Topologia das Variedades

Cohomology, lecture 4: de Rham cohomology of a sphere

Misha Verbitsky May 3, 2018

IMPA, Tuesdays and Thursdays, 10:30, Sala 224

The Grassmann algebra (reminder)

DEFINITION: Let *V* be a vector space, and $W \subset V \otimes V$ a subspace generated by vectors $x \otimes y + y \otimes x$ and $x \otimes x$, for all $x, y \in V$. A graded algebra defined by the generator space *V* and the relation space *W* is called **Grassmann algebra**, or **exterior algebra**, and denoted $\Lambda^*(V)$. The space $\Lambda^i(V)$ is called *i*-th exterior power of *V*, and the multiplication in $\Lambda^*(V)$ – **exterior multiplication**. Exterior multiplication is denoted \wedge .

EXERCISE: Prove that $\Lambda^1 V$ is isomorphic to V.

DEFINITION: An element of Grassmann algebra is called **even** if it lies in $\bigoplus_{i \in \mathbb{Z}} \Lambda^{2i}(V)$ and **odd** if it lies in $\bigoplus_{i \in \mathbb{Z}} \Lambda^{2i+1}(V)$. For an even or odd $x \in \Lambda^*(V)$, we define a number \tilde{x} called **parity** of x. The parity of x is 0 for even x and 1 for odd.

CLAIM: In Grassmann algebra, $x \wedge y = (-1)^{\tilde{x}\tilde{y}}y \wedge x$.

De Rham algebra (reminder)

DEFINITION: Let $\alpha \in (V^*)^{\otimes i}$ and $\alpha \in (V^*)^{\otimes j}$ be polylinear forms on V. Define the **tensor multiplication** $\alpha \otimes \beta$ as

 $\alpha \otimes \beta(x_1, ..., x_{i+j}) := \alpha(x_1, ..., x_j) \beta(x_{i+1}, ..., x_{i+j}).$

DEFINITION: Let $\bigotimes_k T^*M \xrightarrow{\Pi} \Lambda^k M$ be the antisymmetrization map,

$$\Pi(\alpha)(x_1,...,x_n) := \frac{1}{n!} \sum_{\sigma \in \operatorname{Sym}_n} (-1)^{\sigma} \alpha(x_{\sigma_1},x_{\sigma_2},...,x_{\sigma_n}).$$

Define the exterior multiplication $\wedge : \Lambda^i M \times \Lambda^j M \longrightarrow \Lambda^{i+j} M$ as $\alpha \wedge \beta := \Pi(\alpha \otimes \beta)$, where $\alpha \otimes \beta$ is a section $\Lambda^i M \otimes \Lambda^j M \subset \bigotimes_{i+j} T^* M$ obtained as their tensor multiplication.

REMARK: The fiber of the bundle Λ^*M at $x \in M$ is identified with the Grassmann algebra $\Lambda^*T_x^*M$. This identification is compatible with the Grassmann product.

DEFINITION: Let $t_1, ..., t_n$ be coordinate functions on \mathbb{R}^n , and $\alpha \in \Lambda^* \mathbb{R}^n$ a monomial obtained as a product of several dt_i : $\alpha = dt_{i_1} \wedge dt_{i_2} \wedge ... \wedge dt_{i_k}$ $i_1 < i_2 < ... < i_k$. Then α is called a coordinate monomial.

De Rham differential (reminder)

THEOREM: There exists a unique operator $C^{\infty}M \xrightarrow{d} \wedge^{1}M \xrightarrow{d} \wedge^{2}M \xrightarrow{d} \wedge^{3}M \xrightarrow{d} \dots$ satisfying the following properties

- 1. On functions, d is equal to the differential.
- 2. $d^2 = 0$

3. (Graded Leibnitz identity) $d(\eta \wedge \xi) = d(\eta) \wedge \xi + (-1)^{\tilde{\eta}} \eta \wedge d(\xi)$, where $\tilde{\eta} = 0$ where $\eta \in \lambda^{2i}M$ is an even form, and $\eta \in \lambda^{2i+1}M$ is odd.

DEFINITION: The operator *d* is called **de Rham differential**.

DEFINITION: A form η is called **closed** if $d\eta = 0$, **exact** if $\eta \in \text{im } d$. The group $\frac{\text{ker } d}{\text{im } d}$ is called **de Rham cohomology** of M.

