Complex surfaces

lecture 20: Kähler currents on complex surfaces with even b_1

Misha Verbitsky

IMPA, sala 236

February 26, 2024, 17:00

Defect (reminder)

Theorem 1, lecture 11: Let M be a compact surface. Then the kernel of the natural map $P: H^{1,1}_{BC}(M) \rightarrow H^2(M)$ is at most 1-dimensional. DEFINITION: The number dimker P is called the defect of a surface, denoted $\delta(M)$; by the previous theorem it can be 1 or 0. In the course of the proof of Lamari's theorem, we will show that the surface is Kähler if and only if $\delta(M) = 1$.

Proposition 5, Lecture 12: Let M be a complex surface with non-zero defect. Then ker P can be generated by a class $d^c[\theta]$, where $\theta \in H^1(M, \mathbb{R})$, and $H^1(M, \mathbb{C}) = \mathcal{H}^{1,0}(M) \oplus \overline{\mathcal{H}^{1,0}(M)} \oplus \langle \theta \rangle$.

REMARK: This implies that a complex surface with $b_1(M)$ even has vanishing defect.

THEOREM: (A. Aeppli)

Let M be a compact complex n-manifold. Then the Aeppli cohomology is finite-dimensional. Moreover, the natural pairing

$$H^{p,q}_{BC}(M) \times H^{n-p,n-q}_{AE}(M) \longrightarrow H^{2n}(M) = \mathbb{C},$$

taking x, y to $\int_M x \wedge y$ is non-degenerate and identifies $H^{p,q}_{BC}(M)$ with the dual $H^{n-p,n-q}_{AE}(M)^*$.

ddc-lemma on surfaces with vanishing defect.

THEOREM: On a surface with vanishing defect, the map $P: H^{p,q}_{BC}(M) \longrightarrow H^{p+q}(M)$ is injective, in other words, the dd^c -lemma holds.

Proof. Step 1: When p + q = 1, the elements of $H^{p,q}_{BC}(M)$ are represented by holomorphic or antiholomorphic forms, and **the map**

 $\mathcal{H}^{1,0}(M) \oplus \overline{\mathcal{H}^{1,0}(M)} \longrightarrow H^1(M,\mathbb{C})$

is injective by Claim 1 from lecture 12.

Step 2: When p + q = 4, fix a Gauduchon metric ω , and consider an elliptic operator $D(f) \coloneqq dd^c(f\omega)$ from $C^{\infty}M$ to $\Lambda^{4,4}(M)$. This map vanishes on constants, and all forms V in its image satisfy $\int_M V = 0$; index theorem implies that it is surjective to the set of such forms. This proves the dd^c -lemma for p + q = 4.

Step 3: The map $H_{BC}^{1,1}(M) \longrightarrow H^2(M)$ is injective by definition of defect. The spaces $H_{BC}^{2,0}(M)$ and $H_{BC}^{0,2}(M)$ are identified with the spaces of holomorphic and antiholomorphic 2-forms; these are never exact, because $\int_M \alpha \wedge \overline{\alpha} > 0$ for any non-zero holomorphic or antiholomorphic 2-form. This proves the dd^c -lemma when p + q = 2.

dd^c -lemma on surfaces with vanishing defect (2)

THEOREM: On a surface with vanishing defect, the map $P: H^{p,q}_{BC}(M) \longrightarrow H^{p+q}(M)$ is injective, in other words, **the** dd^c -lemma holds.

Step 4: It remains to prove the dd^c -lemma for $H^{1,2}_{BC}(M)$. By duality, the injectivity of $P: H^{1,2}_{BC}(M) \longrightarrow H^3(M)$ is equivalent to the surjectivity of $P^*: H^1(M) \longrightarrow H^{1,0}_{AE}(M)$. Take a class $[\alpha] \in H^{1,0}_{AE}(M)$ represented by a (1,0)-form α . Since $d^c \alpha$ is closed, $\partial \alpha$ is a closed (2,0)-form. If it is non-zero, the integral $\int_M \partial \alpha \wedge \overline{\partial \alpha}$ has to be positive, which is impossible, because the form $\partial \alpha \wedge \overline{\partial \alpha} = d(\alpha \wedge \overline{\partial \alpha})$ is exact. Then $d^c \alpha$ is a closed (1,1)-form; this form is exact, because $d^c \alpha = Id(I^{-1}\alpha) = -d(I^{-1}\alpha)$. This implies $d^c \alpha = dd^c f$, for some $f \in C^{\infty}M$. Applying the same argument to $I(\alpha)$, we obtain $d\alpha = dd^c g$. Then the form $\alpha - d^c g = \alpha - \sqrt{-1} (\partial g - \overline{\partial}g)$ is closed and Aeppli cohomologous to α , implying that $P^*: H^1(M) \longrightarrow H^{1,0}_{AE}(M)$ is surjective, and therefore $P: H^{1,2}_{BC}(M) \longrightarrow H^3(M)$ is injective.

