Complex surfaces

lecture 19: Bott-Chern classes represented by Kähler currents

Misha Verbitsky

IMPA, sala 236

February 19,21,24, 2024, 17:00

Kähler currents (reminder)

DEFINITION: A compact complex manifold is called **Fujiki class C** if it is bimeromorphic to a Kähler manifold.

DEFINITION: Let *M* be a compact complex manifold, and ω a Hermitian form. **A Kähler current** is a closed, positive (1,1)-current η on *M* such that $\eta - \varepsilon \omega$ is positive for some $\varepsilon > 0$.

THEOREM: (Demailly, Păun)

A compact complex manifold is Fujiki class C if and only if it admits a Kähler current.

REMARK: This theorem is highly non-trivial; we will not use it.

In Lecture 18 we proved

THEOREM: Any complex surface admitting a Kähler current is Kähler.

M. Verbitsky

Cohomology classes represented by Kähler currents

REMARK: Let ω be a Gauduchon metric on a complex *n*-manifold, and η a closed (1,1)-form. We define the degree $\deg_{\omega} \eta \coloneqq \int_{M} \eta \wedge \omega^{n-1}$. Since $\int_{M} dd^{c} f \wedge \omega^{n-1} = 0$, this number depends only on the cohomology class $[\eta] \in H^{1,1}_{BC}(M,\mathbb{R})$.

THEOREM: (Ahcène Lamari, Lecture 14)

Let *M* be a compact complex *n*-manifold. A non-zero class $\eta \in H^{1,1}_{BC}(M,\mathbb{R})$ can be represented by a positive, closed current if and only if $\deg_{\omega} \eta > 0$ for any Gauduchon metric ω .

This lecture we prove another theorem, also due to Lamari.

THEOREM: (Ahcène Lamari)

Let (M, ω) be a compact Hermitian complex manifold. A non-zero class $\eta \in H^{1,1}_{BC}(M, \mathbb{R})$ can be represented by a Kähler current if and only if there exists $\varepsilon > 0$ such that $\int_M \omega_1^{n-1} \wedge \eta > \varepsilon \int_M \omega_1^{n-1} \wedge \omega$ for any Gauduchon metric ω_1 .

REMARK: The number $\int_{M} \omega_1^{n-1} \wedge \eta = \deg_{\omega_1} \eta$ is a cohomological invariant of the Bott-Chern class of η and the Aeppli class of ω_1^{n-1} . The number $\int_{M} \omega_1^{n-1} \wedge \omega$ has no cohomological meaning, it depends on the choice of ω_1^{n-1} in its Aeppli cohomology class. The inequality $\int_{M} \omega_1^{n-1} \wedge \eta > \varepsilon \int_{M} \omega_1^{n-1} \wedge \omega$ is given by continuously many conditions, enumerated by the Gauduchon forms.

Open subsets in currents

REMARK: The topology on currents is "Tychonoff-type", it is the weak topology, with a base of open sets obtained as finite intersections of $U_{\tau}(]a,b[) := \{x \in D^*(M) \mid \langle x,\tau \rangle \in]a,b[\}$. This is why (for instance) **the cone of Kähler currents is not open.**

DEFINITION: Let (M, ω) be a compact Hermitian complex *n*-manifold, and $\varepsilon < 1$ a positive real number. Define a neighbourhood of zero $B_{\varepsilon} \subset D_{\mathbb{R}}^{n-1,n-1}(M)$ consisting of all Ξ which satisfy $|\int_M \Xi \wedge \omega| < \varepsilon$. Let $\operatorname{Pos} \subset D_{\mathbb{R}}^{n-1,n-1}(M)$ be the cone of positive (n-1,n-1)-currents. For any $x \in \operatorname{Pos}$, consider the open ball $B(x) = x + B_{\varepsilon}$, where $\varepsilon = \int_M x \wedge \omega$. **Define** $\operatorname{Pos}_{\varepsilon}(\omega) \coloneqq \bigcup_{x \in \operatorname{Pos}} B_x$. Clearly, $\operatorname{Pos}_{\varepsilon}$ is open.

CLAIM: The set $Pos_{\varepsilon}(\omega)$ is convex.

