Topologia das Variedades

Cohomology, lecture 1: Grassmann algebra

Misha Verbitsky April 24, 2018

IMPA, Tuesdays and Thursdays, 10:30, Sala 224

Analysis situs

Source gallica.bnf.fr / Bibliothèque de l'Ecole polytechnique

"Analysis Situs" is a seminal mathematics paper that Henri Poincaré published in 1895. Poincaré published five supplements to the paper between 1899 and 1904.

Bilinear maps

DEFINITION: Let U, V, W be vector spaces over k. A map $U \times V \xrightarrow{\mu} W$, $u, v \mapsto \mu(u, v)$ is called **bilinear** if for all $u \in U$ and $v \in V$ the maps $\mu(u, \cdot)$: $V \to W \quad \mu(\cdot, v) : U \to W$ are linear.

REMARK: Clearly, a linear combination of bilinear maps is bilinear. Then the space $Bil(U \times V, W)$ of bilinear maps $U \times V \rightarrow W$ is a vector space.

DEFINITION: Bilinear form on V is a bilinear map $V \times V \xrightarrow{\mu} k$. Bilinear symmetric form is a form which satisfies $\mu(x,y) = \mu(y,x)$ for all $x, y \in V$. Bilinear anti-symmetric form or bilinear skew-symmetric form is a form which satisfies $\mu(x,y) = -\mu(y,x)$. We denote the first by $\text{Sym}^2 V^*$, and the second by $\Lambda^2 V^*$.

Tensor product

DEFINITION: Let *S* be a set. Define vector space, freely generated by *S* as the space of functions $\psi : S \longrightarrow k$ which are equal zero outside of a finite subset $Sup_{\psi} \subset S$.

DEFINITION: Let V, V' be vector spaces over k, and W a vector space freely generated by $v \otimes v'$, with $v \in V, v' \in V'$, and $W_1 \subset W$ a subspace generated by combinations $av \otimes v' - v \otimes av'$, $a(v \otimes v') - (av) \otimes v'$, $(v_1 + v_2) \otimes v' - v_1 \otimes v' - v_2 \otimes v'$ and $v \otimes (v'_1 + v'_2) - v \otimes v'_1 - v \otimes v'_2$, where $a \in k$. Define the tensor product $V \otimes_k V'$ as a quotient vector space W/W_1 .

PROPOSITION: For any vector spaces V, V', R, there is a natural identification $Hom(V \otimes_k V', R) = Bil(V \times V', R)$.

Proof: Clearly, any bilinear map $\rho \in Bil(V \times V', R)$ defines a linear map $\tilde{\rho}$: $W \longrightarrow R$, and $\tilde{\rho}$ vanishes on W_1 . This gives a map $Bil(V \times V', R) \longrightarrow Hom(V \otimes_k V', R)$. Inverse map takes $\tau \in Hom(V \otimes_k V', R)$ and interprets it as a bilinear map in $Bil(V \times V', R)$.

COROLLARY: For finite-dimensional V, V', one has $V \otimes_k V' = Bil(V \times V', k)^*$.

Dimension of the tensor product

CLAIM: Dimension of $Bil(V \times V', k)$ is equal to dim V dim V'.

Proof. Step 1: Let $\{\lambda_i\}$ be a basis in V^* and $\{\lambda'_i\}$ a basis in V'. Denote by $\{v_i\}$ $\{v'_i\}$ the dual basis in V, V'. Then $\lambda_i \lambda'_j$ can be interpreted as vectors in $Bil(V \times V', k)$. These vectors are clearly linearly independent: indeed

$$\sum_{i,j} a_{ij} \lambda_i \lambda'_j(v_p, v'_q) = a_{pq}.$$

This gives dim $Bil(V \times V', k) \ge \dim V \dim V'$.

Step 2: On the other hand, dim $V \otimes V' \leq \dim V \dim V'$, because it is generated by $v_p \otimes v_q$, hence dim Bil $(V \times V', k) \leq \dim V \dim V'$.

