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The Grassmann algebra (reminder)

DEFINITION: Let V be a vector space, and W ⊂ V ⊗ V a subspace gen-

erated by vectors x ⊗ y + y ⊗ x and x ⊗ x, for all x, y ∈ V . A graded algebra

defined by the generator space V and the relation space W is called Grass-

mann algebra, or exterior algebra, and denoted Λ∗(V ). The space Λi(V ) is

called i-th exterior power of V , and the multiplication in Λ∗(V ) – exterior

multiplication. Exterior multiplication is denoted ∧.

EXERCISE: Prove that Λ1V is isomorphic to V .

DEFINITION: An element of Grassmann algebra is called even if it lies in⊕
i∈Z Λ2i(V ) and odd if it lies in

⊕
i∈Z Λ2i+1(V ). For an even or odd x ∈ Λ∗(V ),

we define a number x̃ called parity of x. The parity of x is 0 for even x and

1 for odd.

CLAIM: In Grassmann algebra, x ∧ y = (−1)x̃ỹy ∧ x.
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De Rham algebra (reminder)

DEFINITION: Let α ∈ (V ∗)⊗i and α ∈ (V ∗)⊗j be polylinear forms on V .

Define the tensor multiplication α⊗ β as

α⊗ β(x1, ..., xi+j) := α(x1, ..., xj)β(xi+1, ..., xi+j).

DEFINITION: Let
⊗
k T
∗M Π−→ ΛkM be the antisymmetrization map,

Π(α)(x1, ..., xn) :=
1

n!

∑
σ∈Symn

(−1)σα(xσ1, xσ2, ..., xσn).

Define the exterior multiplication ∧ : ΛiM × ΛjM −→ Λi+jM as α ∧ β :=

Π(α⊗ β), where α⊗ β is a section ΛiM ⊗ ΛjM ⊂
⊗
i+j T

∗M obtained as their

tensor multiplication.

REMARK: The fiber of the bundle Λ∗M at x ∈ M is identified with the

Grassmann algebra Λ∗T ∗xM. This identification is compatible with the Grass-

mann product.

DEFINITION: Let t1, ..., tn be coordinate functions on Rn, and α ∈ Λ∗Rn

a monomial obtained as a product of several dti: α = dti1 ∧ dti2 ∧ ... ∧ dtik
i1 < i2 < ... < ik. Then α is called a coordinate monomial.
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De Rham differential (reminder)

THEOREM: There exists a unique operator C∞M d−→ Λ1M
d−→ Λ2M

d−→
Λ3M

d−→ ... satisfying the following properties

1. On functions, d is equal to the differential.

2. d2 = 0

3. (Graded Leibnitz identity) d(η∧ξ) = d(η)∧ξ+(−1)η̃η∧d(ξ), where

η̃ = 0 where η ∈ λ2iM is an even form, and η ∈ λ2i+1M is odd.

DEFINITION: The operator d is called de Rham differential.

DEFINITION: A form η is called closed if dη = 0, exact if η ∈ im d. The

group ker d
im d is called de Rham cohomology of M .
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Graded algebras (reminder)

DEFINITION: An algebra A is called graded if A is represented as A =
⊕
Ai,

where i ∈ Z, and the product satisfies Ai · Aj ⊂ Ai+j. Instead of
⊕
Ai one

often writes A∗, where ∗ denotes all indices together. Some of the spaces Ai

can be zero, but the ground field is always in A0, so that it is non-empty.

EXAMPLE: The tensor algebra T (V ) and the polynomial algebra Sym∗(V )

are obviously graded.

DEFINITION: A subspace W ⊂ A∗ of a graded algebra is called graded if

W is a direct sum of components W i ⊂ Ai.

EXERCISE: Let W ⊂ T (V ) be a graded subspace. Prove that then the

algebra generated by V with relation space W is also graded.
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Superalgebras

DEFINITION: Let A∗ = ⊕i∈ZAi be a graded algebra over a field. It is

called graded commutative, or supercommutative, if ab = (−1)ijba for all

a ∈ Ai, b ∈ Aj.

EXAMPLE: Grassmann algebra Λ∗V is clearly supercommutative.

