Topologia das Variedades

Cohomology, lecture 3: the Lie derivative

Misha Verbitsky April 26, 2018

IMPA, Tuesdays and Thursdays, 10:30, Sala 224

The Grassmann algebra (reminder)

DEFINITION: Let *V* be a vector space, and $W \subset V \otimes V$ a subspace generated by vectors $x \otimes y + y \otimes x$ and $x \otimes x$, for all $x, y \in V$. A graded algebra defined by the generator space *V* and the relation space *W* is called **Grassmann algebra**, or **exterior algebra**, and denoted $\Lambda^*(V)$. The space $\Lambda^i(V)$ is called *i*-th exterior power of *V*, and the multiplication in $\Lambda^*(V)$ – **exterior multiplication**. Exterior multiplication is denoted \wedge .

EXERCISE: Prove that $\Lambda^1 V$ is isomorphic to V.

DEFINITION: An element of Grassmann algebra is called **even** if it lies in $\bigoplus_{i \in \mathbb{Z}} \Lambda^{2i}(V)$ and **odd** if it lies in $\bigoplus_{i \in \mathbb{Z}} \Lambda^{2i+1}(V)$. For an even or odd $x \in \Lambda^*(V)$, we define a number \tilde{x} called **parity** of x. The parity of x is 0 for even x and 1 for odd.

CLAIM: In Grassmann algebra, $x \wedge y = (-1)^{\tilde{x}\tilde{y}}y \wedge x$.

De Rham algebra (reminder)

DEFINITION: Let $\alpha \in (V^*)^{\otimes i}$ and $\alpha \in (V^*)^{\otimes j}$ be polylinear forms on V. Define the **tensor multiplication** $\alpha \otimes \beta$ as

 $\alpha \otimes \beta(x_1, ..., x_{i+j}) := \alpha(x_1, ..., x_j) \beta(x_{i+1}, ..., x_{i+j}).$

DEFINITION: Let $\bigotimes_k T^*M \xrightarrow{\Pi} \Lambda^k M$ be the antisymmetrization map,

$$\Pi(\alpha)(x_1,...,x_n) := \frac{1}{n!} \sum_{\sigma \in \operatorname{Sym}_n} (-1)^{\sigma} \alpha(x_{\sigma_1},x_{\sigma_2},...,x_{\sigma_n}).$$

Define the exterior multiplication $\wedge : \Lambda^i M \times \Lambda^j M \longrightarrow \Lambda^{i+j} M$ as $\alpha \wedge \beta := \Pi(\alpha \otimes \beta)$, where $\alpha \otimes \beta$ is a section $\Lambda^i M \otimes \Lambda^j M \subset \bigotimes_{i+j} T^* M$ obtained as their tensor multiplication.

REMARK: The fiber of the bundle Λ^*M at $x \in M$ is identified with the Grassmann algebra $\Lambda^*T_x^*M$. This identification is compatible with the Grassmann product.

DEFINITION: Let $t_1, ..., t_n$ be coordinate functions on \mathbb{R}^n , and $\alpha \in \Lambda^* \mathbb{R}^n$ a monomial obtained as a product of several dt_i : $\alpha = dt_{i_1} \wedge dt_{i_2} \wedge ... \wedge dt_{i_k}$ $i_1 < i_2 < ... < i_k$. Then α is called a coordinate monomial.

De Rham differential (reminder)

THEOREM: There exists a unique operator $C^{\infty}M \xrightarrow{d} \wedge^{1}M \xrightarrow{d} \wedge^{2}M \xrightarrow{d} \wedge^{3}M \xrightarrow{d} \dots$ satisfying the following properties

- 1. On functions, d is equal to the differential.
- 2. $d^2 = 0$

3. (Graded Leibnitz identity) $d(\eta \wedge \xi) = d(\eta) \wedge \xi + (-1)^{\tilde{\eta}} \eta \wedge d(\xi)$, where $\tilde{\eta} = 0$ where $\eta \in \lambda^{2i}M$ is an even form, and $\eta \in \lambda^{2i+1}M$ is odd.

DEFINITION: The operator *d* is called **de Rham differential**.