COROLLARY: Let $\{x_i\}$ and $\{y_i\}$ be bases in V, W. Then $\{x_i \otimes y_j\}$ is a basis in $V \otimes_k W$.

Algebra over a field

Fix a ground field k. Recall that a map $(V_1 \times V_2) \xrightarrow{\mu} V_3$ of vector spaces is called **bilinear** of for any $v_1 \in V_1$, $v_2 \in V_2$, the maps $\mu(v_1, \cdot) : V_2 \longrightarrow V_3$, $\mu(\cdot, v_2) : V_1 \longrightarrow V_3$ (one element is fixed) is k-linear.

To express this, we use the tensor product sign, and write μ : $V_1 \otimes V_2 \longrightarrow V_3$.

DEFINITION: Let *A* be a vector space over *k*, and $\mu : A \otimes A \longrightarrow A$ a bilinear map (called "**multiplication**"). The pair (A, μ) is called **algebra over a** field *k* if μ is associative: $\mu(a_1, \mu(a_2, a_3)) = \mu(\mu(a_1, a_2), a_3))$. The product in algebra is written as $a \cdot b$ or ab. If, in addition, there is an element $1 \in A$ such that $\mu(1, a) = \mu(a, 1) = a$ for all $a \in A$, this element is called **unity**, a and *A* an algebra with unity.

DEFINITION: A homomorphism of algebras $r : A \rightarrow A'$ is a linear map which is compatible with a product. **Isomorphism** of algebras is an invertible homomorphism. **Subalgebra** of an algebra A is a vector subspace which is closed under multiplication.

Tensor algebra

Let $V \times W$ map to $V \otimes W$ by putting v, w to $v \otimes w$. Clearly, this map is bilinear. Similarly, one has a bilinear map $V^{\otimes m} \times V^{\otimes n} \longrightarrow V^{\otimes m+n}$ putting $x_1 \otimes ... \otimes x_n, y_1 \otimes ... \otimes y_n$ to $x_1 \otimes ... \otimes x_n \otimes y_1 \otimes ... \otimes y_n$.

DEFINITION: Let V be a vector space over k. Tensor algebra, or free algebra generated by V is $T(V) := \bigoplus_i V^{\otimes^i}$ equipped with the multiplicative structure defined above,

EXERCISE: Prove that $T(V^*)$ is the algebra of polylinear forms on V defined above.

REMARK: If $x_1, ..., x_r$ is a basis in V, then the basis in V^{\otimes^n} is formed by all different monomials of the form $x_{i_1} \otimes x_{i_2} \otimes ... \otimes x_{i_n}$.

Two-sided ideals

DEFINITION: Let A be an algebra and $J \subset A$ its subspace. Then J is called **left ideal** if for all $a \in A, j \in J$, one has $ja \in J$, and **right ideal** if one has $aj \in J$. J is called **two-sided ideal** if is is both right and left ideal.

REMARK: Let $J \subset A$ be a two-sided ideal, $x, y \in A/J$ some vectors, and \tilde{x}, \tilde{y} Define the product $xy \in A/J$ by putting $x \cdot y$ to the class represented by \tilde{x}, \tilde{y} . Since $ja \in J$ and $aj \in J$, **this gives a bilinear map** $A/J \otimes A/J \longrightarrow A/J$, defining an associative multiplicative structure on A/J.

CLAIM: In these assumptions, A/J is an algebra, with the product defined as above.

EXERCISE: Prove it.

Cohomology, lecture 1

M. Verbitsky

Algebra defined by generators and relations

DEFINITION: Let V be a vector space over k ("the space of generators"), and $W \subset T(V)$ another vector space ("the space of relations"). Consider a quotient A of T(V) by the subspace T(V)WT(V) generated by the vectors $v \otimes w \otimes v'$, where $w \in W$ and $v, v' \in T(V)$.

CLAIM: There is a natural product structure on the space $A := \frac{T(V)}{T(V)WT(V)}$.

Proof: T(V)WT(V) is a 2-sided ideal.

