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INTRODUCTION.

La Géométrie & n dimensions a un objet réel; personne n'en doute
anjourd’hui. Les étres de hyperespace sont susceptibles de définitions
précises comme cenx de I'espace ordinaire, et si nous ne pouvons nous
les représenter, nous pouvons les concevoir et les étudier. Si done, par
exemple, la Mécanique a plus de trois dimensions doit étre condamnée
comme dépourvue de tout objet, il n’en est pas de méme de I'Hypergéo-

méirie.

La Géométrie, en effet, 0’a pas pour unique raison d’étre la deseviption /0
/ - k-3

immédiate des corps qni tombent sous nos sens : elle est avant tont/

I'étude analytique d'an groupe; rien n’empéche, par conséquent, d almr-‘_‘ ,

der d'autres groupes analogues et plus généraux.

Mais pourquoi, dira-t-on, ne pas conserver le langage aualytigqne et le
remplacer par un langage géométrique, qui perd tous ses avantages dés
que les sens ne peuvent plus intervenir. Clest que ce langage nonvean est
plus concis; ¢'est ensuite (que 'analogie avecla Géométrie ordinaire pent
créer des associations d’idées fécondes et suggérer des généralisations

utiles.
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"Analysis Situs” is a seminal mathematics paper that Henri Poincaré published in 1895.

Poincaré published five supplements to the paper between 1899 and 1904.
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Bilinear maps

DEFINITION: Let U, V, W be vector spaces over k. A map U xV La\ W,
u,v — p(u,v) is called bilinear if for all w € U and v € V the maps u(u,-) :
VW u(,v): U— W are linear.

REMARK: Clearly, a linear combination of bilinear maps is bilinear. Then
the space Bil(U x V, W) of bilinear maps U x V — W iIs a vector space.

DEFINITION: Bilinear form on V is a bilinear map V x V £ k. Bilinear
symmetric form is a form which satisfies u(x,y) = u(y,z) for all z,y € V.
Bilinear anti-symmetric formm or bilinear skew-symmetric form is a form
which satisfies u(z,y) = —u(y,z). We denote the first by Sym2V*, and the
second by A2V*.
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Tensor product

DEFINITION: Let S be a set. Define vector space, freely generated by
S as the space of functions ¢ . S — k£ which are equal zero outside of a finite
subset Sup¢ C S.

DEFINITION: Let V, V'’ be vector spaces over k, and W a vector space freely
generated by v ® v/, with v € V,o' € V/, and Wy C W a subspace generated by
combinations av v —v®av’, a(v®v') — (av) @V, (v1+1v2) RV —v1 @V — Vo RV
and v® (v] +v5) —v®v] —v®v5, where a € k. Define the tensor product
V Q1 V! as a quotient vector space W/Wy.

PROPOSITION: For any vector spaces V,V’/, R, there is a natural
identification Hom(V @, V', R) = Bil(V x V', R).

Proof: Clearly, any bilinear map p € Bil(V x V', R) defines a linear map p :
W — R, and p vanishes on W7. This gives a map Bil(VxV/' R) — Hom(V®;
V' R). Inverse map takes 7 € Hom(V ®; V', R) and interprets it as a bilinear
map in Bil(V xV/ R). =

COROLLARY: For finite-dimensional V,V’/, one has V @, V' = Bil(V x
VI k)*.
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Dimension of the tensor product
CLAIM: Dimension of Bil(V x V' k) is equal to dimV dimV’.

Proof. Step 1: Let {)\;} be a basis in V* and {\/} a basis in V'. Denote by
{vi} {v;} the dual basis in V,V’. Then XX, can be interpreted as vectors in
Bil(V x V' k). These vectors are clearly linearly independent: indeed

Zaij)\i)\;-(vp,v;) = apq.
©,J
This gives dimBil(V x V' k) > dimV dimV’.

Step 2: On the other hand, dmV®V’ <dimV dimV’/, because it is generated
by vp ® vg, hence dimBIl(V x V[ k) <dimVdimV'. =

COROLLARY: Let {z;} and {y;} be bases in V,W. Then {z; ® y;} is a
basis in V&, W. =
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Algebra over a field

Fix a ground field k. Recall that a map (V1 x V5) L>V3 of vector spaces is
called bilinear of for any vy € V7, vo € V5, the maps u(vy,:) : Vo — Va, u(-,vo) :
Vi1 — V3 (one element is fixed) is k-linear.

