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Defect (reminder)

Theorem 1, lecture 11: Let M be a compact surface. Then the kernel
of the natural map P: Hé’é(M)—>H2(M) iIs at most 1-dimensional.
DEFINITION: The number dimker P is called the defect of a surface,
denoted §(M); by the previous theorem it can be 1 or 0. In the course of the
proof of Lamari’'s theorem, we will show that the surface is Kahler if and
only if §(M) = 1.

Proposition 5, Lecture 12: Let M be a complex surface with non-zero
defect. Then ker P can be generated by a class d°[0], where 0§ ¢ H1(M,R),
and HY(M,C) =#1.0(M) e #1.0(M) & (6).

REMARK: This implies that a complex surface with b1(M) even has van-
iIshing defect.

THEOREM: (A. Aeppli)
Let M be a compact complex n-manifold. Then the Aeppli cohomology is
finite-dimensional. Moreover, the natural pairing

HEL (M) x HY P Y(M) — H?™(M) =C,

taking z,y to [,z Ay is non-degenerate and identifies H;L (M) with the
dual H, 2" 4(M)*. .
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dd°-lemma on surfaces with vanishing defect.

THEOREM: On a surface with vanishing defect, the map
P: H%%(M)—>HP+Q(M) is injective, in other words, the dd°-lemma holds.

Proof. Step 1: When p+qg=1, the elements of H%’%(M) are represented by
holomorphic or antiholomorphic forms, and the map

#LO(M)e #10(M)— H (M,C)

IS injective by Claim 1 from lecture 12.

Step 2: When p+q =4, fix a Gauduchon metric w, and consider an elliptic
operator D(f) = dd¢(fw) from C®M to A**(M). This map vanishes on con-
stants, and all forms V in its image satisfy /MV = 0; index theorem implies
that it is surjective to the set of such forms. This proves the dd‘-lemma
for p+qg=24.

Step 3: The map Hl:;’é(M) — H2(M) is injective by definition of defect. The

spaces H%’g(M) and Hg’é(M) are identified with the spaces of holomorphic
and antiholomorphic 2-forms; these are never exact, because [,;ara >0
for any non-zero holomorphic or antiholomorphic 2-form. This proves the
dd-lemma when p+q = 2.
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dd°-lemma on surfaces with vanishing defect (2)

THEOREM: On a surface with vanishing defect, the map
P: H%’%(M)—>HP+Q(M) is injective, in other words, the dd°-lemma holds.

Step 4: It remains to prove the dd¢-lemma for Htlg’é(M). By duality, the
injectivity of P: Hllg’é(]\/./) — H3(M) is equivalent to the surjectivity of

P*: Hl(M)—>Hi’g(M). Take a class [«a] € Hi’g(M) represented by a (1,0)-
form «. Since d°« is closed, da is a closed (2,0)-form. If it is non-zero, the
integral [Maoméa has to be positive, which is impossible, because the form
Oa nOa = d(a r Oa) is exact. Then da is a closed (1,1)-form; this form is
exact, because d¢a = Id(I"1a) = -d(I"1a). This implies da = dd¢f, for some
feC>®M. Applying the same argument to I(«), we obtain da = dd°g. Then
the form a-d° = a - /-1(9dg - dg) is closed and Aeppli cohomologous
to «, implying that P*: Hl(M)—>Hi’b9(M) iSs surjective, and therefore P :
Hé’é(M)—>H3(M) is injective. m
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Hodge decomposition on surfaces with vanishing defect.

Propositon 1: Let M be a complex surface with vanishing defect. Then
any closed real form « on M is cohomologous to a sum of closed (2,0),
(1,1) and (0,2)-forms.

Proof. Step 1: The form d(a29) is (2,1) and exact, hence 9(a29) =098 for
some (0, 1)-form B (here we use the dd°-lemma for Héé we have just proven).
Then (a—-dB)29 is closed. Similarly, (a-dB)%2 is also closed.

Step 2: The form a-dB-dg is closed and has closed (2,0)-part and (0,2)-part.
Therefore, its (2,0), (1,1) and (0,2)-parts are closed. =
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Aeppli conomology on manifolds with dd‘-lemma in HL.1(M).

Corollary 1: Let = be a dd®-closed (1,1)-form on a compact complex surface.
Assume that the natural map P: Hllg’(lj(M)—>H2(M) is injective. Then = is
Aeppli cohomologous to a closed (1,1)-form.

Proof: Consider the map P*: H2(M,R) —>Hjl’£17(M, R), taking a closed 2-form
to its (1,1)-part. This map is Poincaré dual to P; since P is injective, its dual
P* is surjective. Then = is Aeppli cohomologous to a (1,1)-part of a closed
form =1 e A2(M,R). However, any closed 2-form on M is cohomologous to a
sum of closed (2,0), (1,1) and (0,2)-forms, (a-dB-dB)20 +(a-dB-dB)b1(a-
dB-dB)%2 (Proposition 1). Then = is Aeppli cohomologous to (a-dB-dB)11,
which is closed. =
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Nef-pluriharmonic currents

DEFINITION: A current ne D*»1n-1(Ar) is called nef-pluriharmonic if n =
Iimiw;@‘l, where all w; are Gauduchon forms.