Proof: For any $x, y \in \text{Pos}$, the set B(x+y) contains B(x) + B(y) because $\int_M (x+y) \wedge \omega = \int_M x \wedge \omega + \int_M y \wedge \omega$.

CLAIM: The intersection $\bigcap_{\varepsilon} \bigcap_{\omega} \text{Pos}_{\varepsilon}(\omega)$ over all $\varepsilon \in]0,1[$ and all Hermitian ω is equal to the positive cone.

Proof: Clearly, positive cone is the set of all currents η such that $\langle \eta, \omega \rangle \ge 0$ for all ω which are Hermitian. Since $\eta \in \text{Pos}_{\varepsilon}(\omega)$ implies $\langle \eta, \omega \rangle \ge 0$, this means that all elements of $\bigcap_{\varepsilon} \bigcap_{\omega} \text{Pos}_{\varepsilon}(\omega)$ satisfy $\langle \eta, \omega \rangle \ge 0$ for all Hermitian ω .

Countable, dense sets of Gauduchon forms

LEMMA: The space of all Gauduchon forms on a compact complex n-manifold M has countable, dense subset.

Proof. Step 1: Gauduchon theorem provides a natural continuoups map Ψ from the set of all Hermitian forms on M to the set of all Gauduchon forms (to fix the ambiguity with the constant multiplier, we choose $\Psi(\omega)$ in such a way that $\int_M \omega^n = \int_M \Psi(\omega)^n$. Therefore, it would **suffice to show that the space of all Hermitian forms has a dense, countable subset.**

Step 2: Since Hermitian forms are open in the space of all smooth (1,1)-forms, it suffices to show that the space $\Lambda^{1,1}(M,\mathbb{R})$ of (1,1)-forms has a dense countable subset. Since open sets in $\Lambda^{1,1}(M,\mathbb{R})$ are open sets in one of the C^i -topologies, it would suffice to show that $(\Lambda^{1,1}(M,\mathbb{R}), C^i)$ has a dense, countable subset. We leave this as an exercise to discuss in class.

Compactness of positive currents with bounded mass

REMARK: Let ω be a Hermitian form on a compact complex *n*-manifold. Recall that the mass of a positive current η is $M(\eta) \coloneqq \int_M \eta \wedge \omega^{n-1}$.

PROPOSITION: The set of all positive (1,1)-currents η with $M(\eta) \leq C$ is compact.

Proof: Positive currents are positive (1,1)-forms with measure coefficients; the condition $M(\eta) \leq C$ means that these measures are bounded by a constant, and the space of such measures is compact by Banach-Alaoglu theorem.

Aeppli cohomology (reminder)

DEFINITION: Let M be a complex manifold, and $H_{AE}^{p,q}(M)$ the space of dd^c closed (p,q)-forms modulo $\partial(\Lambda^{p-1,q}M) + \overline{\partial}(\Lambda^{p,q-1}M)$. Then $H_{AE}^{p,q}(M)$ is called **the Aeppli cohomology** of M.

THEOREM: (A. Aeppli)

Let M be a compact complex n-manifold. Then the Aeppli cohomology is finite-dimensional. Moreover, the natural pairing

 $H^{p,q}_{BC}(M) \times H^{n-p,n-q}_{AE}(M) \longrightarrow H^{2n}(M) = \mathbb{C},$

taking x, y to $\int_M x \wedge y$ is non-degenerate and identifies $H^{p,q}_{BC}(M)$ with the dual $H^{n-p,n-q}_{AE}(M)^*$.

Proof: Use the same argument as used to prove Serre's duality and Poincaré duality. ■

DEFINITION: Let *M* be a compact complex *n*-manifold. Its **Gauduchon cone** is the set of all Aeppli classes of ω^{n-1} , where ω is a Gauduchon form.

REMARK: A (n-1, n-1)-current is Aeppli cohomologous to 0 if and only if it is (n-1, n-1)-part of an exact current.

7

Intersection of all $Pos_{\varepsilon}(\omega)$ with Gauduchon ω

Proposition 1: The intersection $\bigcap_{\varepsilon} \bigcap_{\omega} \text{Pos}_{\varepsilon}(\omega)$ over all $\varepsilon \in]0,1[$ and all Gauduchon ω is equal to $\text{Pos}^{1,1} + dd^c D^0_{\mathbb{R}}(M)$, where $\text{Pos}^{1,1}$ is the cone of positive (1,1)-currents.