DEFINITION: Let A∗ be a graded commutative algebra, and D : A∗ −→A∗+i

be a map which shifts grading by i. It is called a graded derivation, if

D(ab) = D(a)b+ (−1)ijaD(b), for each a ∈ Aj.

REMARK: If i is even, graded derivation is a usual derivation. If it is even,

it an odd derivation.

DEFINITION: Let M be a smooth manifold, and X ∈ TM a vector field.

Consider an operation of convolution with a vector field iX : ΛiM −→ Λi−1M ,

mapping an i-form α to an (i− 1)-form v1, ..., vi−1 −→ α(X, v1, ..., vi−1)

EXERCISE: Prove that iX is an odd derivation.
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Supercommutator

DEFINITION: Let A∗ be a graded vector space, and E : A∗ −→A∗+i,
F : A∗ −→A∗+j operators shifting the grading by i, j. Define the super-

commutator {E,F} := EF − (−1)ijFE.

DEFINITION: An endomorphism of a graded vector space which shifts grad-
ing by i is called even if i is even, and odd otherwise.

EXERCISE: Prove that the supercommutator satisfies graded Jacobi iden-

tity,

{E, {F,G}} = {{E,F}, G}+ (−1)ẼF̃{F, {E,G}}

where Ẽ and F̃ are 0 if E,F are even, and 1 otherwise.

REMARK: There is a simple mnemonic rule which allows one to remember
a superidentity, if you know the commutative analogue. Each time when in

commutative case two letters E, F are exchanged, in supercommuta-

tive case one needs to multiply by (−1)ẼF̃ .

EXERCISE: Prove that a supercommutator of superderivations is again

a superderivation.
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Pullback of a differential form

DEFINITION: Let M
ϕ−→ N be a morphism of smooth manifolds, and

α ∈ ΛiN be a differential form. Consider an i-form ϕ∗α taking value

α
∣∣∣ϕ(m)(Dϕ(x1), ...Dϕ(xi))

on x1, ..., xi ∈ TmM . It is called the pullback of α. If M
ϕ−→ N is a closed

embedding, the form ϕ∗α is called the restriction of α to M ↪→ N .

LEMMA: (*) Let Ψ1,Ψ2 : Λ∗N −→ Λ∗M be two maps which satisfy graded
Leibnitz identity, supercommutes with de Rham differential, and satisfy
Ψ1|C∞M = Ψ2|C∞M . Then Ψ1 = Ψ2.

Proof: The algebra Λ∗M is generated multiplicatively by C∞M and d(C∞M);
restrictions of Ψi to these two spaces are equal.

CLAIM: Pullback commutes with the de Rham differential.

Proof: Let d1, d2 : Λ∗N −→ Λ∗+1M be the maps d1 = ϕ∗ ◦ d and d2 = d ◦ ϕ∗.
These maps satisfy the Leibnitz identity, and they are equal on C∞M.
The super-commutator δ := {di, d} is equal to d ◦ ϕ∗ ◦ d, it commutes with d,
and equal 0 on functions. By Lemma (*), δ = 0. Then di supercommutes
with d. Applying Lemma (*) again, we obtain that d1 = d2.
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Lie derivative

DEFINITION: Let B be a smooth manifold, and v ∈ TM a vector field. An

endomorphism Liev : Λ∗M −→ Λ∗M , preserving the grading is called a Lie

derivative along v if it satisfies the following conditions.

(1) On functions Liev is equal to a derivative along v. (2) [Liev, d] = 0.

(3) Liev is a derivation of the de Rham algebra.

REMARK: The algebra Λ∗(M) is generated by C∞M = Λ0(M) and d(C∞M).

The restriction Liev |C∞M is determined by the first axiom. On d(C∞M) is

also determined because Liev(df) = d(Liev f). Therefore, Liev is uniquely

defined by these axioms.

EXERCISE: Prove that {d, {d,E}} = 0 for each E ∈ End(Λ∗M).

THEOREM: (Cartan’s formula) Let iv be a convolution with a vector field,

iv(η) = η(v, ·, ·, ..., ·) Then {d, iv} is equal to the Lie derivative along v.

