
Cohomology, lecture 2 M. Verbitsky

Topologia das Variedades
Cohomology, lecture 2: de Rham differential

Misha Verbitsky

April 26, 2018

IMPA, Tuesdays and Thursdays, 10:30, Sala 224

1



Cohomology, lecture 2 M. Verbitsky

The Grassmann algebra (reminder)

DEFINITION: Let V be a vector space, and W ⊂ V ⊗ V a subspace gen-

erated by vectors x ⊗ y + y ⊗ x and x ⊗ x, for all x, y ∈ V . A graded algebra

defined by the generator space V and the relation space W is called Grass-

mann algebra, or exterior algebra, and denoted Λ∗(V ). The space Λi(V ) is

called i-th exterior power of V , and the multiplication in Λ∗(V ) – exterior

multiplication. Exterior multiplication is denoted ∧.

EXERCISE: Prove that Λ1V is isomorphic to V .

DEFINITION: An element of Grassmann algebra is called even if it lies in⊕
i∈Z Λ2i(V ) and odd if it lies in

⊕
i∈Z Λ2i+1(V ). For an even or odd x ∈ Λ∗(V ),

we define a number x̃ called parity of x. The parity of x is 0 for even x and

1 for odd.

CLAIM: In Grassmann algebra, x ∧ y = (−1)x̃ỹy ∧ x.
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Antisymmetrization (reminder)

The natural embedding from ΛnV to T⊗nV is given by antisymmetrization

Alt(x1 ∧ ... ∧ xn) :=
1

n!

∑
σ∈Σn

(−1)σ̃xσ(1) ⊗ ...⊗ xσ(n).

Its properties:

1. Clearly, im Alt lies in the space of antisymmetric tensors, and Alt(η −
(−1)σ̃η) = 0, hence Alt defines a map from Grassmann algebra to the

space of antisymmetric tensors.

2. The natural projection from antisymmetric tensors to the Grassmann

algebra is inverse to Alt.

3. This map defines an isomorphism of the Grassmann algebra and the

space of antisymmetric tensors.
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Grassmann algebra: dimension of components (reminder)

REMARK: For linearly independent vectors x1, ..., xk, the antisymmetrization

x1 ∧ x2 ∧ ... ∧ xk := 1
k!
∑

(−1)σ̃xσ(1) ⊗ ... ⊗ xσ(k) is non-trivial. Indeed, the

monomials xσ(1) ⊗ ... ⊗ xσ(k) are linearly independent in V ⊗k. This implies

dim ΛkV >
(

dimV
k

)
.

CLAIM: dim ΛkV =
(

dimV
k

)
, and dim Λ∗V = 2dimV .

Proof: Let x1, ..., xn be a basis in V . Then the space ΛkV is generated by

antisymmetric tensors xi1 ∧ xi2 ∧ ... ∧ xik, i1 < i2 < ... < ik, which are all

linearly independent.
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Tensor product of vector bundles

DEFINITION: Let V, V ′ be R-modules, W a free abelian group generated by

v⊗ v′, with v ∈ V, v′ ∈ V ′, and W1 ⊂W a subgroup generated by combinations

rv⊗v′−v⊗ rv′, (v1 +v2)⊗v′−v1⊗v′−v2⊗v′ and v⊗ (v′1 +v′2)−v⊗v′1−v⊗v
′
2.

Define the tensor product V ⊗R V ′ as a quotient group W/W1.

EXERCISE: Show that r · v⊗ v′ 7→ (rv)⊗ v′ defines an R-module structure

on V ⊗R V ′.

DEFINITION: Tensor product of vector bundles is a tensor product of the

corresponding sheaves of modules.

EXERCISE: Let B and B′ ve vector bundles on M , B|x, B′|x their fibers,

and B⊗C∞M B′ their tensor product. Prove that B⊗C∞M B′|x = B|x⊗RB
′|x.
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Cotangent bundle

DEFINITION: Let M be a smooth manifold, TM the tangent bundle, and

Λ1M = T ∗M its dual bundle. It is called cotangent bundle of M . Sections

of T ∗M are called 1-forms or covectors on M . For any f ∈ C∞M , consider

a functional TM −→ C∞M obtained by mapping X ∈ TM to a derivation of

f : X −→DX(f). Since this map is linear in X, it defines a section df ∈ T ∗M
called the differential of f .

CLAIM: Λ1M is generated as a C∞M-module by d(C∞M).

Proof: Locally in coordinates x1, ..., xn this is clear, because the covectors

dx1, ..., dxn give a basis in T ∗M dual to the basis d
dx1

, ..., d
dxn

in TM . To obtain

the same statement globally, use the partition of unity.

DEFINITION: Let M be a smooth manifold. A bundle of differential

i-forms on M is the bundle ΛiT ∗M of antisymmetric i-forms on TM . It is

denoted ΛiM .

REMARK: Λ0M = C∞M .
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De Rham algebra

DEFINITION: Let α ∈ (V ∗)⊗i and α ∈ (V ∗)⊗j be polylinear forms on V .

Define the tensor multiplication α⊗ β as

α⊗ β(x1, ..., xi+j) := α(x1, ..., xj)β(xi+1, ..., xi+j).