Proof. Step 1: Clearly, $\operatorname{Pos}^{1,1} + dd^c D^0_{\mathbb{R}}(M)$ paired with a Gauduchon form is positive. This implies that $\operatorname{Pos}^{1,1} + dd^c D^0_{\mathbb{R}}(M) \subset \bigcap_{\varepsilon} \bigcap_{\omega} \operatorname{Pos}_{\varepsilon}(\omega)$.

Step 2: Conversely, let $\{\omega_{\alpha}\}$ be a dense countable set of Gauduchon forms. We order the set $\{\omega_{\alpha}\} \times \{2^{-1}, 2^{-2}, ...\}$ **obtaining a sequence** $\{\text{Pos}_{\varepsilon_i}(\omega_i)\}$ **such that** $\bigcap_i \text{Pos}_{\varepsilon_i}(\omega_i) = \bigcap_{\varepsilon} \bigcap_{\text{all Gauduchon } \omega} \text{Pos}_{\varepsilon}(\omega)$, and $\lim_i \varepsilon_i = 0$. Note that for each ω_i , there are many instances of $\text{Pos}_{2^{-k}}(\omega_i)$ in $\{\text{Pos}_{\varepsilon_i}(\omega_i)\}$, for countably many different k.

Step 3: The set $\operatorname{Pos}_{\varepsilon_i}(\omega_i)$ is a union of all a + b, where a is positive, and b satisfies the inequality $|\int_M b \wedge \omega_i^{n-1}| \leq \varepsilon_i \int_M b \wedge \omega_i^{n-1}$. Then $\bigcap_{i=1}^k \operatorname{Pos}_{\varepsilon_i}(\omega_i)$ is the set of all currents of form a + b, where a is positive, and b satisfies the inequality $|\int_M b \wedge \omega_i^{n-1}| \leq \varepsilon_i \int_M b \wedge \omega_i^{n-1}$ for all i = 1, ..., k.

Step 4: If $\eta \in \bigcap_{i=1}^{k} \text{Pos}_{\varepsilon_{i}}(\omega_{i})$, this means that $\eta = a_{k} + b_{k}$, where a_{k} is positive and $|\int_{M} b_{k} \wedge \omega_{i}^{n-1}| \leq \varepsilon_{i} \int_{M} a_{k} \wedge \omega_{i}^{n-1}$ for $\omega_{i} = \omega_{1}, ..., \omega_{k}$. This condition implies, in particular, that

$$\int_{M} \eta \wedge \omega_{1}^{n-1} = \int_{M} (a_{n} + b_{n}) \wedge \omega_{1}^{n-1} \ge (1 - \varepsilon_{1}) \int_{M} a_{n} \wedge \omega_{1}^{n-1}.$$

The set of such a_k is compact, because a_k is a positive current with bounded mass.

Intersection of all $Pos_{\varepsilon}(\omega)$ with Gauduchon ω

Proposition 1: The intersection $A \coloneqq \bigcap_{\varepsilon} \bigcap_{\omega} \text{Pos}_{\varepsilon}(\omega)$ over all $\varepsilon \in]0,1[$ and all Gauduchon ω is equal to $\text{Pos}^{1,1} + dd^c D^0_{\mathbb{R}}(M)$, where $\text{Pos}^{1,1}$ is the cone of positive (1,1)-currents.

Steps 2-4: We proved that any element $\eta \in \bigcap_{i=1}^k \text{Pos}_{\varepsilon_i}(\omega_i)$ satisfies $\eta = a_k + b_k$, where a_k is positive and $|\int_M b_k \wedge \omega_i^{n-1}| \leq \varepsilon_i \int_M a_k \wedge \omega_i^{n-1}$ for $\omega_i = \omega_1, ..., \omega_k$; also, $\{a_k\}$ belongs to a compact set of currents.

