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Kato manifolds

DEFINITION: Let B be an open ball in C?, n> 1, and B = B be a
bimeromorphic, holomorphic map, which is an isomorphism outside of a com-
pact subset. Remove a small ball By in B and glue it to the boundary of
B, extending the complex structure smoothly (and holomorphically) on the
resulting manifold, denoted by M. Then M us called a Kato manifold.

The main result today:
THEOREM: (M. Brunella) Suppose that M is a Kato manifold obtained

from B B with B Kihler. Then M is LCK.
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Kato manifolds (2)

THEOREM: (Kato)

Let M be a Kato manifold. Then there exists a family M; of complex man-
ifolds over a punctured disk such that M = Mgy and all M;, for t > ¢, are
bimeromorphic to a Hopf manifold.

Proof. Step 1: Assume that the ball By does not intersect the exceptional
set of B - B. Then the natural bimeromorphism B 2. Bis biholomorphic
in @ neighbourhood of dBgp, hence m can be extended to a map from M to a
Hopf manifold obtained by gluing the boundary of By and the boundary of B.

Step 2: Moving the center of the ball By and decreasing its radius, we can
always ensure that By does not intersect the blow-up divisor. m

COROLLARY: A Kato surface is diffeomorphic to a blown-up of a Hopf
surface. m
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CR-manifolds.

Definition: Let M be a smooth manifold, BcT M a sub-bundle in a tangent
bundle, and I: B— B an endomorphism satisfying I2 =-1. Consider its v/-1-
eigenspace BLO(M)c BeCcToM =TM ® C. Suppose that [B1,0, B1.0]c B1.0,
Then (B,I) is called a CR-structure on M.

Example: A complex manifold is CR, with B=TM. Indeed, [T1.O0M, T1.0M] c
T1.0M is equivalent to integrability of the complex structure (Newlander-
Nirenberg).

Example: Let X be a complex manifold, and M c X a realhypersurface. Then
B:=dimcTMnI(TM)=dimgX -1, hence rk B=n-1. Since [T1.0X, T1.0X]c
T1.0X, M is a CR-manifold.

Definition: A Frobenius form of a CR-manifold is the tensor B B—TM /B
mapping X,Y to the I‘ITM/B([X,Y]). It is an obstruction to integrability of
the foliation given by B.



Complex surfaces, 2025, lecture 21 M. Verbitsky

Pseudoconvex CR-manifolds.

Definition: Let (M,B,I) be a CR-manifold, with codimB =1. Then M is
called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since [B10, B1.0]c B1.0 and [B%1,B0:1]c BO.1, the Frobenius form
is a pairing between BY%! and B0, This means that it is Hermitian. This
Hermitian form is called the Levi form of a CR-manifold.

Definition: Let (M, B,I) be a CR-manifold, with codimB =1. Then M is
called a strictly pseudoconvex CR-manifold if its Levi form is positive
definite everywhere.

Example: Let h be a function on a complex manifold such that 90h = w
is a positive definite Hermitian form, and X = h—l(c) its level set. Then
the Frobenius form of X is equal to w|x. In particular, X is a strictly
pseudoconvex CR-manifold.
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Level set of a plurisubharmonic function

PROPOSITION: Let M be a complex manifold, ¢ e C*®(M) a smooth func-
tion, and s a regular value of ¢. Consider S:= ¢ 1(s) as a CR-manifold, with
B=TSnI(TS), and let ® be its Levi form, taking values in

ker dy
kerdp n I(kerdyp)

Then d¢p : TS/B— C*(S) trivializes T'S/B. Consider the tangent vectors
u,v e B. Then —-d¢p(P(u,v)) =ddp(u,v).

TS/B =

Proof: Extend u,v to vector fields u,ve B=kerdpnI(kerdy). Then

—dp(P(u,v)) = -dp([u,v]) = dd°p(u,v) — Liey, d“p(u) + Liey, dp(v).

(the last equality follows from the Cartan formula). However, d%(u) = d°p(v) =
O because v,u e I(kerdy). This gives —d¢p(P(u,v)) = ddp(u,v). =
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Stein filling

DEFINITION: Let (M,B,I) be a CR-manifold. A function f on M is called
CR-holomorphic if for any vector field v e BO:1, we have Lie, f = 0.

THEOREM: (H. Rossi, A. Andreotti, Y.-T. Siu)

Let S be a compact strictly pseudoconvex CR-manifold, dimp$S > 5, and
HO9(Og) the ring of CR-holomorphic functions. Then S is the boundary of
a Stein variety M with isolated singularities, such that H9(Og) = HO(Oyy),
where HO(@M) denotes the ring of holomorphic functions on M, consid-
ered a compact complex manifold with boundary, and Og is the ring of CR-
holomorphic functions.

DEFINITION: Let S be a strictly pseudoconvex CR-manifold, obtained as
a boundary of a Stein variety M. Then M is called Stein filling of S,

CLAIM: The Stein filling is unique in dimension 3, though existence is
false in dimension 3, and true in dimension > 5. Also, holomorphic auto-
morphisms of M are in bijective correspondence with CR-holomorphic
automorphisms of S.

Proof: Stein variety is uniquely determined by its ring of holomorphic func-
tions (Forster). =
Z
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Levi problem

DEFINITION: A strictly pseudoconvex domain is an open subset such
that its boundary is a strictly pseudoconvex real hypersurface in C".