Pullback of a differential form (reminder)

DEFINITION: Let $M \xrightarrow{\varphi} N$ be a morphism of smooth manifolds, and $\alpha \in \Lambda^i N$ be a differential form. Consider an *i*-form $\varphi^* \alpha$ taking value

$$\alpha |_{\varphi(m)} (D_{\varphi}(x_1), ... D_{\varphi}(x_i))$$

on $x_1, ..., x_i \in T_m M$. It is called **the pullback of** α . If $M \xrightarrow{\varphi} N$ is a closed embedding, the form $\varphi^* \alpha$ is called **the restriction** of α to $M \hookrightarrow N$.

LEMMA: (*) Let $\Psi_1, \Psi_2 : \Lambda^* N \longrightarrow \Lambda^* M$ be two maps which satisfy graded Leibnitz identity, supercommutes with de Rham differential, and satisfy $\Psi_1|_{C^{\infty}M} = \Psi_2|_{C^{\infty}M}$. Then $\Psi_1 = \Psi_2$.

Proof: The algebra $\Lambda^* M$ is generated multiplicatively by $C^{\infty} M$ and $d(C^{\infty} M)$; restrictions of Ψ_i to these two spaces are equal.

CLAIM: Pullback commutes with the de Rham differential.

Proof: Let $d_1, d_2 : \Lambda^* N \longrightarrow \Lambda^{*+1} M$ be the maps $d_1 = \varphi^* \circ d$ and $d_2 = d \circ \varphi^*$. **These maps satisfy the Leibnitz identity, and they are equal on** $C^{\infty}M$. The super-commutator $\delta := \{d_i, d\}$ is equal to $d \circ \varphi^* \circ d$, it commutes with d, and equal 0 on functions. By Lemma (*), $\delta = 0$. Then d_i supercommutes with d. Applying Lemma (*) again, we obtain that $d_1 = d_2$.

Lie derivative (reminder)

DEFINITION: Let *B* be a smooth manifold, and $v \in TM$ a vector field. An endomorphism $\text{Lie}_v : \Lambda^*M \longrightarrow \Lambda^*M$, preserving the grading is called **a Lie** derivative along *v* if it satisfies the following conditions.

- (1) On functions Lie_v is equal to a derivative along v. (2) $[\text{Lie}_v, d] = 0$.
- (3) Lie $_v$ is a derivation of the de Rham algebra.

REMARK: The algebra $\Lambda^*(M)$ is generated by $C^{\infty}M = \Lambda^0(M)$ and $d(C^{\infty}M)$. The restriction $\operatorname{Lie}_v|_{C^{\infty}M}$ is determined by the first axiom. On $d(C^{\infty}M)$ is also determined because $\operatorname{Lie}_v(df) = d(\operatorname{Lie}_v f)$. Therefore, Lie_v is uniquely defined by these axioms.

THEOREM: (Cartan's formula) Let i_v be a convolution with a vector field, $i_v(\eta) = \eta(v, \cdot, \cdot, ..., \cdot)$ Then $\{d, i_v\}$ is equal to the Lie derivative along v.

Flow of diffeomorphisms (reminder)

DEFINITION: Let $f : M \times [a,b] \longrightarrow M$ be a smooth map such that for all $t \in [a,b]$ the restriction $f_t := f|_{M \times \{t\}} : M \longrightarrow M$ is a diffeomorphism. Then f is called a flow of diffeomorphisms.

CLAIM: Let V_t be a flow of diffeomorphisms, $f \in C^{\infty}M$, and $V_t^*(f)(x) := f(V_t(x))$. Consider the map $\frac{d}{dt}V_t|_{t=c}$: $C^{\infty}M \longrightarrow C^{\infty}M$, with $\frac{d}{dt}V_t|_{t=c}(f) = (V_c^{-1})^*\frac{dV_t}{dt}|_{t=c}f$. Then $f \longrightarrow (V_t^{-1})^*\frac{d}{dt}V_t^*f$ is a derivation (that is, a vector field).

THEOREM: Let M be a compact manifold, and $X_t \in TM$ a family of vector fields smoothly depending on $t \in [0, a]$. Then there exists a unique diffeomorphism flow V_t , $t \in [0, a]$, such that $V_0 = \text{Id}$ and $\frac{d}{dt}V_t^* = X_t$.

Lie derivative and a flow of diffeomorphisms (reminder)

DEFINITION: Let v_t be a vector field on M, smoothly depending on the "time parameter" $t \in [a, b]$, and $V \colon M \times [a, b] \longrightarrow M$ a flow of diffeomorphisms which satisfies $\frac{d}{dt}V_t = v_t$ for each $t \in [a, b]$, and $V_0 = \text{Id}$. Then V_t is called **an exponent of** v_t .