DEFINITION: In this situation, we say that A is an algebra defined by generators and relations.

EXERCISE: Prove that any algebra can be defined by generators and relations.

DEFINITION: An algebra is called **finitely generated** if it can be defined by generators and relations, and the space of generators is finitely-dimensional. An algebra is called **finitely presented** if the space W of relations is finitely-dimensional.

9

Graded algebras

DEFINITION: An algebra A is called **graded** if A is represented as $A = \bigoplus A^i$, where $i \in \mathbb{Z}$, and the product satisfies $A^i \cdot A^j \subset A^{i+j}$. Instead of $\bigoplus A^i$ one often writes A^* , where * denotes all indices together. Some of the spaces A^i can be zero, but the ground field is always in A^0 , so that it is non-empty.

EXAMPLE: The tensor algebra T(V) and the polynomial algebra $Sym^*(V)$ are obviously graded.

DEFINITION: A subspace $W \subset A^*$ of a graded algebra is called **graded** if W is a direct sum of components $W^i \subset A^i$.

EXERCISE: Let $W \subset T(V)$ be a graded subspace. Prove that then the algebra generated by V with relation space W is also graded.

The Grassmann algebra

DEFINITION: Let *V* be a vector space, and $W \subset V \otimes V$ a subspace generated by vectors $x \otimes y + y \otimes x$ and $x \otimes x$, for all $x, y \in V$. A graded algebra defined by the generator space *V* and the relation space *W* is called **Grassmann algebra**, or **exterior algebra**, and denoted $\Lambda^*(V)$. The space $\Lambda^i(V)$ is called *i*-th exterior power of *V*, and the multiplication in $\Lambda^*(V)$ – **exterior multiplication**. Exterior multiplication is denoted \wedge .

EXERCISE: Prove that $\Lambda^1 V$ is isomorphic to V.

DEFINITION: An element of Grassmann algebra is called **even** if it lies in $\bigoplus_{i \in \mathbb{Z}} \Lambda^{2i}(V)$ and **odd** if it lies in $\bigoplus_{i \in \mathbb{Z}} \Lambda^{2i+1}(V)$. For an even or odd $x \in \Lambda^*(V)$, we define a number \tilde{x} called **parity** of x. The parity of x is 0 for even x and 1 for odd.

CLAIM: In Grassmann algebra, $x \wedge y = (-1)^{\tilde{x}\tilde{y}}y \wedge x$.

Antisymmetric tensors

DEFINITION: Let V^{\otimes^n} be *n*-th product of *V* with itself, equipped with the natural symmetric group Σ_n -action exchanging the tensor components. A tensor $\psi \in V^{\otimes^n}$ is called **antisymmetric** if for any permutation $\sigma \in \Sigma_n$ we have $\sigma(\psi) = (-1)^{\tilde{\sigma}}\psi$, and **symmetric** if $\sigma(\psi) = \psi$. We denote the space of all antisymmetric tensors by $\tilde{\Lambda}^n V$ and the space of symmetric tensors by $\tilde{Sym}^n V$.

Theorem 1: Let V be a vector space, $\Lambda^n V$ the *n*-th component of its Grassmann algebra, and $\operatorname{Sym}^n V$ the *n*-th component of its symmetric algebra. Then $\Lambda^n V$ is naturally identified with $\tilde{\Lambda}^n V$, and $\operatorname{Sym}^n V$ with $\operatorname{Sym}^n V$: the projection from $V^{\otimes n}$ to $\Lambda^n V$ (or $\operatorname{Sym}^n V$) induces an isomorphism from $\tilde{\Lambda}^n V$ (or $\operatorname{Sym}^n V$) to $\Lambda^n V$ (or $\operatorname{Sym}^n V$).