REMARK: “Levi problem’, posited by Eugenio Elia Levi (1883—1917), asked
whether any strictly pseudoconvex domain is Stein; it was solved by Oka
for C2 (1942), and for arbitrary dimension independently in 1953 by Oka,
Bremermann and Norguet.
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Class VII surfaces (reminder)

DEFINITION: A complex surface is a compact complex manifold M of
complex dimension 2. Let M be a compact complex manifold, and Kj; its
canonical bundle. The canonical ring GB;?:OHO(KZ') is finitely generated for
for all projective varieties (Birkar, Cascini, Hacon, McKernan), for complex
surfaces (Kodaira). Conjecturally, it is always finitely generated. Let a ¢
7>9. Consider the function P,(N) = HO(KaN). If the canonical ring is finitely
generated, the function N - P,(N) is polynomial for a which divides all
degrees of its generators (prove this). The degree k(M) of this polynomial
is called the Kodaira dimension of M. If HO(K?% =0 for all 5 >0, we set
k(M) = —oo0.

DEFINITION: Class VII surface (also called Kodaira class VII surface) is
a complex surface with k(M) = oo and first Betti bumber b1(M) =1. Minimal
class VII surfaces are called class VIIy surfaces.

REMARK: Kodaira defined the “Class VII" in another, non-equivalent way.
The current “Class VII' is Kodaira's ‘class 7" from his version of Kodaira-
Enriques classification, published 1966. The term ‘“class VII'" with its current

meaning is due to Barth, Peters, Van de Ven.
9
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T he global spherical shell

DEFINITION: Let S cC? be a standard sphere, and S: its e-neighbourhood.
A complex surface M admits a global spherical shell (GSS) if there is a
holomorphic embedding S — M, for some ¢ > 0, such that the complement
of its image is connected.

THEOREM: (Ma. Kato)
A complex surface admits a global spherical shell if and only if it is a

Kato surface.

Proof: It is clear that a Kato surface admits a GSS. Conversely, consider
a GSS surface M, let S ¢ M be its spherical shell, and M; the complex
surface with boundary of two copies of S, obtaining by cutting M in S. Fill
the interior part of the boundary by a ball. This gives a compact manifold
My with its boundary CR-isomorphic to a sphere. The global holomorphic
functions on My are the same as CR-holomorphic functions on its boundary,
which gives a natural map from M to its Stein filling, which is by construction
bimeromorphic. =

10
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The GSS conjecture

CONJECTURE: (GSS conjecture, due to Ma. Kato)
Let M be a class VII surface with b>>0. Then M is a Kato surface.

REMARK: A. Teleman proved the GSS conjecture when by(M) = 1.

REMARK: By results of G. Dlousky, K. Oeljeklaus and M. Toma, a Kato
surface M admits at least by(M) distinct rational curves, and, conversely, if
a complex surface admits b,(M) distinct rational curves in a certain
configuration, it is a Kato surface.

11
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Brunella’s theorem

THEOREM: (Brunella)
Suppose that M is a Kato surface obtained from an iterated blow-up B . B
and an open ball Boc B. Then M is LCK.

Step 1. Strategy of the proof: Let W: B— By be the biholomorphism
used to glue two components of the boundary of B\Bg. We find a Kahler
metric @ on B with the following automorphic condition. Consider the space
M obtained by gluing Z copies of B\BO = M;,1 € Z as above. A Kahler metric
& on M is called Z-automorphic if the deck transform group mapping M; to
M,.1 acts on (M,&%) by homotheties. To obtain such a form we need to find
a Kahler form & on B such that @‘Bo IS equal to V*& In a neighbour-
hood of the boundary of Bg. If this is true, W acts by homotheties in a
neighbourhood of S. Then the restriction of & to B\Bg = M; can be extended
to a Z-automorphic Kahler form on M = U,z M;.

Step 2: Start with a Kahler form @ on B (it always exists, because B is a
blow-up of a ball). Using the local dd®-lemma, we can find a smooth function
@ on Bg such that dd¢yp :&;\BO. Solving the appropriate elliptic equation with

boundary conditions, we can assume that Bg= ¢ 1(-c0,0).
12
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Brunella’s theorem (2)

Step 3: Let w.w be the pushforward of &, considered to be a current on
B. Clearly, m.w is closed and positive. Using the dd¢-lemma for currents,
we obtain w.w =dd¢f, where f is a plurisubharmonic function on B that is
smooth outside of the singularities of w. We also assume that f = const on
OB. Let f1:=(W-1)*p, where ¢ is the Kahler potential on By constructed in
Step 2, and WV : B— B the biholomorphic map used to construct M.

Step 4: Let S be the boundary of B. Rescaling f if necessary and adding
a constant, we may assume that - < f|lg < 0 and |df|\s < e. Let A be a
sufficiently big positive number, and 0 <4 < e. Then the regularized maximum
maxs(f, Af1) is equal to Afq in a very small neighbourhood of S (because f is
negative on S and f{ =0 on S), and equal to f in a small neighbourhood V
of Sq:= Afl‘l(—Qe) because |df| < A|df1| and as Af] goes to -2¢, f does not go
much below -e¢.

Step 5: Replacing @ by dd®maxs(f, f1) on the annulus between S and 57,

we obtain a Kahler form wy. Since maxs(f, f1) = f1 in a neighbourhood of S,

the map V: (B,01)— (Bg,&1) acts on a neighbourhood of S mapping the

metric wq isometrically to a neighbourhood of W(S) with the metric Aw{. As

indicated in Step 1, this construction gives an LCK metric on M. =
13