CLAIM: Exponent of a vector field is unique; it exists when *M* is compact. This statement is called "**Picard-Lindelöf theorem**" or "**uniqueness and existence of solutions of ordinary differential equations**".

PROPOSITION: Let v_t be a time-dependent vector field, $t \in [a, b]$, and V_t its exponent. For any $\alpha \in \Lambda^* M$, consider $V_t^* \alpha$ as a $\Lambda^* M$ -valued function of t. **Then** $\operatorname{Lie}_{v_t}(\alpha) = (V_t^{-1})^* \frac{d}{dt}(V_t^* \alpha)$.

Lie derivative and cohomology

CLAIM: Let v be a vector field, and $\text{Lie}_v : \Lambda^* M \longrightarrow \Lambda^* M$ be the corresponding Lie derivative. Then Lie_v commutes with the de Rham differential, and acts trivially on the de Rham cohomology.

Proof: Lie_v = $i_v d + di_v$ maps closed forms to exact.

COROLLARY: Let V_t , $t \in [a, b]$ be a flow of diffeomorphisms on a manifold M. Then the pullback map V_b^* acts on cohomology the same way as V_a^* .

Proof: Since $(V_t^{-1})^* \frac{dV_t^*}{dt}(\eta) = \operatorname{Lie}_{X_t}(\eta)$, this map it acts trivially on cohomology. Then $V_b^* - V_a^*(\eta) = \int_a^b V_t^* \operatorname{Lie}_{X_t}(\eta)$ is exact for any closed η . Therefore, $V_b^*(\eta) - V_a^*(\eta)$ is exact.

Poincaré lemma

DEFINITION: An open subset $U \subset \mathbb{R}^n$ is called **starlike** if for any $x \in U$ the interval [0, x] belongs to U.

THEOREM: (Poicaré lemma) Let $U \subset \mathbb{R}^n$ be a starlike subset. Then $H^i(U) = 0$ for i > 0.

Proof: Consider the map $V_t : U \longrightarrow U$ mapping x to tx, where $t \in [0, 1]$. Then the map $\eta \longrightarrow (V_t^{-1})^* \frac{dV_t}{dt}(\eta)$ commutes with d and maps closed forms to exact, and hence acts trivially on cohomology. **Therefore**, $V_1^* - V_0^* = \int_0^1 (V_t^{-1})^* \frac{dV_t}{dt}$ **also acts trivially on cohomology.** However, V_0^* maps any $\eta \in \Lambda^i(M)$, i > 0to 0.

Homogeneous spaces

DEFINITION: A Lie group is a smooth manifold equipped with a group structure such that the group operations are smooth. Lie group G acts on a manifold M if the group action is given by the smooth map $G \times M \longrightarrow M$.

DEFINITION: Let *G* be a Lie group acting on a manifold *M* transitively. Then *M* is called **a homogeneous space**. For any $x \in M$ the subgroup $St_x(G) = \{g \in G \mid g(x) = x\}$ is called **stabilizer of a point** *x*, or **isotropy subgroup**.

CLAIM: For any homogeneous manifold M with transitive action of G, one has M = G/H, where $H = St_x(G)$ is an isotropy subgroup.

Proof: The natural surjective map $G \longrightarrow M$ putting g to g(x) identifies M with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then $St_x(G)^g = St_y(G)$: all the isotropy groups are conjugate.

M. Verbitsky

Isotropy representation

DEFINITION: Let M = G/H be a homogeneous space, $x \in M$ and $St_x(G)$ the corresponding stabilizer group. The **isotropy representation** is the natural action of $St_x(G)$ on T_xM .

DEFINITION: A tensor Φ on a homogeneous manifold M = G/H is called **invariant** if it is mapped to itself by all diffeomorphisms which come from $g \in G$.

REMARK: Let Φ_x be an isotropy invariant tensor on $St_x(G)$. For any $y \in M$ obtained as y = g(x), consider the tensor Φ_y on T_yM obtained as $\Phi_y := g(\Phi)$. The choice of g is not unique, however, for another $g' \in G$ which satisfies g'(x) = y, we have g = g'h where $h \in St_x(G)$. Since Φ is h-invariant, the tensor Φ_y is independent from the choice of g.

We proved

THEOREM: Homogeneous tensors on M = G/H are in bijective correspondence with isotropy invariant tensors on T_xM , for any $x \in M$.

Cohomology of homogeneous spaces

CLAIM: Let M = G/H be a homogeneous space, with G connected and compact. Denote by $\Lambda^*(M)^G$ the space of G-invariant differential forms. Then **the natural morphism of complexes**

induces an isomorphism on cohomology.

