Complex surfaces

lecture 21: LCK metrics on Kato surfaces

Misha Verbitsky

IMPA, sala 236

February 28, 2024, 17:00

Kato manifolds

DEFINITION: Let B be an open ball in \mathbb{C}^n , n > 1, and $\tilde{B} \xrightarrow{\pi} B$ be a bimeromorphic, holomorphic map, which is an isomorphism outside of a compact subset. Remove a small ball B_0 in \tilde{B} and glue it to the boundary of \tilde{B} , extending the complex structure smoothly (and holomorphically) on the resulting manifold, denoted by M. Then M us called a Kato manifold.

The main result today: **THEOREM: (M. Brunella)** Suppose that M is a Kato manifold obtained from \tilde{B}_{B}^{π} with \tilde{B} Kähler. Then M is LCK.

Kato manifolds (2)

THEOREM: (Kato)

Let M be a Kato manifold. Then there exists a family M_t of complex manifolds over a punctured disk such that $M = M_0$ and all M_t , for $t > \varepsilon$, are bimeromorphic to a Hopf manifold.

Proof. Step 1: Assume that the ball B_0 does not intersect the exceptional set of $\tilde{B} \xrightarrow{\pi} B$. Then the natural bimeromorphism $\tilde{B} \xrightarrow{\pi} B$ is biholomorphic in a neighbourhood of ∂B_0 , hence π can be extended to a map from M to a Hopf manifold obtained by gluing the boundary of B_0 and the boundary of B.

Step 2: Moving the center of the ball B_0 and decreasing its radius, we can always ensure that B_0 does not intersect the blow-up divisor.

COROLLARY: A Kato surface is diffeomorphic to a blown-up of a Hopf surface. ■

CR-manifolds.

Definition: Let M be a smooth manifold, $B \in TM$ a sub-bundle in a tangent bundle, and $I: B \longrightarrow B$ an endomorphism satisfying $I^2 = -1$. Consider its $\sqrt{-1}$ eigenspace $B^{1,0}(M) \subset B \otimes \mathbb{C} \subset T_C M = TM \otimes \mathbb{C}$. Suppose that $[B^{1,0}, B^{1,0}] \subset B^{1,0}$. Then (B, I) is called a **CR-structure on** M.

Example: A complex manifold is CR, with B = TM. Indeed, $[T^{1,0}M, T^{1,0}M] \subset T^{1,0}M$ is equivalent to integrability of the complex structure (Newlander-Nirenberg).

Example: Let X be a complex manifold, and $M \,\subset X$ a realhypersurface. Then $B := \dim_{\mathbb{C}} TM \cap I(TM) = \dim_{\mathbb{C}} X - 1$, hence $\operatorname{rk} B = n - 1$. Since $[T^{1,0}X, T^{1,0}X] \subset T^{1,0}X$, M is a CR-manifold.

Definition: A Frobenius form of a CR-manifold is the tensor $B \otimes B \longrightarrow TM/B$ mapping X, Y to the $\prod_{TM/B}([X,Y])$. It is an obstruction to integrability of the foliation given by B.

Pseudoconvex CR-manifolds.

Definition: Let (M, B, I) be a CR-manifold, with codim B = 1. Then M is called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since $[B^{1,0}, B^{1,0}] \subset B^{1,0}$ and $[B^{0,1}, B^{0,1}] \subset B^{0,1}$, the Frobenius form is a pairing between $B^{0,1}$ and $B^{1,0}$. This means that it is Hermitian. This Hermitian form is called **the Levi form** of a CR-manifold.

Definition: Let (M, B, I) be a CR-manifold, with codim B = 1. Then M is called a strictly pseudoconvex CR-manifold if its Levi form is positive definite everywhere.

Example: Let h be a function on a complex manifold such that $\partial \overline{\partial} h = \omega$ is a positive definite Hermitian form, and $X = h^{-1}(c)$ its level set. Then the Frobenius form of X is equal to $\omega|_X$. In particular, X is a strictly pseudoconvex CR-manifold.

Level set of a plurisubharmonic function

PROPOSITION: Let M be a complex manifold, $\varphi \in C^{\infty}(M)$ a smooth function, and s a regular value of φ . Consider $S \coloneqq \varphi^{-1}(s)$ as a CR-manifold, with $B = TS \cap I(TS)$, and let Φ be its Levi form, taking values in

$$TS/B = \frac{\ker d\varphi}{\ker d\varphi \cap I(\ker d\varphi)}.$$

Then $d^c \varphi : TS/B \longrightarrow C^{\infty}(S)$ trivializes TS/B. Consider the tangent vectors $u, v \in B$. Then $-d^c \varphi(\Phi(u, v)) = dd^c \varphi(u, v)$.