DEFINITION: A form η is called **closed** if $d\eta = 0$, **exact** if $\eta \in \text{im } d$. The group $\frac{\text{ker } d}{\text{im } d}$ is called **de Rham cohomology** of M.

Graded algebras (reminder)

DEFINITION: An algebra A is called **graded** if A is represented as $A = \bigoplus A^i$, where $i \in \mathbb{Z}$, and the product satisfies $A^i \cdot A^j \subset A^{i+j}$. Instead of $\bigoplus A^i$ one often writes A^* , where * denotes all indices together. Some of the spaces A^i can be zero, but the ground field is always in A^0 , so that it is non-empty.

EXAMPLE: The tensor algebra T(V) and the polynomial algebra $Sym^*(V)$ are obviously graded.

DEFINITION: A subspace $W \subset A^*$ of a graded algebra is called **graded** if W is a direct sum of components $W^i \subset A^i$.

EXERCISE: Let $W \subset T(V)$ be a graded subspace. Prove that then the algebra generated by V with relation space W is also graded.

M. Verbitsky

Superalgebras

DEFINITION: Let $A^* = \bigoplus_{i \in \mathbb{Z}} A^i$ be a graded algebra over a field. It is called **graded commutative**, or **supercommutative**, if $ab = (-1)^{ij}ba$ for all $a \in A^i, b \in A^j$.

EXAMPLE: Grassmann algebra Λ^*V is clearly supercommutative.

DEFINITION: Let A^* be a graded commutative algebra, and $D : A^* \longrightarrow A^{*+i}$ be a map which shifts grading by *i*. It is called a **graded derivation**, if $D(ab) = D(a)b + (-1)^{ij}aD(b)$, for each $a \in A^j$.

REMARK: If *i* is even, graded derivation is a usual derivation. If it is even, it an odd derivation.

DEFINITION: Let M be a smooth manifold, and $X \in TM$ a vector field. Consider an operation of **convolution with a vector field** $i_X : \Lambda^i M \longrightarrow \Lambda^{i-1} M$, mapping an *i*-form α to an (i-1)-form $v_1, ..., v_{i-1} \longrightarrow \alpha(X, v_1, ..., v_{i-1})$

EXERCISE: Prove that i_X is an odd derivation.

Supercommutator

DEFINITION: Let A^* be a graded vector space, and $E : A^* \longrightarrow A^{*+i}$, $F : A^* \longrightarrow A^{*+j}$ operators shifting the grading by i, j. Define the supercommutator $\{E, F\} := EF - (-1)^{ij}FE$.

DEFINITION: An endomorphism of a graded vector space which shifts grading by i is called **even** if i is even, and **odd** otherwise.

EXERCISE: Prove that the supercommutator satisfies **graded Jacobi iden**-**tity**,

$$\{E, \{F, G\}\} = \{\{E, F\}, G\} + (-1)^{\tilde{E}\tilde{F}}\{F, \{E, G\}\}$$

where \tilde{E} and \tilde{F} are 0 if E, F are even, and 1 otherwise.

REMARK: There is a simple mnemonic rule which allows one to remember a superidentity, if you know the commutative analogue. Each time when in commutative case two letters E, F are exchanged, in supercommutative case one needs to multiply by $(-1)^{\tilde{E}\tilde{F}}$.

EXERCISE: Prove that a supercommutator of superderivations is again a superderivation.

Pullback of a differential form

DEFINITION: Let $M \xrightarrow{\varphi} N$ be a morphism of smooth manifolds, and $\alpha \in \Lambda^i N$ be a differential form. Consider an *i*-form $\varphi^* \alpha$ taking value

 $\alpha |_{\varphi(m)} (D_{\varphi}(x_1), ... D_{\varphi}(x_i))$

on $x_1, ..., x_i \in T_m M$. It is called **the pullback of** α . If $M \xrightarrow{\varphi} N$ is a closed embedding, the form $\varphi^* \alpha$ is called **the restriction** of α to $M \hookrightarrow N$.

