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Analysis situs

”Analysis Situs” is a seminal mathematics paper that Henri Poincaré published in 1895.

Poincaré published five supplements to the paper between 1899 and 1904.
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Bilinear maps

DEFINITION: Let U , V , W be vector spaces over k. A map U × V µ→ W ,

u, v 7→ µ(u, v) is called bilinear if for all u ∈ U and v ∈ V the maps µ(u, ·) :

V →W µ(·, v) : U →W are linear.

REMARK: Clearly, a linear combination of bilinear maps is bilinear. Then

the space Bil(U × V,W ) of bilinear maps U × V →W is a vector space.

DEFINITION: Bilinear form on V is a bilinear map V × V µ→ k. Bilinear

symmetric form is a form which satisfies µ(x, y) = µ(y, x) for all x, y ∈ V .

Bilinear anti-symmetric formm or bilinear skew-symmetric form is a form

which satisfies µ(x, y) = −µ(y, x). We denote the first by Sym2 V ∗, and the

second by Λ2V ∗.
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Tensor product

DEFINITION: Let S be a set. Define vector space, freely generated by
S as the space of functions ψ : S −→ k which are equal zero outside of a finite
subset Supψ ⊂ S.

DEFINITION: Let V, V ′ be vector spaces over k, and W a vector space freely
generated by v ⊗ v′, with v ∈ V, v′ ∈ V ′, and W1 ⊂W a subspace generated by
combinations av⊗v′−v⊗av′, a(v⊗v′)−(av)⊗v′, (v1 +v2)⊗v′−v1⊗v′−v2⊗v′
and v ⊗ (v′1 + v′2) − v ⊗ v′1 − v ⊗ v

′
2, where a ∈ k. Define the tensor product

V ⊗k V ′ as a quotient vector space W/W1.

PROPOSITION: For any vector spaces V, V ′, R, there is a natural
identification Hom(V ⊗k V ′, R) = Bil(V × V ′, R).

Proof: Clearly, any bilinear map ρ ∈ Bil(V × V ′, R) defines a linear map ρ̃ :
W −→R, and ρ̃ vanishes on W1. This gives a map Bil(V ×V ′, R)−→ Hom(V ⊗k
V ′, R). Inverse map takes τ ∈ Hom(V ⊗k V ′, R) and interprets it as a bilinear
map in Bil(V × V ′, R).

COROLLARY: For finite-dimensional V, V ′, one has V ⊗k V ′ = Bil(V ×
V ′, k)∗.
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Dimension of the tensor product

CLAIM: Dimension of Bil(V × V ′, k) is equal to dimV dimV ′.

Proof. Step 1: Let {λi} be a basis in V ∗ and {λ′i} a basis in V ′. Denote by

{vi} {v′i} the dual basis in V, V ′. Then λiλ
′
j can be interpreted as vectors in

Bil(V × V ′, k). These vectors are clearly linearly independent: indeed∑
i,j

aijλiλ
′
j(vp, v

′
q) = apq.

This gives dim Bil(V × V ′, k) > dimV dimV ′.

Step 2: On the other hand, dimV ⊗V ′ 6 dimV dimV ′, because it is generated

by vp ⊗ vq, hence dim Bil(V × V ′, k) 6 dimV dimV ′.

COROLLARY: Let {xi} and {yi} be bases in V,W . Then {xi ⊗ yj} is a

basis in V ⊗kW .
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Algebra over a field

Fix a ground field k. Recall that a map (V1 × V2)
µ−→ V3 of vector spaces is

called bilinear of for any v1 ∈ V1, v2 ∈ V2, the maps µ(v1, ·) : V2 −→ V3, µ(·, v2) :

V1 −→ V3 (one element is fixed) is k-linear.

To express this, we use the tensor product sign, and write µ : V1⊗ V2 −→ V3.

DEFINITION: Let A be a vector space over k, and µ : A⊗A−→A a bilinear

map (called “multiplication”). The pair (A,µ) is called algebra over a

field k if µ is associative: µ(a1, µ(a2, a3)) = µ(µ(a1, a2), a3)). The product in

algebra is written as a · b or ab. If, in addition, there is an element 1 ∈ A such

that µ(1, a) = µ(a,1) = a for all a ∈ A, this element is called unity, a and A

an algebra with unity.

