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The Grassmann algebra (reminder)

DEFINITION: Let V be a vector space, and W C V ® V a subspace gen-
erated by vectors z ®y+y®x and x® x, for all x,y € V. A graded algebra
defined by the generator space V and the relation space W is called Grass-
mann algebra, or exterior algebra, and denoted A*(V). The space AY(V) is
called i-th exterior power of V, and the multiplication in A*(V) — exterior
multiplication. Exterior multiplication is denoted A.

EXERCISE: Prove that AlV is isomorphic to V.
DEFINITION: An element of Grassmann algebra is called even if it lies in
D,z NH(V) and odd if it lies in @,cz A2 T1(V). For an even or odd x € A*(V),

we define a number z called parity of x. The parity of z is O for even x and
1 for odd.

CLAIM: In Grassmann algebra, z Ay = (—1)%y A z.
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De Rham algebra (reminder)

DEFINITION: Let o € (V¥)® and a € (V*)® be polylinear forms on V.
Define the tensor multiplication a ® g as

a B(xla ceey xz—l—]) L= Oé(a?]_, sy ZCJ)B(CEZ_|_]_, ceey mz—l—])

DEFINITION: Let ®.T*M -5 A*M be the antisymmetrization map,

1

N(a)(x1,...,2n) = Z (—1)%a(xoqy; Togy s Tap)-

n: oceSym,,
Define the exterior multiplication A : A'M x ANNM — NTIM as a A B =

N(a® B), where a® B is a section A'M ® NVM C ®;4,;T*M obtained as their
tensor multiplication.

REMARK: The fiber of the bundle A*M at z € M is identified with the
Grassmann algebra A*T 7M. This identification is compatible with the Grass-
mann product.

DEFINITION: Let ¢q,...,t, be coordinate functions on R", and a € A*R"
a monomial obtained as a product of several dt;: « = dt;; Ndt, N\ ... N\di;,
11 <12 < ...< 1. T'hen « is called a coordinate monomial.
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De Rham differential (reminder)

THEOREM: There exists a unique operator C°M -4 Alp -4 A2p7 4
A3M -y . satisfying the following properties

1. On functions, d is equal to the differential.

2. d°=0

3. (Graded Leibnitz identity) d(nA&) = d(n) AE+ (=1)TyAd(E), where
ii= 0 where n € A2M is an even form, and n € \2+1)f is odd.

DEFINITION: The operator d is called de Rham differential.

DEFINITION: A form n is called closed if dn = 0, exact if n € imd. The

group ‘i(re{j is called de Rham cohomology of M.
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Graded algebras (reminder)

DEFINITION: An algebra A is called graded if A is represented as A = @Ai,
where i € Z, and the product satisfies A*- A7 C A'tJ. Instead of @ A’ one
often writes A*, where x denotes all indices together. Some of the spaces A’
can be zero, but the ground field is always in A9, so that it is non-empty.

EXAMPLE: The tensor algebra T'(V) and the polynomial algebra Sym*(V)
are obviously graded.

DEFINITION: A subspace W C A* of a graded algebra is called graded if
W is a direct sum of components W* C At

EXERCISE: Let W C T(V) be a graded subspace. Prove that then the
algebra generated by V with relation space W is also graded.
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Superalgebras

DEFINITION: Let A* = @,czA" be a graded algebra over a field. It is
called graded commutative, or supercommutative, if ab = (—1)%Yba for all
a€ A be A,

EXAMPLE: Grassmann algebra A*V is clearly supercommutative.

DEFINITION: Let A* be a graded commutative algebra, and D : A* — A*T?
be a map which shifts grading by 2. It is called a graded derivation, if
D(ab) = D(a)b+ (—1)YaD(b), for each a € AJ.

REMARK: If 7 is even, graded derivation is a usual derivation. If it is even,
it an odd derivation.

DEFINITION: Let M be a smooth manifold, and X € T'M a vector field.
Consider an operation of convolution with a vector field iy : A/M — A1 M,
mapping an i-form « to an (i — 1)-form vq,...,v,_1 — a(X,v1,...,v;_1)

EXERCISE: Prove that i:x is an odd derivation.
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Supercommutator

DEFINITION: Let A* be a graded vector space, and E : A* —s A*t?
F . A* —s A*tJ operators shifting the grading by 1,7. Define the super-
commutator {E,F} := EF — (—1)YFE.

DEFINITION: An endomorphism of a graded vector space which shifts grad-
ing by 7 is called even if 7 is even, and odd otherwise.

EXERCISE: Prove that the supercommutator satisfies graded Jacobi iden-
tity,

(E{F,G}} = ({E,F},G} + (-1)!F{F {E,G}}

where £ and £ are 0 if E, F are even, and 1 otherwise.

