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Kato manifolds

DEFINITION: Let B be an open ball in Cn, n > 1, and B̃
πÐ→ B be a

bimeromorphic, holomorphic map, which is an isomorphism outside of a com-

pact subset. Remove a small ball B0 in B̃ and glue it to the boundary of

B̃, extending the complex structure smoothly (and holomorphically) on the

resulting manifold, denoted by M . Then M us called a Kato manifold.

The main result today:

THEOREM: (M. Brunella) Suppose that M is a Kato manifold obtained

from B̃
π
B with B̃ Kähler. Then M is LCK.
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Kato manifolds (2)

THEOREM: (Kato)

Let M be a Kato manifold. Then there exists a family Mt of complex man-

ifolds over a punctured disk such that M = M0 and all Mt, for t > ε, are

bimeromorphic to a Hopf manifold.

Proof. Step 1: Assume that the ball B0 does not intersect the exceptional

set of B̃
πÐ→ B. Then the natural bimeromorphism B̃

πÐ→ B is biholomorphic

in a neighbourhood of ∂B0, hence π can be extended to a map from M to a

Hopf manifold obtained by gluing the boundary of B0 and the boundary of B.

Step 2: Moving the center of the ball B0 and decreasing its radius, we can

always ensure that B0 does not intersect the blow-up divisor.

COROLLARY: A Kato surface is diffeomorphic to a blown-up of a Hopf

surface.
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CR-manifolds.

Definition: Let M be a smooth manifold, B ⊂ TM a sub-bundle in a tangent

bundle, and I ∶ BÐ→B an endomorphism satisfying I2 = −1. Consider its
√
−1-

eigenspace B1,0(M) ⊂ B ⊗C ⊂ TCM = TM ⊗C. Suppose that [B1,0,B1,0] ⊂ B1,0.

Then (B,I) is called a CR-structure on M .

Example: A complex manifold is CR, with B = TM . Indeed, [T1,0M,T1,0M] ⊂
T1,0M is equivalent to integrability of the complex structure (Newlander-

Nirenberg).

Example: Let X be a complex manifold, and M ⊂X a realhypersurface. Then

B ∶= dimCTM ∩ I(TM) = dimCX − 1, hence rkB = n − 1. Since [T1,0X,T1,0X] ⊂
T1,0X, M is a CR-manifold.

Definition: A Frobenius form of a CR-manifold is the tensor B⊗BÐ→ TM/B
mapping X,Y to the ΠTM/B([X,Y ]). It is an obstruction to integrability of

the foliation given by B.
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Pseudoconvex CR-manifolds.

Definition: Let (M,B,I) be a CR-manifold, with codimB = 1. Then M is

called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since [B1,0,B1,0] ⊂ B1,0 and [B0,1,B0,1] ⊂ B0,1, the Frobenius form

is a pairing between B0,1 and B1,0. This means that it is Hermitian. This

Hermitian form is called the Levi form of a CR-manifold.

Definition: Let (M,B,I) be a CR-manifold, with codimB = 1. Then M is

called a strictly pseudoconvex CR-manifold if its Levi form is positive

definite everywhere.

Example: Let h be a function on a complex manifold such that ∂∂h = ω

is a positive definite Hermitian form, and X = h−1(c) its level set. Then

the Frobenius form of X is equal to ω∣X . In particular, X is a strictly

pseudoconvex CR-manifold.
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Level set of a plurisubharmonic function

PROPOSITION: Let M be a complex manifold, φ ∈ C∞(M) a smooth func-

tion, and s a regular value of φ. Consider S ∶= φ−1(s) as a CR-manifold, with

B = TS ∩ I(TS), and let Φ be its Levi form, taking values in

TS/B = kerdφ

kerdφ ∩ I(kerdφ).

Then dcφ ∶ TS/BÐ→C∞(S) trivializes TS/B. Consider the tangent vectors

u,v ∈ B. Then −dcφ(Φ(u,v)) = ddcφ(u,v).