Hodge decomposition on surfaces with vanishing defect.

Propositon 1: Let *M* be a complex surface with vanishing defect. Then any closed real form α on *M* is cohomologous to a sum of closed (2,0), (1,1) and (0,2)-forms.

Proof. Step 1: The form $d(\alpha^{2,0})$ is (2,1) and exact, hence $\overline{\partial}(\alpha^{2,0}) = \overline{\partial}\partial\beta$ for some (0,1)-form β (here we use the dd^c -lemma for $H_{BC}^{2,1}$ we have just proven). Then $(\alpha - d\beta)^{2,0}$ is closed. Similarly, $(\alpha - d\overline{\beta})^{0,2}$ is also closed.

Step 2: The form $\alpha - d\beta - d\overline{\beta}$ is closed and has closed (2,0)-part and (0,2)-part. Therefore, its (2,0), (1,1) and (0,2)-parts are closed.

Aeppli cohomology on manifolds with dd^c -lemma in $H^{1,1}(M)$.

Corollary 1: Let Ξ be a dd^c -closed (1,1)-form on a compact complex surface. Assume that the natural map $P: H^{1,1}_{BC}(M) \longrightarrow H^2(M)$ is injective. Then Ξ is **Aeppli cohomologous to a closed** (1,1)-form.

Proof: Consider the map $P^*: H^2(M, \mathbb{R}) \longrightarrow H^{1,1}_{AE}(M, \mathbb{R})$, taking a closed 2-form to its (1,1)-part. This map is Poincaré dual to P; since P is injective, **its dual** P^* **is surjective.** Then Ξ is Aeppli cohomologous to a (1,1)-part of a closed form $\Xi_1 \in \Lambda^2(M, \mathbb{R})$. However, any closed 2-form on M is cohomologous to a sum of closed (2,0), (1,1) and (0,2)-forms, $(\alpha - d\beta - d\overline{\beta})^{2,0} + (\alpha - d\beta - d\overline{\beta})^{1,1}(\alpha - d\beta - d\overline{\beta})^{0,2}$ (Proposition 1). Then Ξ is Aeppli cohomologous to $(\alpha - d\beta - d\overline{\beta})^{1,1}$, which is closed.

Nef-pluriharmonic currents

DEFINITION: A current $\eta \in D^{n-1,n-1}(M)$ is called **nef-pluriharmonic** if $\eta = \lim_i \omega_i^{n-1}$, where all ω_i are Gauduchon forms.

THEOREM: Let *M* be a compact complex *n*-manifold. Then *M* admits a Kähler current **if and only if for any non-zero nef-pluriharmonic current, its Aeppli class is non-zero.**

Proof: Lecture 19. ■

We are going to prove that on a surface M with vanishing defect, any non-zero nef-pluriharmonic current has non-zero Aeppli class; this implies that M is Kähler.

Nef-pluriharmonic currents and their cohomology

PROPOSITION: Let *M* be a complex surface with vanishing defect, and Ξ a nef-pluriharmonic current, Aeppli cohomologous to 0. Then $d\Xi = 0$.

Proof. Step 1: By definition, Ξ can be obtained as a limit of Gauduchon forms, $\Xi = \lim_i \Xi_i$. Choose a space W of smooth, closed (1,1)-forms such that the natural map $W \longrightarrow H^{1,1}_{AE}(M)$ is an isomorphism (Corollary 1). Then we can decompose $\Xi_i = b_i + a_i$, where a_i are Aeppli exact, and $b_i \in W$. Since W is finite-dimensional, and $\lim_i b_i = 0$, the sequence $\{b_i\}$ converges to zero in any of C^i -topologies.