Antisymmetrization

The natural map from $\Lambda^n V$ to $\tilde{\Lambda}^n V$ is given by **antisymmetrization**

$$\mathsf{Alt}(x_1 \otimes ... \otimes x_n) := \frac{1}{n!} \sum_{\sigma \in \Sigma_n} (-1)^{\tilde{\sigma}} x_{\sigma(1)} \otimes ... \otimes x_{\sigma(n)}.$$

Its properties:

1. Clearly, im Alt lies in the space of antisymmetric tensors, and $Alt(\eta - (-1)^{\tilde{\sigma}}\eta) = 0$, hence Alt defines a map from Grassmann algebra to the space of antisymmetric tensors.

2. The natural projection from antisymmetric tensors to the Grassmann algebra is inverse to Alt.

Grassmann algebra: dimension of components

REMARK: For linearly independent vectors $x_1, ..., x_k$, the antisymmetrization $x_1 \wedge x_2 \wedge ... \wedge x_k := \frac{1}{k!} \sum (-1)^{\tilde{\sigma}} x_{\sigma(1)} \otimes ... \otimes x_{\sigma(k)}$ is non-trivial. Indeed, the monomials $x_{\sigma(1)} \otimes ... \otimes x_{\sigma(k)}$ are linearly independent in $V^{\otimes k}$. This implies $\dim \Lambda^k V \ge {\dim V \choose k}$.

CLAIM: dim
$$\Lambda^k V = \begin{pmatrix} \dim V \\ k \end{pmatrix}$$
, and dim $\Lambda^* V = 2^{\dim V}$.

Proof: Let $x_1, ..., x_n$ be a basis in V. Then the space $\Lambda^k V$ is generated by antisymmetric tensors $x_{i_1} \wedge x_{i_2} \wedge ... \wedge x_{i_k}$, $i_1 < i_2 < ... < i_k$, which are all linearly independent.

Tensor product of vector bundles

DEFINITION: Let V, V' be R-modules, W a free abelian group generated by $v \otimes v'$, with $v \in V, v' \in V'$, and $W_1 \subset W$ a subgroup generated by combinations $rv \otimes v' - v \otimes rv'$, $(v_1 + v_2) \otimes v' - v_1 \otimes v' - v_2 \otimes v'$ and $v \otimes (v'_1 + v'_2) - v \otimes v'_1 - v \otimes v'_2$. Define **the tensor product** $V \otimes_R V'$ as a quotient group W/W_1 .

EXERCISE: Show that $r \cdot v \otimes v' \mapsto (rv) \otimes v'$ defines an *R*-module structure on $V \otimes_R V'$.

DEFINITION: Tensor product of vector bundles is a tensor product of the corresponding sheaves of modules.

EXERCISE: Let *B* and *B'* ve vector bundles on *M*, $B|_x$, $B'|_x$ their fibers, and $B \otimes_{C^{\infty}M} B'$ their tensor product. **Prove that** $B \otimes_{C^{\infty}M} B'|_x = B|_x \otimes_{\mathbb{R}} B'|_x$.

Cotangent bundle

DEFINITION: Let M be a smooth manifold, TM the tangent bundle, and $\Lambda^1 M = T^*M$ its dual bundle. It is called **cotangent bundle** of M. Sections of T^*M are called **1-forms** or **covectors** on M. For any $f \in C^{\infty}M$, consider a functional $TM \longrightarrow C^{\infty}M$ obtained by mapping $X \in TM$ to a derivation of $f: X \longrightarrow D_X(f)$. Since this map is linear in X, it defines a section $df \in T^*M$ called **the differential** of f.

CLAIM: $\Lambda^1 M$ is generated as a $C^{\infty} M$ -module by $d(C^{\infty} M)$.

Proof: Locally in coordinates $x_1, ..., x_n$ this is clear, because the covectors $dx_1, ..., dx_n$ give a basis in T^*M dual to the basis $\frac{d}{dx_1}, ..., \frac{d}{dx_n}$ in TM. To obtain the same statement globally, use the partition of unity.

DEFINITION: Let M be a smooth manifold. A bundle of differential *i*-forms on M is the bundle $\Lambda^i T^*M$ of antisymmetric *i*-forms on TM. It is denoted $\Lambda^i M$.

REMARK: $\Lambda^0 M = C^{\infty} M$.