Topologia das Variedades: class exercise 4

Definition 4.1. Unitary group U(n) is the group of complex isometries of a complex Hermitian space \mathbb{C}^n . **Special unitary** group SU(n) is all $g \in U(n)$ with determinant 1.

Exercise 4.1. Find a cell decomposition for a Grassmann manifold $\frac{U(4)}{U(2) \times U(2)}$ of all 2-dimensional complex subspaces in \mathbb{C}^4 such that all cells are even-dimensional.

Exercise 4.2. Prove that a standard embedding $\mathbb{C}P^{n-k} \hookrightarrow \mathbb{C}P^n$ induces a surjective map on cohomology.

Exercise 4.3. Prove that SU(2) acts on a unit sphere $S^3 \subset \mathbb{C}^2$ freely and transitively.

Remark 4.1. This implies that $SU(2) = S^3$.

Exercise 4.4. Prove that SU(n) is fibered over S^{2n-1} with fiber SU(n-1).

Exercise 4.5. Let $U(\mathbb{H}, 1)$ be a group of unitary quaternions. Prove that $U(\mathbb{H}, 1)$ is isomorphic to SU(2).

Exercise 4.6. Construct a double cover $SU(2) \longrightarrow SO(3)$.

Exercise 4.7. Construct a double cover $SU(2) \times SU(2) \longrightarrow SO(4)$.