Step 2: Let γ_i be 1-forms which satisfy $(d\gamma_i)^{1,1} = a_i$. Let c_i be the (2,0)+(0,2)-part of $d\gamma_i$. Then

$$0 \leq \int_{M} \Xi_{i} \wedge \Xi_{i} = \int_{M} (b_{i} + d\gamma_{i} - c_{i}) \wedge (b_{i} + d\gamma_{i} - c_{i}) =$$
$$= \int_{M} (b_{i} + d\gamma_{i}) \wedge (b_{i} + d\gamma_{i}) + \int_{M} c_{i} \wedge c_{i} - 2 \int_{M} c_{i} \wedge (b_{i} + d\gamma_{i}).$$

The last term can be rewritten as $\int_M c_i \wedge (b_i + d\gamma_i) = \int_M c_i \wedge c_i$, because c_i is (2,0)+(0,2)-part of $b_i + d\gamma_i$, hence c_i multiplied by $b_i + d\gamma_i - c_i$ vanishes. Summarizing and using $db_i = 0$ and integration by parts, we obtain

$$0 \leq \int_{M} \Xi_{i} \wedge \Xi_{i} = \int_{M} b_{i} \wedge b_{i} - \int_{M} c_{i} \wedge c_{i}. \quad (*)$$

Nef-pluriharmonic currents and their cohomology (2)

Step 2: Let γ_i be 1-forms which satisfy $(d\gamma_i)^{1,1} = a_i$. Let c_i be the (2,0)+(0,2)-part of $d\gamma_i$. Then

$$0 \leq \int_{M} \Xi_{i} \wedge \Xi_{i} = \int_{M} (b_{i} + d\gamma_{i} - c_{i}) \wedge (b_{i} + d\gamma_{i} - c_{i}) = \int_{M} (b_{i} + d\gamma_{i}) \wedge (b_{i} + d\gamma_{i}) + \int_{M} c_{i} \wedge c_{i} - 2 \int_{M} c_{i} \wedge (b_{i} + d\gamma_{i}).$$

The last term can be rewritten as $\int_M c_i \wedge (b_i + d\gamma_i) = \int_M c_i \wedge c_i$, because c_i is (2,0)+(0,2)-part of $b_i + d\gamma_i$, hence c_i multiplied by $b_i + d\gamma_i - c_i$ vanishes. **Summarizing and using** $db_i = 0$ **and integration by parts, we obtain**

$$0 \leq \int_{M} \Xi_{i} \wedge \Xi_{i} = \int_{M} b_{i} \wedge b_{i} - \int_{M} c_{i} \wedge c_{i}. \quad (*)$$

Step 3: On real (2,0)+(0,2)-forms, the quadratic form $x \mapsto \int_M x \wedge x$ is positive definite and satisfies $||x||_{L^2} = \int_M x \wedge x$. Then (*) gives $\int_M c_i \wedge c_i = ||c_i||_{L^2} \leq \int_M b_i \wedge b_i$. Since $\lim_i \int_M b_i \wedge b_i = 0$, this gives $\lim_i ||c_i||_{L^2} = 0$, which implies (by Cauchy-Schwarz inequality) that $\lim_i ||c_i||_{L^1} = 0$. This implies that $\lim_i c_i = 0$ in the topology of currents, hence the limit $\Xi = \lim_i \Xi_i = \lim_i b_i + d\gamma_i$ is closed.

Surfaces with vanishing defect are Kähler

THEOREM: Let *M* be an complex surface with vanishing defect, and Ξ a nef-pluriharmonic current, Aeppli cohomologous to 0. Then $\Xi = 0$.

Proof. Step 1: By the previous proposition, $d\Xi = 0$. Since Ξ is Aeppli exact, its intersection pairing with any $x \in H^{1,1}_{BC}(M)$ vanishes. However, $H^2(M)$ is a direct sum of $H^{1,1}_{BC}(M)$, the space of holomorphic and antiholomorphic 2-forms (Proposition 1), hence the intersection pairing of Ξ with $H^2(M)$ also vanishes. By Poincaré duality, this implies that Ξ is *d*-exact.

Step 2: From dd^c -lemma we obtain that $\Xi = dd^c f$, where f is a plurisubharmonic function. Then $\int_M \Xi \wedge \omega = \int_M f \wedge dd^c \omega = 0$ for any Gauduchon form ω . **This implies that** Ξ **is a positive current with zero mass, hence** $\Xi = 0$.

COROLLARY: A complex surface M with even b_1 is Kähler.

Proof: In Lecture 12, we proved that defect of M vanishes if and only if $b_1(M)$ is even. By the previous theorem, vanishing of defect implies that all nef-pluriharmonic currents which are Aeppli cohomologous to 0 vanish. In lecture 19, we proved that this implies that M admits a Kähler current. In Lecture 18, we proved that any surface admitting a Kähler current also admits a Kähler metric.