DEFINITION: A homomorphism of algebras r : A−→A′ is a linear map

which is compatible with a product. Isomorphism of algebras is an invertible

homomorphism. Subalgebra of an algebra A is a vector subspace which is

closed under multiplication.
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Tensor algebra

Let V × W map to V ⊗ W by putting v, w to v ⊗ w. Clearly, this map is

bilinear. Similarly, one has a bilinear map V ⊗m × V ⊗n −→ V ⊗m+n putting

x1 ⊗ ...⊗ xn, y1 ⊗ ...⊗ yn to x1 ⊗ ...⊗ xn ⊗ y1 ⊗ ...⊗ yn.

DEFINITION: Let V be a vector space over k. Tensor algebra, or free

algebra generated by V is T (V ) :=
⊕
i V
⊗i equipped with the multiplicative

structure defined above,

EXERCISE: Prove that T (V ∗) is the algebra of polylinear forms on V

defined above.

REMARK: If x1, ..., xr is a basis in V , then the basis in V ⊗
n

is formed by

all different monomials of the form xi1 ⊗ xi2 ⊗ ...⊗ xin.
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Two-sided ideals

DEFINITION: Let A be an algebra and J ⊂ A its subspace. Then J is caled

left ideal if for all a ∈ A, j ∈ J, one has ja ∈ J, and right ideal if one has

aj ∈ J. J is called two-sided ideal if is is both right and left ideal.

REMARK: Let J ⊂ A be a two-sided ideal, x, y ∈ A/J some vectors, and

x̃, ỹ Define the product xy ∈ A/J by putting x · y to the class represented by

x̃, ỹ. Since ja ∈ J and aj ∈ J, this gives a bilinear map A/J ⊗ A/J −→A/J,

defining an associative multiplicative structure on A/J.

CLAIM: In these assumptions, A/J is an algebra, with the product defined

as above.

EXERCISE: Prove it.
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Algebra defined by generators and relations

DEFINITION: Let V be a vector space over k (“the space of generators”),

and W ⊂ T (V ) another vector space (“the space of relations”). Consider

a quotient A of T (V ) by the subspace T (V )WT (V ) generated by the vectors

v ⊗ w ⊗ v′, where w ∈W and v, v′ ∈ T (V ).

CLAIM: There is a natural product structure on the space A := T (V )
T (V )WT (V ).

Proof: T (V )WT (V ) is a 2-sided ideal.

DEFINITION: In this situation, we say that A is an algebra defined by

generators and relations.

EXERCISE: Prove that any algebra can be defined by generators and

relations.

DEFINITION: An algebra is called finitely generated if it can be defined by

generators and relations, and the space of generators is finitely-dimensional.

An algebra is called finitely presented if the space W of relations is finitely-

dimensional.
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Graded algebras

DEFINITION: An algebra A is called graded if A is represented as A =
⊕
Ai,

where i ∈ Z, and the product satisfies Ai · Aj ⊂ Ai+j. Instead of
⊕
Ai one

often writes A∗, where ∗ denotes all indices together. Some of the spaces Ai

can be zero, but the ground field is always in A0, so that it is non-empty.

EXAMPLE: The tensor algebra T (V ) and the polynomial algebra Sym∗(V )

are obviously graded.

DEFINITION: A subspace W ⊂ A∗ of a graded algebra is called graded if

W is a direct sum of components W i ⊂ Ai.

EXERCISE: Let W ⊂ T (V ) be a graded subspace. Prove that then the

algebra generated by V with relation space W is also graded.

10



Cohomology, lecture 1 M. Verbitsky

The Grassmann algebra

DEFINITION: Let V be a vector space, and W ⊂ V ⊗ V a subspace gen-

erated by vectors x ⊗ y + y ⊗ x and x ⊗ x, for all x, y ∈ V . A graded algebra

defined by the generator space V and the relation space W is called Grass-

mann algebra, or exterior algebra, and denoted Λ∗(V ). The space Λi(V ) is

called i-th exterior power of V , and the multiplication in Λ∗(V ) – exterior

multiplication. Exterior multiplication is denoted ∧.

EXERCISE: Prove that Λ1V is isomorphic to V .

DEFINITION: An element of Grassmann algebra is called even if it lies in⊕
i∈Z Λ2i(V ) and odd if it lies in

⊕
i∈Z Λ2i+1(V ). For an even or odd x ∈ Λ∗(V ),

we define a number x̃ called parity of x. The parity of x is 0 for even x and

1 for odd.