To express this, we use the tensor product sign, and write u: V3 ® Vo — V3.

DEFINITION: Let A be a vector space over k, and u: AR A — A a bilinear
map (called “multiplication”). The pair (A,u) is called algebra over a
field k if u is associative: p(aq,pu(ar,a3)) = pu(u(ay,ans),asz)). The product in
algebra is written as a-b or ab. If, in addition, there is an element 1 € A such
that u(1,a) = pu(a,1) = a for all a € A, this element is called unity, a and A
an algebra with unity.

DEFINITION: A homomorphism of algebras r: A— A’ is a linear map
which is compatible with a product. Isomorphism of algebras is an invertible
homomorphism. Subalgebra of an algebra A is a vector subspace which is
closed under multiplication.
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Tensor algebra

Let V X W map to V@ W by putting v,w to v ® w. Clearly, this map is
bilinear. Similarly, one has a bilinear map V®m x V®n _ y®m+n pytting

DEFINITION: Let V be a vector space over k. Tensor algebra, or free
algebra generated by V is T(V) := &; V®" equipped with the multiplicative
structure defined above,

EXERCISE: Prove that T'(V*) is the algebra of polylinear forms on V
defined above.

REMARK: If z1,....z, is @ basis in V, then the basis in V®" is formed by
all different monomials of the form z;, ® z;, ® ... ® ;.
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Two-sided ideals

DEFINITION: Let A be an algebra and J C A its subspace. Then J is caled
left ideal if for all a € A,57 € J, one has ja € J, and right ideal if one has
aj € J. J is called two-sided ideal if is is both right and left ideal.

REMARK: Let J C A be a two-sided ideal, z,y € A/J some vectors, and
z,y Define the product zy € A/J by putting x -y to the class represented by
x,y. Since ja € J and aj € J, this gives a bilinear map A/J® A/J — A/J,
defining an associative multiplicative structure on A/J.

CLAIM: In these assumptions, A/J is an algebra, with the product defined
as above.

EXERCISE: Prove it.
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Algebra defined by generators and relations

DEFINITION: Let V be a vector space over k£ ( “the space of generators’ ),
and W C T(V) another vector space (‘“‘the space of relations” ). Consider
a quotient A of T'(V) by the subspace T'(V)WT (V) generated by the vectors
v@w v, where w e W and v,v € T(V).

V)

CLAIM: There is a natural product structure on the space A := TOYWT (V)"
Proof: T'(V)WT(V) is a 2-sided ideal. m

DEFINITION: In this situation, we say that A is an algebra defined by
generators and relations.

EXERCISE: Prove that any algebra can be defined by generators and
relations.

DEFINITION: An algebra is called finitely generated if it can be defined by
generators and relations, and the space of generators is finitely-dimensional.
An algebra is called finitely presented if the space W of relations is finitely-

dimensional.
o
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Graded algebras

DEFINITION: An algebra A is called graded if A is represented as A = @Ai,
where i € Z, and the product satisfies A*- A7 C A'tJ. Instead of @ A’ one
often writes A*, where x denotes all indices together. Some of the spaces A’
can be zero, but the ground field is always in A9, so that it is non-empty.

EXAMPLE: The tensor algebra T'(V) and the polynomial algebra Sym*(V)
are obviously graded.

DEFINITION: A subspace W C A* of a graded algebra is called graded if
W is a direct sum of components W* C At

EXERCISE: Let W C T(V) be a graded subspace. Prove that then the
algebra generated by V with relation space W is also graded.
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The Grassmann algebra

DEFINITION: Let V be a vector space, and W C V ® V a subspace gen-
erated by vectors z ®y+y®x and x® x, for all x,y € V. A graded algebra
defined by the generator space V and the relation space W is called Grass-
mann algebra, or exterior algebra, and denoted A*(V). The space AY(V) is
called i-th exterior power of V, and the multiplication in A*(V) — exterior
multiplication. Exterior multiplication is denoted A.