Proof: Extend u, v to vector fields $u, v \in B = \ker d\varphi \cap I(\ker d\varphi)$. Then

$$-d^{c}\varphi(\Phi(u,v)) = -d^{c}\varphi([u,v]) = dd^{c}\varphi(u,v) - \operatorname{Lie}_{v}d^{c}\varphi(u) + \operatorname{Lie}_{u}d^{c}\varphi(v).$$

(the last equality follows from the Cartan formula). However, $d^c\varphi(u) = d^c\varphi(v) = 0$ because $v, u \in I(\ker d\varphi)$. This gives $-d^c\varphi(\Phi(u, v)) = dd^c\varphi(u, v)$.

M. Verbitsky

Stein filling

DEFINITION: Let (M, B, I) be a CR-manifold. A function f on M is called **CR-holomorphic** if for any vector field $v \in B^{0,1}$, we have $\text{Lie}_v f = 0$.

THEOREM: (H. Rossi, A. Andreotti, Y.-T. Siu)

Let S be a compact strictly pseudoconvex CR-manifold, $\dim_{\mathbb{R}} S \ge 5$, and $H^0(\mathcal{O}_S)$ the ring of CR-holomorphic functions. Then S is the boundary of a Stein variety M with isolated singularities, such that $H^0(\mathcal{O}_S) = H^0(\mathcal{O}_M)$, where $H^0(\mathcal{O}_M)$ denotes the ring of holomorphic functions on M, considered a compact complex manifold with boundary, and \mathcal{O}_S is the ring of CR-holomorphic functions.

DEFINITION: Let S be a strictly pseudoconvex CR-manifold, obtained as a boundary of a Stein variety M. Then M is called **Stein filling** of S,

CLAIM: The Stein filling is unique in dimension 3, though existence is false in dimension 3, and true in dimension ≥ 5 . Also, holomorphic automorphisms of M are in bijective correspondence with CR-holomorphic automorphisms of S.

Proof: Stein variety is uniquely determined by its ring of holomorphic functions (Forster). ■

7

Levi problem

DEFINITION: A strictly pseudoconvex domain is an open subset such that its boundary is a strictly pseudoconvex real hypersurface in \mathbb{C}^n .

REMARK: "Levi problem", posited by Eugenio Elia Levi (1883–1917), **asked whether any strictly pseudoconvex domain is Stein;** it was solved by Oka for \mathbb{C}^2 (1942), and for arbitrary dimension independently in 1953 by Oka, Bremermann and Norguet.

M. Verbitsky

Class VII surfaces (reminder)

DEFINITION: A complex surface is a compact complex manifold M of complex dimension 2. Let M be a compact complex manifold, and K_M its canonical bundle. The **canonical ring** $\bigoplus_{i=0}^{\infty} H^0(K^i)$ is finitely generated for for all projective varieties (Birkar, Cascini, Hacon, McKernan), for complex surfaces (Kodaira). Conjecturally, it is always finitely generated. Let $a \in \mathbb{Z}^{>0}$. Consider the function $P_a(N) = H^0(K^{aN})$. If the canonical ring is finitely generated, the function $N \mapsto P_a(N)$ is polynomial for a which divides all degrees of its generators (prove this). The degree $\kappa(M)$ of this polynomial is called the Kodaira dimension of M. If $H^0(K^i) = 0$ for all i > 0, we set $\kappa(M) = -\infty$.

DEFINITION: Class VII surface (also called Kodaira class VII surface) is a complex surface with $\kappa(M) = \infty$ and first Betti bumber $b_1(M) = 1$. Minimal class VII surfaces are called **class VII**₀ **surfaces**.

REMARK: Kodaira defined the "Class VII" in another, non-equivalent way. The current "Class VII" is Kodaira's "class 7" from his version of Kodaira-Enriques classification, published 1966. The term "class VII" with its current meaning is due to Barth, Peters, Van de Ven.

The global spherical shell

DEFINITION: Let $S \subset \mathbb{C}^2$ be a standard sphere, and S_{ε} its ε -neighbourhood. A complex surface M admits a global spherical shell (GSS) if there is a holomorphic embedding $S_{\varepsilon} \longrightarrow M$, for some $\varepsilon > 0$, such that the complement of its image is connected.

THEOREM: (Ma. Kato)

A complex surface admits a global spherical shell if and only if it is a Kato surface.

Proof: It is clear that a Kato surface admits a GSS. Conversely, consider a GSS surface M, let $S \,\subset M$ be its spherical shell, and M_1 the complex surface with boundary of two copies of S, obtaining by cutting M in S. Fill the interior part of the boundary by a ball. This gives a compact manifold M_1 with its boundary CR-isomorphic to a sphere. The global holomorphic functions on M_1 are the same as CR-holomorphic functions on its boundary, which gives a natural map from M_1 to its Stein filling, which is by construction bimeromorphic.