DEFINITION: Let
⊗
k T
∗M Π−→ ΛkM be the antisymmetrization map,

Π(α)(x1, ..., xn) :=
1

n!

∑
σ∈Symn

(−1)σα(xσ1, xσ2, ..., xσn).

Define the exterior multiplication ∧ : ΛiM × ΛjM −→ Λi+jM as α ∧ β :=

Π(α⊗ β), where α⊗ β is a section ΛiM ⊗ ΛjM ⊂
⊗
i+j T

∗M obtained as their

tensor multiplication.

REMARK: The fiber of the bundle Λ∗M at x ∈ M is identified with the

Grassmann algebra Λ∗T ∗xM. This identification is compatible with the Grass-

mann product.

DEFINITION: Let t1, ..., tn be coordinate functions on Rn, and α ∈ Λ∗Rn

a monomial obtained as a product of several dti: α = dti1 ∧ dti2 ∧ ... ∧ dtik
i1 < i2 < ... < ik. Then α is called a coordinate monomial.
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De Rham differential

THEOREM: There exists a unique operator C∞M d−→ Λ1M
d−→ Λ2M

d−→
Λ3M

d−→ ... satisfying the following properties

1. On functions, d is equal to the differential.

2. d2 = 0

3. d(η ∧ ξ) = d(η)∧ ξ+ (−1)η̃η ∧ d(ξ), where η̃ = 0 where η ∈ λ2iM is an

even form, and η ∈ λ2i+1M is odd.

DEFINITION: The operator d is called de Rham differential.

DEFINITION: A form η is called closed if dη = 0, exact if η ∈ im d. The

group ker d
im d is called de Rham cohomology of M .
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Derivations determined by their values on generators

REMARK: A map d on a graded algebra which satisfies the Leibnitz rule

d(η ∧ ξ) = d(η) ∧ ξ + (−1)η̃η ∧ d(ξ) is called an odd derivation.

REMARK: The following two lemmas are needed to prove uniqueness of de

Rham differential.

LEMMA: Let A =
⊕
Ai be a graded algebra, B ⊂ A a set of multiplicative

generators, and D1, D2 : A−→A two odd derivations which are equal on B.

Then D1 = D2.

LEMMA: Λ∗M is generated by C∞M and d(C∞M).

Proof: By definition, Λ∗M is generated by Λ0M = C∞M and Λ1M . However,

d(C∞M) generate Λ1M , as shown above.
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De Rham differential: uniqueness and existence

THEOREM:

De Rham differential is uniquely determined by these axioms.

Proof: De Rham differential is an odd derivation. Its value on C∞M is defined

by the first axiom. On d(C∞M) de Rham differential valishes, because d2 = 0.

DEFINITION: Let t1, ..., tn be coordinate functions on Rn, αi coordinate

monomials, and α :=
∑
fiαi. Define d(α) :=

∑
i
∑
j
dfi
dtj
dtj ∧ αi.

EXERCISE:

Check that d satisfies the properties of de Rham differential.

COROLLARY: De Rham differential exists on any smooth manifold.

Proof: Locally, de Rham differential d exists, as follows from the construction

above. Cover M by open sets where d is defined. Since d is unique, it

is compatible on intersections of these open sets. Therefore, it is well

defined globally on M.
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Georges de Rham (1903-1990)

Georges de Rham (with Marcel Berger)
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Integration

DEFINITION: Let M be an n-dimensional manifold. Clearly, Λn(M) is a
rank 1 vector bundle. This bundle is trivial if and only if it has a non-
vanishing section η. Let’s call two such sections η, η′ equivalent if η = fη′,
where f ∈ C∞M is positive everywhere. A choice of equivalence class of such
sections is called an orientation on M , and M is called oriented. A section
of Λn(M) which belongs to this class is called a differential n-form, positive
everywhere, or a volume form.

THEOREM: Let M be an n-dimensional compact oriented manifold. De-
note by Λn(M) the space of sections of the vector bundle Λn(M). Then
there exists a linear functional

∫
M : Λn(M)−→ R which is positive on vol-

ume forms and invariant under the Diff(M) (diffeomorphism group of M)
action. Moreover, such a functional is unique up to a positive constant
multiplier.

REMARK: To fix the normalization, it would suffice to take a diffeomorphism
from a unit cube to U ⊂M which can be extended to a small neighbourhood of
the cube. Consider the pushforward η of the standard volume form dx1∧...∧dxn
from the cube to M , and let

∫
M η = 1. It is not hard to see that all such

maps from the cube to U ⊂M are diffeomorphism-conjugate, hence this
choice defines the functional

∫
M uniquely.
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Stokes’ theorem and Poincaré lemma

DEFINITION: The map
∫
M : Λn(M)−→ R defined above is called the in-

tegral of the differential form.

Stokes’ theorem: (Poincarè)

Let η be n− 1-form on n-manifold M with a boundary ∂M . Then∫
M
dη =

∫
∂M

η.

Existence and uniqueness of the integral and Stokes’ theorems are left

as exercises for now.

Poincaré lemma:

De Rham cohomology Hi(B) of an open ball B vanish for i > 0.
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