EXERCISE: Prove that AlV is isomorphic to V.
DEFINITION: An element of Grassmann algebra is called even if it lies in
D,z NH(V) and odd if it lies in @,cz A2 T1(V). For an even or odd x € A*(V),

we define a number z called parity of x. The parity of z is O for even x and
1 for odd.

CLAIM: In Grassmann algebra, z Ay = (—1)%y A z.
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Antisymmetric tensors

DEFINITION: Let V®" be n-th product of V with itself, equipped with the
natural symmetric group 2 p,-action exchanging the tensor components. A
tensor ¢ € V®" is called antisymmetric if for any permutation o € >,, we
have o(¢) = (—=1)%), and symmetric if o(¢)) = . We denote the space of all
antisymmetric tensors by A"V and the space of symmetric tensors by S/yvmnV.

Theorem 1: Let V be a vector space, A"V the n-th component of its
Grassmann algebra, and Sym™V the n-th component of its symmetric algebra.
Then A"V is naturally identified with A"V, and Sym”™V with S?anv: the
projection from V®" to A"V (or Sym™ V) induces an isomorphism from A"V
(or Sym"V) to A"V (or Sym™ V).
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Antisymmetrization

The natural map from A"V to A"V is given by antisymmetrization

1 -
A|t(£B1 X ... R azn) = 5 Z (—1)0330(1) X ... X xg(n).
o€

Its properties:
1. Clearly, imAIlt lies in the space of antisymmetric tensors, and Alt(n —
(—=1)°n) = 0, hence Alt defines a map from Grassmann algebra to the

space of antisymmetric tensors.

2. The natural projection from antisymmetric tensors to the Grassmann
algebra is inverse to Alt.
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Grassmann algebra: dimension of components

REMARK: For linearly independent vectors zq, ..., x;, the antisymmetrization
21 Azo A Az = 5 X (=1)73501) ® .. ® 3y IS nNON-trivial. Indeed, the
monomials z,(1) ® ... ® () are linearly independent in V®*. This implies

dim Aky > (471Y),

CLAIM: dimAFV = (97Y), and dim A*V = 2dimV,

Proof: Let zq,...,xn, be a basis in V. Then the space AV is generated by
antisymmetric tensors z;; Nz, A ... Nz, 11 < i < .. <1, which are all
linearly independent. =
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Tensor product of vector bundles

DEFINITION: Let V,V/ be R-modules, W a free abelian group generated by
v®7V, with v € V,o' € V!, and W7 C W a subgroup generated by combinations
ro@v —vrv, (v1+v2)®vV —v1 @V —vo®v and v (V] +v5) —v V] —v 5.
Define the tensor product V ®r V'’ as a quotient group W/Wj.

EXERCISE: Show that r-v®v' — (rv) ® v defines an R-module structure
onvV QR V7.

DEFINITION: Tensor product of vector bundles is a tensor product of the
corresponding sheaves of modules.

EXERCISE: Let B and B’ ve vector bundles on M, Bl|;, B’|z their fibers,
and B ®coops B’ their tensor product. Prove that B®cw,; B'|x = Bls Qp B/ |-
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Cotangent bundle

DEFINITION: Let M be a smooth manifold, T M the tangent bundle, and
ALM = T*M its dual bundle. It is called cotangent bundle of M. Sections
of T*M are called 1-forms or covectors on M. For any f € C°°M, consider
a functional TM — C°°M obtained by mapping X € T'TM to a derivation of
f: X — Dx(f). Since this map is linear in X, it defines a section df € T*M
called the differential of f.

CLAIM: AlM is generated as a C>°M-module by d(C®°M).

Proof: Locally in coordinates zq,...,xn this is clear, because the covectors
dx1,...,dzy, give a basis in T*M dual to the basis %,...,% in TM. To obtain
the same statement globally, use the partition of unity. m

DEFINITION: Let M be a smooth manifold. A bundle of differential
i-forms on M is the bundle A'T*M of antisymmetric i-forms on T'M. It is
denoted A'M.

REMARK: AOM = C®°M.
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