Proof: {d, {d, iv}} = 0 by the lemma above. A supercommutator of two

graded derivations is a graded derivation. Finally, {d, iv} acts on functions as

iv(df) = 〈v, df〉.
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Cartan’s magic formula: d ◦ ix + ix ◦ d = Liex.

Which Cartan?
Élie Cartan (1869-1951) Henri Cartan (1904-2008)

Élie Cartan? Henri Cartan?
(Robert Bryant and Dick Palais (S.S. Chern: Lectures

Mathoverflow) on differential geometry)
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Flow of diffeomorphisms

DEFINITION: Let f : M × [a, b]−→M be a smooth map such that for all
t ∈ [a, b] the restriction ft := f

∣∣∣M×{t} : M −→M is a diffeomorphism. Then f
is called a flow of diffeomorphisms.

CLAIM: Let Vt be a flow of diffeomorphisms, f ∈ C∞M , and V ∗t (f)(x) :=
f(Vt(x)). Consider the map d

dtVt|t=c : C∞M −→ C∞M , with d
dtVt|t=c(f) =

(V −1
c )∗dVtdt |t=cf . Then f −→ (V −1

t )∗ ddtV
∗
t f is a derivation (that is, a vector

field).

Proof: d
dtV
∗
t (fg) = V ∗t (f) ddtV

∗
t g + d

dtV
∗
t fV

∗
t (g) by the Leignitz rule, giving

(V −1
t )∗

d

dt
V ∗t (fg) = f(V −1

t )∗
d

dt
V ∗t g + g(V −1

t )∗
d

dt
V ∗t f.

DEFINITION: The vector field d
dtVt|t=c is called the vector field tangent

to a flow of diffeomorphisms Vt at t = c.

CLAIM: Let Vt be a flow of diffeomorphisms and Xt the corresponding vector
field. Then for any η ∈ Λ∗M, one has d

dtV
∗
t (η) = LieXt(η).

Proof: The operators d
dtV
∗
t and LieXt are equal on functions, satisfy the

Leibitz identity and commute with d.
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Flow of diffeomorphisms obtained from vector fields

EXERCISE: Let M be a compact manifold, and Ψ : C∞M −→ C∞M is a ring
automorphism. Prove that Ψ is induced by an action of a diffeomorphism
of M.

THEOREM: Let M be a compact manifold, and Xt ∈ TM a family of
vector fields smoothly depending on t ∈ [0, a]. Then there exists a unique
diffeomorphism flow Vt, t ∈ [0, a], such that V0 = Id and d

dtV
∗
t = Xt.

Proof. Step 1: Given f ∈ C∞M , we can solve an equation d
dtWt(f) = LieXt(f)

(here LieXt(f) denotes the derivative along the vector field). The solution
Wt(f) exists for all t ∈ [0, x] and is unique by Peano theorem on existence and
uniqueness of solutions of ODE,

Step 2: Since

d

dt
Wt(fg) = LieXt(f)g + LieXt(g)f =

d

dt
(Wt(f)Wt(g)),

Wt is multiplicative. Also, it is invertible. Applying the previous exercise, we
obtain that Wt is a diffeomorphism.

For another proof see Chapter 5 of Arnold V.I., Ordinary Differential Equa-
tions
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Flow of diffeomorphisms from vector fields on maifolds with boundary

REMARK: The same result holds for compact manifolds with boundary
if the vector field is tangent to the boundary. The proof is the same.

REMARK: The same result holds if M is a complete Riemannian mani-

fold and Xt is C-Lipschitz for all t, that is, satisfies

∣∣∣∣∣|Xt|x−|Xt|y
∣∣∣∣∣ 6 Cd(x, y).

It also follows from the Peano theorem.

Let M be a compact manifold with boundary ∂M , and Xt ∈ TM a family of
vector fields smoothly depending on t ∈ [0, a]. Suppose that Xt|∂M is pointed
inside, and not outside. We can embed M to M1 = M ∪ ∂M × [0,1] obtained
by gluing ∂M ⊂M to ∂M × {0} ⊂ ∂M × [0,1] and extend Xt to a vector field
(also denoted by Xt) on M1, tangent to ∂M1 on the boundary ∂M1. Applying
the previous theorem, and using the fact that the phase trajectories of Xt
cross ∂M ⊂M1 in one direction, we obtain the following theorem.