Step 5: Replace $\{a_i\}$ by a converging subsequence, and let $a \coloneqq \lim_i a_i$. Since $\lim_i |\int_M (\eta - a_i) \wedge \omega_k^{n-1}| = 0$ for all k, and $\{\omega_k\}$ are dense in the set of all Gauduchon forms, **this implies that** $\int_M (\eta - a) \wedge \omega^{n-1} = 0$ **for all Gauduchon** ω .

Step 6: It remains to show that any real (1,1)-current b which satisfies

$$\int_{M} b \wedge \omega^{n-1} = 0 \text{ for all Gauduchon } \omega \quad (*)$$

belongs to $dd^c D^0_{\mathbb{R}} M$. However, Gauduchon forms generate the space of all dd^c -closed forms, which contains the set of all (n-1, n-1)-parts of exact forms. Therefore $\langle b, \text{im } d \rangle = 0$, hence db = 0. Since $\langle b, u \rangle = 0$ for any dd^c -closed u, this implies that the Bott-Chern class of b, paired with any Aeppli (n-1, n-1)-class, vanishes. By duality between Aeppli and Bott-Chern classes, this implies that b is Bott-Chern exact, that is, $b \in dd^c D^0_{\mathbb{R}} M$

Weak dual spaces

DEFINITION: Let X be a topological vector space, and X^* the space of all continuous linear functionals. The **weak topology** on X^* is the weakest on X^* such that for all $x \in X$, the map $\lambda \longrightarrow \lambda(x)$ is continuous.

LEMMA: Let $(X_w^*)^*$ be the dual space to X^* , where X_w^* is taken with the weak topology. Then the natural map $X \longrightarrow (X_w^*)^*$ is bijective.

Proof. Step 1: The topology on V_w^* is defined by a system of seminorms $\nu_x(\lambda) = |\lambda(x)|$. Therefore, the continuity of a linear functional ζ on X_w^* means that it satisfies the inequality $|\zeta| \leq \sum_i |\nu_{x_i}|$, for a finite collection of points $x_1, ..., x_n \in V$. This implies that ζ vanishes on the space $W \coloneqq \langle x_1, x_2, ... \rangle^{\perp} \subset V^*$, of functionals which vanish on $x_1, ..., x_n$.

Step 2: Clearly, $V^*/W = \langle x_1, x_2, ... \rangle^*$. Since a finite-dimensional space satisfies $L^{**} = L$, this implies that a natural map $\langle x_1, x_2, ... \rangle \xrightarrow{\Psi} (V^*/W)^*$ is an isomorphism. **Therefore**, $\zeta \in \operatorname{im} \Psi$.

Hahn-Banach theorem (reminder)

DEFINITION: We say that a hyperplane in a topological vector space V is a closed codimension 1 subspace $H \subset V$.

THEOREM: (Hahn-Banach separation theorem)

Let V be a locally convex topological vector space, $A \subset V$ an open convex subset, and $W \subset V$ a closed subspace. Assume that $W \cap A = \emptyset$. Then there exists a continuous functional $\xi \in V^*$ such that $\xi(W) = 0$ and $\xi(A) > 0$.

Gauduchon positive forms

DEFINITION: Let (M, ω) be a compact complex Hermitian *n*-manifold. A (1,1)-form α is **Gauduchon positive** if there exists a number $\varepsilon > 0$ such that for any positive, dd^c -closed $\psi \in \Lambda_{\mathbb{R}}^{n-1,n-1}(M)$, one has

$$\int_{M} \alpha \wedge \psi > \varepsilon \int_{M} \omega \wedge \psi. \quad (* * *)$$

REMARK: Clearly, the set $A \in \Lambda^{1,1}_{\mathbb{R}}(M)$ of all Gauduchon positive forms is a convex cone.

REMARK: Later today we will prove that a Bott-Chern class $[v] \in H^{1,1}_{BC}(M,\mathbb{R})$ contains a Kähler current if and only if it contains a Gauduchon positive closed (1,1)-form.

The open cone of Gauduchon positive forms

PROPOSITION: Let (M, ω) be a compact complex manifold equipped with a Hermitian metric ω , and $A \subset \Lambda_{\mathbb{R}}^{1,1}(M)$ the set of Gauduchon positive forms. **Then** A **is a cone, open in** C^0 -**topology.**

Proof. Step 1: The set *A* is closed under addition and multiplication by a positive constant. Indeed, if α satisfies (***) with constant ε , then $A\alpha$ satisfies (***) with constant $A\varepsilon$; also, if α_1, α_2 satisfy (***) with constant $\varepsilon_1, \varepsilon_2$, then $\alpha_1 + \alpha_2$ satisfies (***) with constant $\varepsilon_1 + \varepsilon_2$.