LEMMA: (*) Let $\Psi_1, \Psi_2 : \Lambda^* N \longrightarrow \Lambda^* M$ be two maps which satisfy graded Leibnitz identity, supercommutes with de Rham differential, and satisfy $\Psi_1|_{C^{\infty}M} = \Psi_2|_{C^{\infty}M}$. Then $\Psi_1 = \Psi_2$.

Proof: The algebra $\Lambda^* M$ is generated multiplicatively by $C^{\infty} M$ and $d(C^{\infty} M)$; restrictions of Ψ_i to these two spaces are equal.

CLAIM: Pullback commutes with the de Rham differential.

Proof: Let $d_1, d_2 : \Lambda^* N \longrightarrow \Lambda^{*+1} M$ be the maps $d_1 = \varphi^* \circ d$ and $d_2 = d \circ \varphi^*$. **These maps satisfy the Leibnitz identity, and they are equal on** $C^{\infty}M$. The super-commutator $\delta := \{d_i, d\}$ is equal to $d \circ \varphi^* \circ d$, it commutes with d, and equal 0 on functions. By Lemma (*), $\delta = 0$. Then d_i supercommutes with d. Applying Lemma (*) again, we obtain that $d_1 = d_2$.

Lie derivative

DEFINITION: Let *B* be a smooth manifold, and $v \in TM$ a vector field. An endomorphism $\text{Lie}_v : \Lambda^*M \longrightarrow \Lambda^*M$, preserving the grading is called **a Lie derivative along** *v* if it satisfies the following conditions.

- (1) On functions Lie_v is equal to a derivative along v. (2) $[\text{Lie}_v, d] = 0$.
- (3) Lie $_v$ is a derivation of the de Rham algebra.

REMARK: The algebra $\Lambda^*(M)$ is generated by $C^{\infty}M = \Lambda^0(M)$ and $d(C^{\infty}M)$. The restriction $\operatorname{Lie}_v|_{C^{\infty}M}$ is determined by the first axiom. On $d(C^{\infty}M)$ is also determined because $\operatorname{Lie}_v(df) = d(\operatorname{Lie}_v f)$. Therefore, Lie_v is uniquely defined by these axioms.

EXERCISE: Prove that $\{d, \{d, E\}\} = 0$ for each $E \in End(\Lambda^*M)$.

THEOREM: (Cartan's formula) Let i_v be a convolution with a vector field, $i_v(\eta) = \eta(v, \cdot, \cdot, ..., \cdot)$ Then $\{d, i_v\}$ is equal to the Lie derivative along v.

Proof: $\{d, \{d, i_v\}\} = 0$ by the lemma above. A supercommutator of two graded derivations is a graded derivation. Finally, $\{d, i_v\}$ acts on functions as $i_v(df) = \langle v, df \rangle$.

Cartan's magic formula: $d \circ i_x + i_x \circ d = \text{Lie}_x$.

Élie Cartan? (Robert Bryant and Dick Palais Mathoverflow) Henri Cartan? (S.S. Chern: Lectures on differential geometry)

Flow of diffeomorphisms

DEFINITION: Let $f : M \times [a, b] \longrightarrow M$ be a smooth map such that for all $t \in [a, b]$ the restriction $f_t := f|_{M \times \{t\}} : M \longrightarrow M$ is a diffeomorphism. Then f is called a flow of diffeomorphisms.

CLAIM: Let V_t be a flow of diffeomorphisms, $f \in C^{\infty}M$, and $V_t^*(f)(x) := f(V_t(x))$. Consider the map $\frac{d}{dt}V_t|_{t=c}$: $C^{\infty}M \longrightarrow C^{\infty}M$, with $\frac{d}{dt}V_t|_{t=c}(f) = (V_c^{-1})^*\frac{dV_t}{dt}|_{t=c}f$. Then $f \longrightarrow (V_t^{-1})^*\frac{d}{dt}V_t^*f$ is a derivation (that is, a vector field).