Proof: Extend u,v to vector fields u,v ∈ B = kerdφ ∩ I(kerdφ). Then

−dcφ(Φ(u,v)) = −dcφ([u,v]) = ddcφ(u,v) −Liev dcφ(u) +Lieu dcφ(v).

(the last equality follows from the Cartan formula). However, dcφ(u) = dcφ(v) =
0 because v,u ∈ I(kerdφ). This gives −dcφ(Φ(u,v)) = ddcφ(u,v).
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Stein filling

DEFINITION: Let (M,B,I) be a CR-manifold. A function f on M is called
CR-holomorphic if for any vector field v ∈ B0,1, we have Liev f = 0.

THEOREM: (H. Rossi, A. Andreotti, Y.-T. Siu)
Let S be a compact strictly pseudoconvex CR-manifold, dimRS ⩾ 5, and
H0(OS) the ring of CR-holomorphic functions. Then S is the boundary of
a Stein variety M with isolated singularities, such that H0(OS) =H0(OM),
where H0(OM) denotes the ring of holomorphic functions on M , consid-
ered a compact complex manifold with boundary, and OS is the ring of CR-
holomorphic functions.

DEFINITION: Let S be a strictly pseudoconvex CR-manifold, obtained as
a boundary of a Stein variety M . Then M is called Stein filling of S,

CLAIM: The Stein filling is unique in dimension 3, though existence is
false in dimension 3, and true in dimension ⩾ 5. Also, holomorphic auto-
morphisms of M are in bijective correspondence with CR-holomorphic
automorphisms of S.

Proof: Stein variety is uniquely determined by its ring of holomorphic func-
tions (Forster).
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Levi problem

DEFINITION: A strictly pseudoconvex domain is an open subset such

that its boundary is a strictly pseudoconvex real hypersurface in Cn.

REMARK: “Levi problem”, posited by Eugenio Elia Levi (1883–1917), asked

whether any strictly pseudoconvex domain is Stein; it was solved by Oka

for C2 (1942), and for arbitrary dimension independently in 1953 by Oka,

Bremermann and Norguet.
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Class VII surfaces (reminder)

DEFINITION: A complex surface is a compact complex manifold M of

complex dimension 2. Let M be a compact complex manifold, and KM its

canonical bundle. The canonical ring ⊕∞i=0H0(Ki) is finitely generated for

for all projective varieties (Birkar, Cascini, Hacon, McKernan), for complex

surfaces (Kodaira). Conjecturally, it is always finitely generated. Let a ∈
Z>0. Consider the function Pa(N) = H0(KaN). If the canonical ring is finitely

generated, the function N ↦ Pa(N) is polynomial for a which divides all

degrees of its generators (prove this). The degree κ(M) of this polynomial

is called the Kodaira dimension of M . If H0(Ki) = 0 for all i > 0, we set

κ(M) = −∞.

DEFINITION: Class VII surface (also called Kodaira class VII surface) is

a complex surface with κ(M) = ∞ and first Betti bumber b1(M) = 1. Minimal

class VII surfaces are called class VII0 surfaces.

REMARK: Kodaira defined the “Class VII” in another, non-equivalent way.

The current “Class VII” is Kodaira’s “class 7” from his version of Kodaira-

Enriques classification, published 1966. The term “class VII” with its current

meaning is due to Barth, Peters, Van de Ven.
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The global spherical shell

DEFINITION: Let S ⊂ C2 be a standard sphere, and Sε its ε-neighbourhood.

A complex surface M admits a global spherical shell (GSS) if there is a

holomorphic embedding SεÐ→M , for some ε > 0, such that the complement

of its image is connected.

THEOREM: (Ma. Kato)

A complex surface admits a global spherical shell if and only if it is a

Kato surface.