Step 2: Let g be the Riemannian metric associated with ω , and u a (1,1)form which satisfies $\sup_M \|u\|_g \leq \delta$. Then there exists a g-orthonormal basis such that u is orthogonal in this basis with eigenvalues $|\delta_i| < \delta$. Therefore, for any positive (n-1, n-1)-form ρ , we have $|\int_M u \wedge \rho| \leq \delta \int_M u \wedge \rho$. This implies that for any Gauduchon positive form η which satisfies (***) with constant ε , we have

$$\int_{M} (\alpha + u) \wedge \psi > \varepsilon \int_{M} \omega \wedge \psi - |\int_{M} u \wedge \psi| \ge (\varepsilon - \delta) \int_{M} \omega \wedge \psi.$$

This implies that $\alpha + u$ is Gauduchon positive for $\delta < \varepsilon$, and therefore A is open.

Gauduchon positive forms and positive currents

Proposition 2: Let (M, ω) be a compact complex manifold equipped with a Hermitian metric ω . Let $\beta \in \Lambda_{\mathbb{R}}^{1,1}(M)$ be a Gauduchon positive form. Then there exists a generalized function $f \in D^0(M)$ such that $\beta + dd^c f$ is a positive current.

Proof. Step 1: Choose a Hermitian form ω_1 , and let $\text{Pos}_{\varepsilon}(\omega_1) \in D^{1,1}(M)$ the open cone defined above. If $\beta + dd^c D^0(M) \cap \text{Pos}_{\varepsilon}(\omega_1) = \emptyset$, by Hahn-Banach theorem there exists a form $\rho \in D^{1,1}(M)^* = \Lambda_{\mathbb{R}}^{n-1,n-1}(M)$, positive on $\text{Pos}_{\varepsilon}(\omega_1)$, such that $\int_M (\beta + dd^c f) \wedge \rho = 0$, for any $f \in D^0(M)$. Positivity on $\text{Pos}_{\varepsilon}(\omega_1)$ implies that the form ρ is positive, because $\text{Pos}_{\varepsilon}(\omega_1)$ contains the cone of positive currents.

Step 2: Since $\int_M \omega \wedge \rho > 0$, the condition $\int_M \beta \wedge \rho = 0$ contradicts Gauduchon positivity of β . This implies that $\beta + dd^c D^0(M) \cap \text{Pos}_{\varepsilon}(\omega_1) \neq \emptyset$ for all ε, ω_1 .

Step 3: Clearly, $\text{Pos}_{\varepsilon}(\omega_1) = \text{Pos}_{\varepsilon}(\omega_1) + dd^c D^0(M)$ when ω_1 is Gauduchon. Therefore, $\beta + dd^c D^0(M)$ is contained in $\bigcap_{\varepsilon} \bigcap_{\text{all Gauduchon } \omega_1} \text{Pos}_{\varepsilon}(\omega_1)$. This intersection is equal to $\text{Pos} + dd^c D^0(M)$ by Proposition 1.

M. Verbitsky

Cohomology classes represented by Kähler currents

Proposition 3: Let (M, ω) be a compact complex Hermitian *n*-manifold, and $[v] \in H^{1,1}_{BC}(M)$. Then [v] can be represented by a Kähler current if and only if there exists $\varepsilon > 0$ such that

$$\int_{M} [v] \wedge \psi > \varepsilon \int_{M} \omega \wedge \psi \quad (**)$$

for any positive, dd^c -closed (n-1, n-1)-form ψ on M.

Proof. Step 1: Let v be a Kähler current, $v > \varepsilon \omega$. Then $\int_M v \wedge \psi \ge \varepsilon \int_M \omega \wedge \psi$.