THEOREM: Let M be a compact manifold with boundary, and Xt ∈ TM
a family of vector fields smoothly depending on t ∈ [0, a]. Suppose that
Xt|∂M points inside M . Then there exists a unique family of smooth
embeddings Vt : M −→M, t ∈ [0, a], such that d

dtV
∗
t = Xt and V0 = Id.
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Lie derivative and a flow of diffeomorphisms

DEFINITION: Let vt be a vector field on M , smoothly depending on the

“time parameter” t ∈ [a, b], and V : M× [a, b]−→M a flow of diffeomorphisms

which satisfies d
dtVt = vt for each t ∈ [a, b], and V0 = Id. Then Vt is called an

exponent of vt.

CLAIM: Exponent of a vector field is unique; it exists when M is compact.

This statement is called “Picard-Lindelöf theorem” or “uniqueness and

existence of solutions of ordinary differential equations”.

PROPOSITION: Let vt be a time-dependent vector field, t ∈ [a, b], and Vt
its exponent. For any α ∈ Λ∗M , consider V ∗t α as a Λ∗M-valued function of t.

Then Liev0(α) = d
dt|t=0(V ∗t α).

Proof: By definition of differential, Liev0 f = 〈df, v0〉, hence Liev0 f = d
dt|t=0V

∗
t (f).

The operator Liev0 commutes with de Rham differential, because Liev =

ivd + div. The map d
dtVt commutes with de Rham differential, because it

is a derivative of a pullback. Now Lemma (*) is applied to show that

Liev0 α = d
dt|t=0(V ∗t α).
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Homotopy operators

DEFINITION: A complex is a sequence of vector spaces and homomor-
phisms ...

d−→ Ci−1
d−→ Ci

d−→ Ci+1
d−→ ...

satisfying d2 = 0. Homomorphism (C∗, d)−→ (C′∗, d) of complexes is a se-
quence of homomorphism Ci −→ C′i commuting with the differentials.

DEFINITION: An element c ∈ Ci is called closed if c ∈ ker d and exact if
c ∈ im d. Cohomology of a complex is a quotient ker d

im d .

REMARK: A homomorphism of complexes induces a natural homomorphism
of cohomology groups.

DEFINITION: Let (C∗, d), (C′∗, d) be a complex. Homotopy is a sequence
of maps h : C∗ −→ C′∗−1. Two homomorphisms f, g : (C∗, d)−→ (C′∗, d) are
called homotopy equivalent if f − g = {h, d} for some homotopy operator h.

CLAIM: Let f, f ′ : (C∗, d)−→ (C′∗, d) be homotopy equivalent maps of com-
plexes. Then f and f ′ induce the same maps on cohomology.

Proof. Step 1: Let g := f − f ′. It would suffice to prove that g induces 0
on cohomology.
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Lie derivative and homotopy

CLAIM: Let f, f ′ : (C∗, d)−→ (C′∗, d) be homotopy equivalent maps of com-
plexes. Then f and f ′ induce the same maps on cohomology.

Proof. Step 1: Let g := f − f ′. It would suffice to prove that g induces 0
on cohomology.

Step 2: Let c ∈ Ci be a closed element. Then g(c) = dh(c) + hd(c) = dh(c)
exact.

REMARK: Let v be a vector field, and Liev : Λ∗M −→ Λ∗M be the corre-
sponding Lie derivative. Then Liev commutes with the de Rham differ-
ential, and acts trivially on the de Rham cohomology.

Proof: Liev = ivd+ div maps closed forms to exact.

COROLLARY: Let Vt, t ∈ [a, b] be a flow of diffeomorphisms on a manifold
M . Then V ∗b (the pullback) acts on cohomology the same way as V ∗a .

Proof: Since
dV ∗t
dt (η) = LieXt(η), it acts trivially on cohomology. Then V ∗b −

V ∗a (η) =
∫ b
a LieXt(η) is exact for any closed η. Therefore, V ∗b (η) − V ∗a (η) is

exact.
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