Proof:
$$\frac{d}{dt}V_t^*(fg) = V_t^*(f)\frac{d}{dt}V_t^*g + \frac{d}{dt}V_t^*fV_t^*(g)$$
 by the Leignitz rule, giving $(V_t^{-1})^*\frac{d}{dt}V_t^*(fg) = f(V_t^{-1})^*\frac{d}{dt}V_t^*g + g(V_t^{-1})^*\frac{d}{dt}V_t^*f.$ ■

DEFINITION: The vector field $\frac{d}{dt}V_t|_{t=c}$ is called **the vector field tangent** to a flow of diffeomorphisms V_t at t = c.

CLAIM: Let V_t be a flow of diffeomorphisms and X_t the corresponding vector field. Then for any $\eta \in \Lambda^* M$, one has $\frac{d}{dt}V_t^*(\eta) = \text{Lie}_{X_t}(\eta)$.

Proof: The operators $\frac{d}{dt}V_t^*$ and Lie_{X_t} are equal on functions, satisfy the Leibitz identity and commute with d.

Flow of diffeomorphisms obtained from vector fields

EXERCISE: Let M be a compact manifold, and $\Psi : C^{\infty}M \longrightarrow C^{\infty}M$ is a ring automorphism. Prove that Ψ is induced by an action of a diffeomorphism of M.

THEOREM: Let M be a compact manifold, and $X_t \in TM$ a family of vector fields smoothly depending on $t \in [0, a]$. Then there exists a unique diffeomorphism flow V_t , $t \in [0, a]$, such that $V_0 = \text{Id}$ and $\frac{d}{dt}V_t^* = X_t$.

Proof. Step 1: Given $f \in C^{\infty}M$, we can solve an equation $\frac{d}{dt}W_t(f) = \text{Lie}_{X_t}(f)$ (here $\text{Lie}_{X_t}(f)$ denotes the derivative along the vector field). The solution $W_t(f)$ exists for all $t \in [0, x]$ and is unique by Peano theorem on existence and uniqueness of solutions of ODE,

Step 2: Since

$$\frac{d}{dt}W_t(fg) = \operatorname{Lie}_{X_t}(f)g + \operatorname{Lie}_{X_t}(g)f = \frac{d}{dt}(W_t(f)W_t(g)),$$

 W_t is multiplicative. Also, it is invertible. Applying the previous exercise, we obtain that W_t is a diffeomorphism.

For another proof see Chapter 5 of Arnold V.I., Ordinary Differential Equations

M. Verbitsky

Flow of diffeomorphisms from vector fields on maifolds with boundary

REMARK: The same result holds for compact manifolds with boundary if the vector field is tangent to the boundary. The proof is the same.

REMARK: The same result holds if *M* is a complete Riemannian manifold and X_t is *C*-Lipschitz for all *t*, that is, satisfies $||X_t|_x - |X_t|_y| \leq Cd(x, y)$. It also follows from the Peano theorem.

Let M be a compact manifold with boundary ∂M , and $X_t \in TM$ a family of vector fields smoothly depending on $t \in [0, a]$. Suppose that $X_t|_{\partial M}$ is pointed inside, and not outside. We can embed M to $M_1 = M \cup \partial M \times [0, 1]$ obtained by gluing $\partial M \subset M$ to $\partial M \times \{0\} \subset \partial M \times [0, 1]$ and extend X_t to a vector field (also denoted by X_t) on M_1 , tangent to ∂M_1 on the boundary ∂M_1 . Applying the previous theorem, and using the fact that the phase trajectories of X_t cross $\partial M \subset M_1$ in one direction, we obtain the following theorem.

THEOREM: Let M be a compact manifold with boundary, and $X_t \in TM$ a family of vector fields smoothly depending on $t \in [0, a]$. Suppose that $X_t|_{\partial M}$ points inside M. Then there exists a unique family of smooth embeddings $V_t \colon M \longrightarrow M$, $t \in [0, a]$, such that $\frac{d}{dt}V_t^* = X_t$ and $V_0 = \text{Id.}$

Lie derivative and a flow of diffeomorphisms

DEFINITION: Let v_t be a vector field on M, smoothly depending on the "time parameter" $t \in [a, b]$, and $V : M \times [a, b] \longrightarrow M$ a flow of diffeomorphisms which satisfies $\frac{d}{dt}V_t = v_t$ for each $t \in [a, b]$, and $V_0 = \text{Id}$. Then V_t is called **an exponent of** v_t .