Step 2: Conversely, let [v] be a cohomology class which satisfies (**), and α a (1,1)-form representing [v]. Then $\alpha' \coloneqq \alpha - \frac{1}{2}\varepsilon\omega$ is Gauduchon positive. By Proposition 2, $\alpha' = a + dd^c f$, where a is a positive current, and f a generalized function. This implies that $\alpha - dd^c f = a + \frac{1}{2}\varepsilon\omega$, where $a + \frac{1}{2}\varepsilon\omega$ is a Kähler current.

COROLLARY: A compact complex manifold M admits a Kähler current if and only if there exists a closed, Gauduchon positive (1,1)-form.

Proof: Any such form satisfies (**), hence it is Bott-Chern cohomologous to a Kähler current. ■

Nef-pluriharmonic currents

DEFINITION: A current $\eta \in D^{n-1,n-1}(M)$ is called **nef-pluriharmonic** if $\eta = \lim_i \omega_i^{n-1}$, where all ω_i are Gauduchon forms.

Lemma 4: Let (M, ω) be a compact complex Hermitian *n*-manifold. Then a non-zero current is nef-pluriharmonic if and only if it is strictly positive on all Gauduchon positive forms.

Proof. Step 1: Let K° be the space of positive dd^c -closed forms $\psi \in \Lambda_{\mathbb{R}}^{n-1,n-1}(M)$, satisfying $\int \omega \wedge \psi = 1$, and K its closure in the space of currents. Since all currents in K are positive and have bounded mass, this space is compact. Clearly, the set K generates the cone of nef-pluriharmonic currents. Consider a Gauduchon positive (1,1)-form α . For any $\psi \in K^{\circ}$, we have

$$\int_M \alpha \wedge \psi > \varepsilon \int_M \omega \wedge \psi = \varepsilon.$$

Then $\alpha|_K > \varepsilon$. This implies that

 $\langle Gauduchon positive, nef-pluriharmonic \rangle > 0.$

Step 2: Conversely, assume that $\xi \in D_{\mathbb{R}}^{n-1,n-1}(M)$ is a non-zero current which is obtained as a limit of Gauduchon forms, and α is Gauduchon positive. Then $\langle \xi, \alpha \rangle \ge \varepsilon \xi, \omega \rangle$, because the same inequality is true for all Gauduchon forms, and ξ is a limit of Gauduchon forms.

Existence of Kähler currents

THEOREM: Let *M* be a compact complex *n*-manifold. Then *M* admits a Kähler current **if and only if for any non-zero nef-pluriharmonic current**, **its Aeppli class is non-zero**.

Proof. Step 1: Let Ξ be a Kähler current on M, and β a non-zero nefpluriharmonic current with $\beta = \lim_i \beta_i$, where $\beta_i = \omega_i^{n-1}$ and all ω_i are Gauduchon. We are going to prove that $[\beta]_{AE} \neq 0$, which would follow if we prove $\langle [\Xi], [\beta] \rangle \neq 0$, where $\langle [\Xi], [\beta] \rangle$ denotes the pairing between the Aeppli and Bott-Chern cohomology.

Step 2: Let ω be a Hermitian form on M. By Proposition 3, there exists $\varepsilon > 0$ such that $\int_M [\Xi] \land \beta_i \ge \varepsilon \int \omega \land \beta_i$. Passing to a limit, we obtain $\int_M [\Xi] \land [\beta] \ge \varepsilon \int \omega \land \beta > 0$, which implies $\langle [\Xi], [\beta] \rangle > 0$.

Step 3: Conversely, let A be the cone of Gauduchon positive forms. By Proposition 3, to prove that M admits a Kähler current, it suffices to show that $A \cap \ker d \neq 0$. If the intersection is empty, we apply Hahn-Banach and obtain a current $\xi \in D_{\mathbb{R}}^{n-1,n-1}(M)$ which vanishes on closed (1,1)-forms and is strictly positive on Gauduchon positive (1,1)-forms. Lemma 4 implies that ξ is nef-pluriharmonic. Since ξ vanishes on closed (1,1)-forms, its Aeppli class satisfies $\langle [\xi], H_{BC}^{1,1}(M) \rangle = 0$. Since the pairing $\langle H_{AE}^{n-1,n-1}(M), H_{BC}^{1,1}(M) \rangle$ is perfect, we obtain that $[\xi]_{AE} = 0$.