CLAIM: In Grassmann algebra, x ∧ y = (−1)x̃ỹy ∧ x.
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Antisymmetric tensors

DEFINITION: Let V ⊗
n

be n-th product of V with itself, equipped with the

natural symmetric group Σn-action exchanging the tensor components. A

tensor ψ ∈ V ⊗
n

is called antisymmetric if for any permutation σ ∈ Σn we

have σ(ψ) = (−1)σ̃ψ, and symmetric if σ(ψ) = ψ. We denote the space of all

antisymmetric tensors by Λ̃nV and the space of symmetric tensors by S̃ym
n
V .

Theorem 1: Let V be a vector space, ΛnV the n-th component of its

Grassmann algebra, and Symn V the n-th component of its symmetric algebra.

Then ΛnV is naturally identified with Λ̃nV , and Symn V with S̃ym
n
V : the

projection from V ⊗n to ΛnV (or Symn V ) induces an isomorphism from Λ̃nV

(or S̃ym
n
V ) to ΛnV (or Symn V ).
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Antisymmetrization

The natural map from ΛnV to Λ̃nV is given by antisymmetrization

Alt(x1 ⊗ ...⊗ xn) :=
1

n!

∑
σ∈Σn

(−1)σ̃xσ(1) ⊗ ...⊗ xσ(n).

Its properties:

1. Clearly, im Alt lies in the space of antisymmetric tensors, and Alt(η −
(−1)σ̃η) = 0, hence Alt defines a map from Grassmann algebra to the

space of antisymmetric tensors.

2. The natural projection from antisymmetric tensors to the Grassmann

algebra is inverse to Alt.
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Grassmann algebra: dimension of components

REMARK: For linearly independent vectors x1, ..., xk, the antisymmetrization

x1 ∧ x2 ∧ ... ∧ xk := 1
k!
∑

(−1)σ̃xσ(1) ⊗ ... ⊗ xσ(k) is non-trivial. Indeed, the

monomials xσ(1) ⊗ ... ⊗ xσ(k) are linearly independent in V ⊗k. This implies

dim ΛkV >
(

dimV
k

)
.

CLAIM: dim ΛkV =
(

dimV
k

)
, and dim Λ∗V = 2dimV .

Proof: Let x1, ..., xn be a basis in V . Then the space ΛkV is generated by

antisymmetric tensors xi1 ∧ xi2 ∧ ... ∧ xik, i1 < i2 < ... < ik, which are all

linearly independent.
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Tensor product of vector bundles

DEFINITION: Let V, V ′ be R-modules, W a free abelian group generated by

v⊗ v′, with v ∈ V, v′ ∈ V ′, and W1 ⊂W a subgroup generated by combinations

rv⊗v′−v⊗ rv′, (v1 +v2)⊗v′−v1⊗v′−v2⊗v′ and v⊗ (v′1 +v′2)−v⊗v′1−v⊗v
′
2.

Define the tensor product V ⊗R V ′ as a quotient group W/W1.

EXERCISE: Show that r · v⊗ v′ 7→ (rv)⊗ v′ defines an R-module structure

on V ⊗R V ′.

DEFINITION: Tensor product of vector bundles is a tensor product of the

corresponding sheaves of modules.

EXERCISE: Let B and B′ ve vector bundles on M , B|x, B′|x their fibers,

and B⊗C∞M B′ their tensor product. Prove that B⊗C∞M B′|x = B|x⊗RB
′|x.
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Cotangent bundle

DEFINITION: Let M be a smooth manifold, TM the tangent bundle, and

Λ1M = T ∗M its dual bundle. It is called cotangent bundle of M . Sections

of T ∗M are called 1-forms or covectors on M . For any f ∈ C∞M , consider

a functional TM −→ C∞M obtained by mapping X ∈ TM to a derivation of

f : X −→DX(f). Since this map is linear in X, it defines a section df ∈ T ∗M
called the differential of f .

CLAIM: Λ1M is generated as a C∞M-module by d(C∞M).

Proof: Locally in coordinates x1, ..., xn this is clear, because the covectors

dx1, ..., dxn give a basis in T ∗M dual to the basis d
dx1

, ..., d
dxn

in TM . To obtain

the same statement globally, use the partition of unity.

DEFINITION: Let M be a smooth manifold. A bundle of differential

i-forms on M is the bundle ΛiT ∗M of antisymmetric i-forms on TM . It is

denoted ΛiM .

REMARK: Λ0M = C∞M .
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