Proof: It is clear that a Kato surface admits a GSS. Conversely, consider

a GSS surface M , let S ⊂ M be its spherical shell, and M1 the complex

surface with boundary of two copies of S, obtaining by cutting M in S. Fill

the interior part of the boundary by a ball. This gives a compact manifold

M1 with its boundary CR-isomorphic to a sphere. The global holomorphic

functions on M1 are the same as CR-holomorphic functions on its boundary,

which gives a natural map from M1 to its Stein filling, which is by construction

bimeromorphic.
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The GSS conjecture

CONJECTURE: (GSS conjecture, due to Ma. Kato)

Let M be a class VII surface with b2 > 0. Then M is a Kato surface.

REMARK: A. Teleman proved the GSS conjecture when b2(M) = 1.

REMARK: By results of G. Dlousky, K. Oeljeklaus and M. Toma, a Kato

surface M admits at least b2(M) distinct rational curves, and, conversely, if

a complex surface admits b2(M) distinct rational curves in a certain

configuration, it is a Kato surface.
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Brunella’s theorem

THEOREM: (Brunella)

Suppose that M is a Kato surface obtained from an iterated blow-up B̂
πÐ→ B

and an open ball B0 ⊂ B̂. Then M is LCK.

Step 1. Strategy of the proof: Let Ψ ∶ BÐ→B0 be the biholomorphism

used to glue two components of the boundary of B/B0. We find a Kähler

metric ω̂ on B̂ with the following automorphic condition. Consider the space

M̃ obtained by gluing Z copies of B̂/B0 =Mi, i ∈ Z as above. A Kähler metric

ω̃ on M̃ is called Z-automorphic if the deck transform group mapping Mi to

Mi+1 acts on (M̃, ω̃) by homotheties. To obtain such a form we need to find

a Kähler form ω̂ on B̂ such that ω̂∣B0
is equal to Ψ∗ω̂ in a neighbour-

hood of the boundary of B0. If this is true, Ψ acts by homotheties in a

neighbourhood of S. Then the restriction of ω̂ to B̂/B0 =Mi can be extended

to a Z-automorphic Kähler form on M̃ = ⋃i∈ZMi.

Step 2: Start with a Kähler form ω̂ on B̂ (it always exists, because B̂ is a

blow-up of a ball). Using the local ddc-lemma, we can find a smooth function

φ on B0 such that ddcφ = ω̂∣B0
. Solving the appropriate elliptic equation with

boundary conditions, we can assume that B0 = φ−1(−∞,0).
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Brunella’s theorem (2)

Step 3: Let π∗ω̂ be the pushforward of ω̂, considered to be a current on
B. Clearly, π∗ω̂ is closed and positive. Using the ddc-lemma for currents,
we obtain π∗ω̂ = ddcf, where f is a plurisubharmonic function on B that is
smooth outside of the singularities of π. We also assume that f = const on
∂B. Let f1 ∶= (Ψ−1)∗φ, where φ is the Kähler potential on B0 constructed in
Step 2, and Ψ ∶ BÐ→B0 the biholomorphic map used to construct M .

Step 4: Let S be the boundary of B. Rescaling f if necessary and adding
a constant, we may assume that −ε < f ∣S < 0 and ∣df ∣∣

S
≪ ε. Let A be a

sufficiently big positive number, and 0 < δ ≪ ε. Then the regularized maximum
maxδ(f,Af1) is equal to Af1 in a very small neighbourhood of S (because f is
negative on S and f1 = 0 on S), and equal to f in a small neighbourhood V

of S1 ∶= Af−11 (−2ε) because ∣df ∣≪ A∣df1∣ and as Af1 goes to −2ε, f does not go
much below −ε.

Step 5: Replacing ω̂ by ddcmaxδ(f, f1) on the annulus between S and S1,
we obtain a Kähler form ω̂1. Since maxδ(f, f1) = f1 in a neighbourhood of S,
the map Ψ ∶ (B, ω̂1)Ð→ (B0, ω̂1) acts on a neighbourhood of S mapping the
metric ω̂1 isometrically to a neighbourhood of Ψ(S) with the metric Aω̂1. As
indicated in Step 1, this construction gives an LCK metric on M.
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