The GSS conjecture

CONJECTURE: (GSS conjecture, due to Ma. Kato) Let M be a class VII surface with $b_2 > 0$. Then M is a Kato surface.

REMARK: A. Teleman proved the GSS conjecture when $b_2(M) = 1$.

REMARK: By results of G. Dlousky, K. Oeljeklaus and M. Toma, a Kato surface M admits at least $b_2(M)$ distinct rational curves, and, conversely, if a complex surface admits $b_2(M)$ distinct rational curves in a certain configuration, it is a Kato surface.

Brunella's theorem

THEOREM: (Brunella)

Suppose that M is a Kato surface obtained from an iterated blow-up $\hat{B} \xrightarrow{\pi} B$ and an open ball $B_0 \subset \hat{B}$. Then M is LCK.

Step 1. Strategy of the proof: Let $\Psi : B \to B_0$ be the biholomorphism used to glue two components of the boundary of $B \setminus B_0$. We find a Kähler metric $\hat{\omega}$ on \hat{B} with the following automorphic condition. Consider the space \tilde{M} obtained by gluing \mathbb{Z} copies of $\hat{B} \setminus B_0 = M_i, i \in \mathbb{Z}$ as above. A Kähler metric $\tilde{\omega}$ on \tilde{M} is called \mathbb{Z} -automorphic if the deck transform group mapping M_i to M_{i+1} acts on $(\tilde{M}, \tilde{\omega})$ by homotheties. To obtain such a form we need to find a Kähler form $\hat{\omega}$ on \hat{B} such that $\hat{\omega}|_{B_0}$ is equal to $\Psi^*\hat{\omega}$ in a neighbourhood of the boundary of B_0 . If this is true, Ψ acts by homotheties in a neighbourhood of S. Then the restriction of $\hat{\omega}$ to $\hat{B} \setminus B_0 = M_i$ can be extended to a \mathbb{Z} -automorphic Kähler form on $\tilde{M} = \bigcup_{i \in \mathbb{Z}} M_i$.

Step 2: Start with a Kähler form $\hat{\omega}$ on \hat{B} (it always exists, because \hat{B} is a blow-up of a ball). Using the local dd^c -lemma, we can find a smooth function φ on B_0 such that $dd^c\varphi = \hat{\omega}|_{B_0}$. Solving the appropriate elliptic equation with boundary conditions, we can assume that $B_0 = \varphi^{-1}(-\infty, 0)$.

Brunella's theorem (2)

Step 3: Let $\pi_*\hat{\omega}$ be the pushforward of $\hat{\omega}$, considered to be a current on B. Clearly, $\pi_*\hat{\omega}$ is closed and positive. Using the dd^c -lemma for currents, we obtain $\pi_*\hat{\omega} = dd^c f$, where f is a plurisubharmonic function on B that is smooth outside of the singularities of π . We also assume that f = const on ∂B . Let $f_1 := (\Psi^{-1})^* \varphi$, where φ is the Kähler potential on B_0 constructed in Step 2, and $\Psi: B \longrightarrow B_0$ the biholomorphic map used to construct M.

Step 4: Let *S* be the boundary of *B*. Rescaling *f* if necessary and adding a constant, we may assume that $-\varepsilon < f|_S < 0$ and $|df||_S \ll \varepsilon$. Let *A* be a sufficiently big positive number, and $0 < \delta \ll \varepsilon$. Then the regularized maximum $\max_{\delta}(f, Af_1)$ is equal to Af_1 in a very small neighbourhood of *S* (because *f* is negative on *S* and $f_1 = 0$ on *S*), and equal to *f* in a small neighbourhood *V* of $S_1 \coloneqq Af_1^{-1}(-2\varepsilon)$ because $|df| \ll A|df_1|$ and as Af_1 goes to -2ε , *f* does not go much below $-\varepsilon$.

Step 5: Replacing $\hat{\omega}$ by $dd^c \max_{\delta}(f, f_1)$ on the annulus between S and S_1 , we obtain a Kähler form $\hat{\omega}_1$. Since $\max_{\delta}(f, f_1) = f_1$ in a neighbourhood of S, the map $\Psi : (B, \hat{\omega}_1) \longrightarrow (B_0, \hat{\omega}_1)$ acts on a neighbourhood of S mapping the metric $\hat{\omega}_1$ isometrically to a neighbourhood of $\Psi(S)$ with the metric $A\hat{\omega}_1$. As indicated in Step 1, this construction gives an LCK metric on M.