CLAIM: Exponent of a vector field is unique; it exists when M is compact. This statement is called "**Picard-Lindelöf theorem**" or "**uniqueness and existence of solutions of ordinary differential equations**".

PROPOSITION: Let v_t be a time-dependent vector field, $t \in [a, b]$, and V_t its exponent. For any $\alpha \in \Lambda^* M$, consider $V_t^* \alpha$ as a $\Lambda^* M$ -valued function of t. **Then** $\operatorname{Lie}_{v_0}(\alpha) = \frac{d}{dt}|_{t=0}(V_t^* \alpha)$.

Proof: By definition of differential, $\operatorname{Lie}_{v_0} f = \langle df, v_0 \rangle$, hence $\operatorname{Lie}_{v_0} f = \frac{d}{dt}|_{t=0} V_t^*(f)$. The operator Lie_{v_0} commutes with de Rham differential, because $\operatorname{Lie}_v = i_v d + di_v$. The map $\frac{d}{dt} V_t$ commutes with de Rham differential, because it is a derivative of a pullback. Now Lemma (*) is applied to show that $\operatorname{Lie}_{v_0} \alpha = \frac{d}{dt}|_{t=0}(V_t^*\alpha)$.

Homotopy operators

DEFINITION: A complex is a sequence of vector spaces and homomorphisms ... $\xrightarrow{d} C_{i-1} \xrightarrow{d} C_i \xrightarrow{d} C_{i+1} \xrightarrow{d} ...$ satisfying $d^2 = 0$. Homomorphism $(C_*, d) \longrightarrow (C'_*, d)$ of complexes is a sequence of homomorphism $C_i \longrightarrow C'_i$ commuting with the differentials.

DEFINITION: An element $c \in C_i$ is called **closed** if $c \in \ker d$ and **exact** if $c \in \operatorname{im} d$. Cohomology of a complex is a quotient $\frac{\ker d}{\operatorname{im} d}$.

REMARK: A homomorphism of complexes induces a natural homomorphism of cohomology groups.

DEFINITION: Let (C_*, d) , (C'_*, d) be a complex. Homotopy is a sequence of maps $h : C_* \longrightarrow C'_{*-1}$. Two homomorphisms $f, g : (C_*, d) \longrightarrow (C'_*, d)$ are called homotopy equivalent if $f - g = \{h, d\}$ for some homotopy operator h.

CLAIM: Let $f, f' : (C_*, d) \longrightarrow (C'_*, d)$ be homotopy equivalent maps of complexes. Then f and f' induce the same maps on cohomology.

Proof. Step 1: Let g := f - f'. It would suffice to prove that g induces 0 on cohomology.

Lie derivative and homotopy

CLAIM: Let $f, f' : (C_*, d) \longrightarrow (C'_*, d)$ be homotopy equivalent maps of complexes. Then f and f' induce the same maps on cohomology.

Proof. Step 1: Let g := f - f'. It would suffice to prove that g induces 0 on cohomology.

Step 2: Let $c \in C_i$ be a closed element. Then g(c) = dh(c) + hd(c) = dh(c) exact.

REMARK: Let v be a vector field, and $\text{Lie}_v : \Lambda^* M \longrightarrow \Lambda^* M$ be the corresponding Lie derivative. Then Lie_v commutes with the de Rham differential, and acts trivially on the de Rham cohomology.

Proof: Lie_v = $i_v d + di_v$ maps closed forms to exact.

COROLLARY: Let V_t , $t \in [a, b]$ be a flow of diffeomorphisms on a manifold M. Then V_b^* (the pullback) acts on cohomology the same way as V_a^* .

Proof: Since $\frac{dV_t^*}{dt}(\eta) = \text{Lie}_{X_t}(\eta)$, it acts trivially on cohomology. Then $V_b^* - V_a^*(\eta) = \int_a^b \text{Lie}_{X_t}(\eta)$ is exact for any closed η . Therefore, $V_b^*(\eta) - V_a^*(\eta)$ is exact.