THEOREM: Let M be a compact complex n-manifold. Then M admits a
Kahler current if and only if for any non-zero nef-pluriharmonic current,
its Aeppli class IS non-zero.

Proof: Lecture 19. m
We are going to prove that on a surface M with vanishing defect, any non-

zero nef-pluriharmonic current has non-zero Aeppli class; this implies
that M is Kahler.
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Nef-pluriharmonic currents and their cohomology

PROPOSITION: Let M be a complex surface with vanishing defect, and =
a nef-plurihnarmonic current, Aeppli cohomologous to 0. Then d= =

Proof. Step 1: By definition, = can be obtained as a limit of Gauduchon
forms, = = lim;=;. Choose a space W of smooth, closed (1,1)-forms such
that the natural map W — 1’1(M) is an isomorphism (Corollary 1). Then

we can decompose —; = b; +a;, where a; are Aeppli exact, and b, ¢ W. Since W
is finite-dimensional, and lim;b; = 0, the sequence {b;} converges to zero in
any of C'-topologies.

Step 2: Let ~; be 1-forms which satisfy (dvy;)1:1 = a;. Let ¢; be the (2,0)4(0,2)-
part of dv;. Then

0< M— A_'_fM(b +dy; = c;) A(bj+dvy;—¢;) =
=fM(bZ‘-I-d"yz')/\(bi+d’yi)+fMCiACi—2fMCiA(bi+d’yi).

The last term can be rewritten as [y;¢; A (b; +dvy;) = [ar¢ A ¢, because c;
is (2,0)4(0,2)-part of b; + dvy;, hence ¢; multiplied by b; + dvy; — ¢; vanishes.
Summarizing and using db;, =0 and integration by parts, we obtain

O < /\—-—f b; N b; — / c;Neg. (%)



Complex surfaces, 2025, lecture 20 M. Verbitsky

Nef-pluriharmonic currents and their cohomology (2)

Step 2: Let v; be 1-forms which satisfy (dv;)1:1 = a;. Let ¢; be the (2,0)+(0,2)-
part of dv;. Then

O<fMEZA— —f (i + dy; — i) A (b +dry;—¢i) =
:/M(bi+d’yi)A(bi+d’7i)+/MCZ'/\CZ'—2[MCi/\(bi+d7i)°

The last term can be rewritten as [y;¢; A (b; +dv;) = [ac A ¢, because ¢
is (2,0)4(0,2)-part of b; + dv;, hence ¢; multiplied by b; + dv; — ¢; vanishes.
Summarizing and using db;, =0 and integration by parts, we obtain

0« MEiAEi:beiAbi_chiAci' (%)

Step 3: On real (2,0)4-(0,2)-forms, the quadratic form z ~ [,z Az is positive
definite and satisfies |z|;2 = [y xArz. Then (*) gives [jrcinc = ¢l p2 < [ binb;.

Since lim; [,,b; Ab; = O, this gives lim;|c;|;2 = 0, which implies (by Cauchy-
Schwarz inequality) that lim;|c;|;1 = 0. This implies that lim;c; =0 in the
topology of currents, hence the limit ==1im; =, =1im; b; + dv; IS closed. =m
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Surfaces with vanishing defect are Kahler

THEOREM: Let M be an complex surface with vanishing defect, and = a
nef-plurinarmonic current, Aeppli cohomologous to 0. Then ==

Proof. Step 1: By the previous proposition, d==0. Since = is Aeppli exact,
its intersection pairing with any z « Hé’é(M) vanishes. However, H2(M) is

a direct sum of Hé’é(M), the space of holomorphic and antiholomorphic 2-
forms (Proposition 1), hence the intersection pairing of = with HQ(M) also
vanishes. By Poincaré duality, this implies that = is d-exact.

Step 2: From ddf-lemma we obtain that = =dd¢f, where f is a plurisubhar-
monic function. Then [;=Aw = [ fArddw =0 for any Gauduchon form w.
This implies that = is a positive current with zero mass, hence ==0. =

COROLLARY: A complex surface M with even b is Kahler.

Proof: In Lecture 12, we proved that defect of M vanishes if and only if
b1(M) is even. By the previous theorem, vanishing of defect implies that all
nef-pluriharmonic currents which are Aeppli cohomologous to O vanish. In
lecture 19, we proved that this implies that M admits a Kahler current. In
Lecture 18, we proved that any surface admitting a Kahler current also admits
a Kahler metric. m
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