Gauduchon positive forms.

Proof. Step 1: Let K○ be the space of positive ddc-closed forms ψ ∈
Λn−1,n−1R (M), satisfying ∫ ω ∧ ψ = 1, and K its closure in the space of cur-
rents. Since all currents in K are positive and have bounded mass, this space
is compact. Clearly, the set K generates the cone of nef-pluriharmonic cur-
rents. Consider a Gauduchon positive (1,1)-form α. For any ψ ∈ K○, we
have

∫
M
α ∧ψ > ε∫

M
ω ∧ψ = ε.

Then α∣K > ε. This implies that

⟨Gauduchon positive, nef-pluriharmonic⟩ > 0.

Step 2: Conversely, assume that ξ ∈Dn−1,n−1
R (M) is a non-zero current which

is obtained as a limit of Gauduchon forms, and α is Gauduchon positive.
Then ⟨ξ,α⟩ ⩾ εξ,ω⟩, because the same inequality is true for all Gauduchon
forms, and ξ is a limit of Gauduchon forms.
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Existence of Kähler currents

THEOREM: Let M be a compact complex n-manifold. Then M admits a
Kähler current if and only if for any non-zero nef-pluriharmonic current,
its Aeppli class is non-zero.

Proof. Step 1: Let Ξ be a Kähler current on M , and β a non-zero nef-
pluriharmonic current with β = limiβi, where βi = ω

n−1
i and all ωi are Gaudu-

chon. We are going to prove that [β]AE ≠ 0, which would follow if we
prove ⟨[Ξ], [β]⟩ ≠ 0, where ⟨[Ξ], [β]⟩ denotes the pairing between the Aeppli
and Bott-Chern cohomology.

Step 2: Let ω be a Hermitian form on M . By Proposition 3, there exists ε > 0
such that ∫M[Ξ] ∧ βi ⩾ ε ∫ ω ∧ βi. Passing to a limit, we obtain ∫M[Ξ] ∧ [β] ⩾
ε ∫ ω ∧ β > 0, which implies ⟨[Ξ], [β]⟩ > 0.

Step 3: Conversely, let A be the cone of Gauduchon positive forms. By
Proposition 3, to prove that M admits a Kähler current, it suffices to show
that A ∩ kerd ≠ 0. If the intersection is empty, we apply Hahn-Banach and
obtain a current ξ ∈Dn−1,n−1

R (M) which vanishes on closed (1,1)-forms and is
strictly positive on Gauduchon positive (1,1)-forms. Lemma 4 implies that
ξ is nef-pluriharmonic. Since ξ vanishes on closed (1,1)-forms, its Aeppli
class satisfies ⟨[ξ],H1,1

BC(M)⟩ = 0. Since the pairing ⟨Hn−1,n−1
AE (M),H

1,1
BC(M)⟩ is

perfect, we obtain that [ξ]AE = 0.
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