REMARK: There is a simple mnemonic rule which allows one to remember
a superidentity, if you know the commutative analogue. Each time when in
commutative case two letters £, F are exchanged, In supercommuta-
tive case one needs to multiply by (—1)&%,

EXERCISE: Prove that a supercommutator of superderivations is again
a superderivation.
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Pullback of a differential form

DEFINITION: Let M -2 N be a morphism of smooth manifolds, and
a € A'N be a differential form. Consider an -form ¢*a taking value

0] p(my (Dp(x1), .. Do (7))
©

on x1,....,x; € IT;mM. It is called the pullback of a. If M — N is a closed
embedding, the form ¢*« is called the restriction of o« to M — N.

LEMMA: (*) Let W1,Ws: A*N — A*M be two maps which satisfy graded
Leibnitz identity, supercommutes with de Rham differential, and satisfy
\U1|CooM = \U2|C’°OM- Then Vi = WV,,

Proof: The algebra A*M is generated multiplicatively by C*°M and d(C*°M);
restrictions of W, to these two spaces are equal. =

CLAIM: Pullback commutes with the de Rham differential.

Proof: Let di,d> : A*N — A*T1M be the maps di = ¢*od and dy = d o ©*.
These maps satisfy the Leibnitz identity, and they are equal on C°°M.
The super-commutator § := {d;,d} is equal to do ¢* od, it commutes with d,
and equal 0 on functions. By Lemma (*), § = 0. Then d; supercommutes
with d. Applying Lemma (*) again, we obtain that d{ = d>. =
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Lie derivative

DEFINITION: Let B be a smooth manifold, and v € T'M a vector field. An
endomorphism Liey : A*M — A*M, preserving the grading is called a Lie
derivative along v if it satisfies the following conditions.
(1) On functions Liey is equal to a derivative along v. (2) [Liey,d] = 0.
(3) Liey is a derivation of the de Rham algebra.

REMARK: The algebra A*(M) is generated by C®°M = AO(M) and d(C>®M).
The restriction Liey |y, is determined by the first axiom. On d(C*°M) is
also determined because Liey(df) = d(Liey f). Therefore, Lie, is uniquely
defined by these axioms.

EXERCISE: Prove that {d,{d,E}} = 0 for each E € End(A*M).

THEOREM: (Cartan’s formula) Let i, be a convolution with a vector field,
iv(n) =n(v,-, -, ...,-) Then {d,i,} is equal to the Lie derivative along v.

Proof: {d,{d,iv}} = O by the lemma above. A supercommutator of two
graded derivations is a graded derivation. Finally, {d,iy,} acts on functions as
iw(df) = (v, df). =
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Cartan’s magic formula: doi; + i1, 0d = Liey.

) Which Cartan?
Elie Cartan (1869-1951) Henri Cartan (1904-2008)

Elie Cartan? Henri Cartan?

(Robert Bryant and Dick Palais (S.S. Chern: Lectures
Mathoverflow) on differential geometry)
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Flow of diffeomorphisms

DEFINITION: Let f: M X [a,b] — M be a smooth map such that for all
t € [a,b] the restriction fi := flarxqyy © M —> M is a diffeomorphism. Then f
is called a flow of diffeomorphisms.

CLAIM: Let V} be a flow of dlffeomorphlsms f e C°°M, and Vt (f)(x) :
f(Vi(x)). Consider the map dt\/ﬂt c . C°M — C°°M, with dtVt‘t <(f)

(Vc_l)*dm —.f. Then f— (V" 1)* :V;*f is a derivation (that is, a vector
field).

Proof: %Vt*(fg) = Vt*(f)%vt*g + %Vt*f\/t*(g) by the Leignitz rule, giving

v b p” VE(fg) = f(vih a‘/%g-kg(‘/t 1y @th
[ |

DEFINITION: The vector field %Vtuzc is called the vector field tangent
to a flow of diffeomorphisms V; at t = c.

CLAIM: Let V; be a flow of diffeomorphisms and X; the corresponding vector
field. Then for any n € A*M, one has $V*(n) = Liex,(n).

Proof: The operators %Vt* and Liey, are equal on functions, satisfy the
Leibitz identity and commute with d. m
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Flow of diffeomorphisms obtained from vector fields

EXERCISE: Let M be a compact manifold, and W : C°°M — C°M is a ring
automorphism. Prove that W is induced by an action of a diffeomorphism
of M.

THEOREM: Let M be a compact manifold, and X; € TM a family of
vector fields smoothly depending on t € [0,a]. Then there exists a unique
diffeomorphism flow V;, t € [0,a], such that V5 =1d and 4V} = X;.