Proof: Consider the averaging map $\eta \xrightarrow{A_V} \frac{\int_{g \in G} g^*(\eta) dg}{\operatorname{Vol}(G)}$ where the volume and the integral is taken with respect to a *G*-invariant measure *dG* on *G*. Since g^* commutes with the de Rham differential *d*, the map Av also commutes with *d*. Since $g^*(\eta)$ is cohomologous to η as shown above, the form $\operatorname{Av}(\eta)$ is cohomologous to η . Therefore, ι is invertible on cohomology: $\iota \circ \operatorname{Av} = \operatorname{Id}$.

Special orthogonal group SO(n)

DEFINITION: Orthogonal group O(n) is the group of linear isometries of \mathbb{R}^n . **Special orthogonal group**, denoted SO(n), is the group of orthogonal matrices $A \in \text{End}(\mathbb{R}^n)$ of determinant 1.

REMARK: Clearly, SO(n) acts on (n-1)-dimensional sphere S^{n-1} transitively.

The special orthogonal group SO(n) is conected

THEOREM: The group SO(n) is connected.

Proof: Each element $A \in SO(n)$ can be represented in a certain basis by a block matrix,

$$gAg^{-1} = \begin{pmatrix} A_{\alpha_1} & & 0 \\ & A_{\alpha_2} & & \\ & & \ddots & \\ 0 & & & A_{\alpha_k} \end{pmatrix}$$

where $A_{\alpha_1} \in \text{End}(\mathbb{R}^2)$ are rotation matrices,

$$A_{\alpha_i} = \begin{pmatrix} \cos \alpha_i & \sin \alpha_i \\ -\sin \alpha_i & \cos \alpha_i \end{pmatrix}$$

Then

$$A_t := g^{-1} \begin{pmatrix} A_{t\alpha_1} & & 0 \\ & A_{t\alpha_2} & & \\ & & \ddots & \\ 0 & & & A_{t\alpha_k} \end{pmatrix} g$$

is a homotopy connecting $A_t = A$ to $A_0 = Id$.

COROLLARY: Cohomology of a sphere S^n are equal to the cohomology of the algebra of SO(n+1)-invariant differential forms.

Proof: We have just shown that SO(n + 1) is connected; its compactness is left as an exercise. \blacksquare

Special orthopgonal group SO(n) acting on a sphere

THEOREM: Let α be an SO(n+1)-invariant p-form on S^n . Then p = 0 or p = n and α is either a constant or a constant times the Riemannian volume form.

Proof. Step 1: Using induction on n, we can assume that the statement of the theorem is true for S^k , k < n (it is clearly true for S^1). Since O(k + 1) acts on S^k in non-orientable way, all O(k + 1)-invariant forms on S^k are constant 0-forms.

Step 2: Let $S^k \subsetneq S^n$ be a sphere associated with a k+1-dimensional subspace $V = \mathbb{R}^{k+1} \subset W = \mathbb{R}^{n+1}$. Clearly, the stabilizer of S^k in SO(n+1) acts on S^k as a full orthogonal group O(k+1). Therefore, any SO(n+1)-invariant form restricted to $S^k = S^n \cap V$ gives a constant 0-form, for any k+1-dimensional subspace $V \subset W$.

Step 3: Suppose that there exists a non-zero SO(n+1)-invariant k-form α on S^n , with 0 < k < n. Then α restricted to S^k is 0, for any sphere $\mathfrak{S} = S^k \subset S^n$ obtained as $\mathfrak{S} = S^n \cap V$. However, there is such a sphere tangent to any k-dimensional subspace in $T_x S^n$ for each $x \in S^n$. Therefore, $\alpha(v_1, ..., v_k) = 0$ for any $v_1, ..., v_k \in T_x S^n$.

Cohomology of S^n

THEOREM: De Rham cohomology $H^p(S^n)$ of the sphere S^n are 1dimensional for p = 0, n and 0-dimensional otherwise.

Proof. Step 1: De Rham cohomology $H^0(X) = \mathbb{R}$ for any connected manifold M. Indeed, $\ker(d) \cap \Lambda^0(X)$ is the space of constant functions.

Step 2: De Rham cohomology $H^p(S^n)$ are represented by SO(n+1)-invariant forms, hence they vanish for 0 . The space of <math>SO(n)-invariant *n*-forms is 1-dimensional, because all such forms are proportional to the space of Riemannian volume forms. These forms are not cohomologous to 0 because the space $\Lambda^{n-1}(S^n)^{SO(n+1)}$ is trivial, and one can compute cohomology of S^n by taking the cohomology of the complex of SO(n+1)-invariant forms.