Proof. Step 1: Given f € C*°M, we can solve an equation %Wt(f) = Liex,(f)
(here Liex,(f) denotes the derivative along the vector field). The solution
Wi (f) exists for all ¢t € [0,z] and is unique by Peano theorem on existence and
uniqueness of solutions of ODE,

Step 2: Since

d . . d
—Wilf9) = Liex,(Ng + Liex,(9)f = — (We(HWi(9)),
Wy is multiplicative. Also, it is invertible. Applying the previous exercise, we

obtain that W, is a diffeomorphism. m

For another proof see Chapter 5 of Arnold V.I., Ordinary Differential Equa-
tions
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Flow of diffeomorphisms from vector fields on maifolds with boundary

REMARK: The same result holds for compact manifolds with boundary
If the vector field is tangent to the boundary. The proof is the same.

REMARK: The same result holds if M is a complete Riemannian mani-

fold and X; is C-Lipschitz for all ¢, that is, satisfies || X¢|z — | X¢|y| < Cd(x,y).

It also follows from the Peano theorem.

Let M be a compact manifold with boundary OM, and X; € T'M a family of
vector fields smoothly depending on t € [0,a]. Suppose that X¢|g;s is pointed
inside, and not outside. We can embed M to M1 = M UOM x [0,1] obtained
by gluing OM C M to OM x {0} C OM x [0, 1] and extend X; to a vector field
(also denoted by X;) on M3, tangent to 9M7 on the boundary 9M7. Applying
the previous theorem, and using the fact that the phase trajectories of X
cross OM C My in one direction, we obtain the following theorem.

THEOREM: Let M be a compact manifold with boundary, and X; € T'M
a family of vector fields smoothly depending on ¢ € [0,a]. Suppose that
Xt|lgps points inside M. Then there exists a unique family of smooth
embeddings V; : M — M, t € [0,a], such that 4V = X, and V5 =1Id. =

13



Cohomology, lecture 3 M. Verbitsky

Lie derivative and a flow of diffeomorphisms

DEFINITION: Let v+ be a vector field on M, smoothly depending on the
“time parameter” t € [a,b], and V : M X [a,b] — M a flow of diffeomorphisms
which satisfies %Vt = v; for each t € [a,b], and Vj =1Id. Then V} is called an
exponent of w;.

CLAIM: Exponent of a vector field is unique; it exists when M is compact.
This statement is called “Picard-Lindelof theorem” or *“uniqueness and
existence of solutions of ordinary differential equations’.

PROPOSITION: Let v; be a time-dependent vector field, t € [a,b], and V;
its exponent. For any a € A*M, consider V,*a as a A*M-valued function of ¢.
Then Lieyy(a) = &|i=o(V; ).

Proof: By definition of differential, Liey, f = (df,vg), hence Liey, f = %H:OV;*(J").
The operator Liey,; commutes with de Rham differential, because Lie, =
wd + diy. The map %Vt commutes with de Rham differential, because it
is a derivative of a pullback. Now Lemma (*) is applied to show that
Liey, o = %h:o(vt*oz). u
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Homotopy operators

DEFINITION: A complex is a sequence of vector spaces and homomor-
. d d d d

phisms ... — C;_1 — C; — Cijp1 — ...

satisfying d2 = 0. Homomorphism (Cx,d) — (C.,d) of complexes is a se-

quence of homomorphism C; — C,g commuting with the differentials.

DEFINITION: An element ¢ € C; is called closed if c € kerd and exact if

ceimd. Cohomology of a complex is a quotient ‘frenrg.

REMARK: A homomorphism of complexes induces a natural homomorphism
of cohomology groups.

DEFINITION: Let (Ck,d), (C.,d) be a complex. Homotopy is a sequence
of maps h: Cx — C,_;. Two homomorphisms f,g : (Cs,d) — (Cy,d) are
called homotopy equivalent if f — g = {h,d} for some homotopy operator h.

CLAIM: Let f,f': (Ck,d) — (CL,d) be homotopy equivalent maps of com-
plexes. Then f and f’ induce the same maps on cohomology.

Proof. Step 1: Let g := f — f’. It would suffice to prove that g induces 0
on cohomology.
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Lie derivative and homotopy

CLAIM: Let f,f': (Ck,d) — (CL,d) be homotopy equivalent maps of com-
plexes. Then f and f’ induce the same maps on cohomology.

Proof. Step 1: Let g := f — f’. It would suffice to prove that g induces O
on cohomology.

Step 2: Let c € C; be a closed element. Then g(c¢) = dh(c) + hd(c) = dh(c)
exact. m

REMARK: Let v be a vector field, and Lie, : AN*M — A*M be the corre-
sponding Lie derivative. Then Lie, commutes with the de Rham differ-
ential, and acts trivially on the de Rham cohomology.

Proof: Liey = 1,d + di, maps closed forms to exact. m

COROLLARY: Let V4, t € [a,b] be a flow of diffeomorphisms on a manifold
M. Then V* (the pullback) acts on cohomology the same way as V.

) = Liex,(n), it acts trivially on cohomology. Then V;* —
V*(n) = fa LIeXt(n) is exact for any closed n. Therefore, Vi*(n) — V;(n) is

exact. =
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