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The Grassmann algebra (reminder)

DEFINITION: Let V be a vector space, and W ⊂ V ⊗ V a subspace gen-

erated by vectors x ⊗ y + y ⊗ x and x ⊗ x, for all x, y ∈ V . A graded algebra

defined by the generator space V and the relation space W is called Grass-

mann algebra, or exterior algebra, and denoted Λ∗(V ). The space Λi(V ) is

called i-th exterior power of V , and the multiplication in Λ∗(V ) – exterior

multiplication. Exterior multiplication is denoted ∧.

EXERCISE: Prove that Λ1V is isomorphic to V .

DEFINITION: An element of Grassmann algebra is called even if it lies in⊕
i∈Z Λ2i(V ) and odd if it lies in

⊕
i∈Z Λ2i+1(V ). For an even or odd x ∈ Λ∗(V ),

we define a number x̃ called parity of x. The parity of x is 0 for even x and

1 for odd.

CLAIM: In Grassmann algebra, x ∧ y = (−1)x̃ỹy ∧ x.
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De Rham algebra (reminder)

DEFINITION: Let α ∈ (V ∗)⊗i and α ∈ (V ∗)⊗j be polylinear forms on V .

Define the tensor multiplication α⊗ β as

α⊗ β(x1, ..., xi+j) := α(x1, ..., xj)β(xi+1, ..., xi+j).

DEFINITION: Let
⊗
k T
∗M Π−→ ΛkM be the antisymmetrization map,

Π(α)(x1, ..., xn) :=
1

n!

∑
σ∈Symn

(−1)σα(xσ1, xσ2, ..., xσn).

Define the exterior multiplication ∧ : ΛiM × ΛjM −→ Λi+jM as α ∧ β :=

Π(α⊗ β), where α⊗ β is a section ΛiM ⊗ ΛjM ⊂
⊗
i+j T

∗M obtained as their

tensor multiplication.

REMARK: The fiber of the bundle Λ∗M at x ∈ M is identified with the

Grassmann algebra Λ∗T ∗xM. This identification is compatible with the Grass-

mann product.

DEFINITION: Let t1, ..., tn be coordinate functions on Rn, and α ∈ Λ∗Rn

a monomial obtained as a product of several dti: α = dti1 ∧ dti2 ∧ ... ∧ dtik
i1 < i2 < ... < ik. Then α is called a coordinate monomial.
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De Rham differential (reminder)

THEOREM: There exists a unique operator C∞M d−→ Λ1M
d−→ Λ2M

d−→
Λ3M

d−→ ... satisfying the following properties

1. On functions, d is equal to the differential.

2. d2 = 0

3. (Graded Leibnitz identity) d(η∧ξ) = d(η)∧ξ+(−1)η̃η∧d(ξ), where

η̃ = 0 where η ∈ λ2iM is an even form, and η ∈ λ2i+1M is odd.

DEFINITION: The operator d is called de Rham differential.

DEFINITION: A form η is called closed if dη = 0, exact if η ∈ im d. The

group ker d
im d is called de Rham cohomology of M .
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Pullback of a differential form (reminder)

DEFINITION: Let M
ϕ−→ N be a morphism of smooth manifolds, and

α ∈ ΛiN be a differential form. Consider an i-form ϕ∗α taking value

α
∣∣∣ϕ(m)(Dϕ(x1), ...Dϕ(xi))

on x1, ..., xi ∈ TmM . It is called the pullback of α. If M
ϕ−→ N is a closed

embedding, the form ϕ∗α is called the restriction of α to M ↪→ N .

LEMMA: (*) Let Ψ1,Ψ2 : Λ∗N −→ Λ∗M be two maps which satisfy graded
Leibnitz identity, supercommutes with de Rham differential, and satisfy
Ψ1|C∞M = Ψ2|C∞M . Then Ψ1 = Ψ2.

Proof: The algebra Λ∗M is generated multiplicatively by C∞M and d(C∞M);
restrictions of Ψi to these two spaces are equal.

CLAIM: Pullback commutes with the de Rham differential.

Proof: Let d1, d2 : Λ∗N −→ Λ∗+1M be the maps d1 = ϕ∗ ◦ d and d2 = d ◦ ϕ∗.
These maps satisfy the Leibnitz identity, and they are equal on C∞M.
The super-commutator δ := {di, d} is equal to d ◦ ϕ∗ ◦ d, it commutes with d,
and equal 0 on functions. By Lemma (*), δ = 0. Then di supercommutes
with d. Applying Lemma (*) again, we obtain that d1 = d2.
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Lie derivative (reminder)

DEFINITION: Let B be a smooth manifold, and v ∈ TM a vector field. An

endomorphism Liev : Λ∗M −→ Λ∗M , preserving the grading is called a Lie

derivative along v if it satisfies the following conditions.

(1) On functions Liev is equal to a derivative along v. (2) [Liev, d] = 0.

(3) Liev is a derivation of the de Rham algebra.

REMARK: The algebra Λ∗(M) is generated by C∞M = Λ0(M) and d(C∞M).

The restriction Liev |C∞M is determined by the first axiom. On d(C∞M) is

also determined because Liev(df) = d(Liev f). Therefore, Liev is uniquely

defined by these axioms.

THEOREM: (Cartan’s formula) Let iv be a convolution with a vector field,

iv(η) = η(v, ·, ·, ..., ·) Then {d, iv} is equal to the Lie derivative along v.
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Flow of diffeomorphisms (reminder)

DEFINITION: Let f : M × [a, b]−→M be a smooth map such that for all

t ∈ [a, b] the restriction ft := f
∣∣∣M×{t} : M −→M is a diffeomorphism. Then f

is called a flow of diffeomorphisms.

CLAIM: Let Vt be a flow of diffeomorphisms, f ∈ C∞M , and V ∗t (f)(x) :=

f(Vt(x)). Consider the map d
dtVt|t=c : C∞M −→ C∞M , with d

dtVt|t=c(f) =

(V −1
c )∗dVtdt |t=cf . Then f −→ (V −1

t )∗ ddtV
∗
t f is a derivation (that is, a vector

field).

THEOREM: Let M be a compact manifold, and Xt ∈ TM a family of

vector fields smoothly depending on t ∈ [0, a]. Then there exists a unique

diffeomorphism flow Vt, t ∈ [0, a], such that V0 = Id and d
dtV
∗
t = Xt.
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Lie derivative and a flow of diffeomorphisms (reminder)

DEFINITION: Let vt be a vector field on M , smoothly depending on the

“time parameter” t ∈ [a, b], and V : M× [a, b]−→M a flow of diffeomorphisms

which satisfies d
dtVt = vt for each t ∈ [a, b], and V0 = Id. Then Vt is called an

exponent of vt.

CLAIM: Exponent of a vector field is unique; it exists when M is compact.

This statement is called “Picard-Lindelöf theorem” or “uniqueness and

existence of solutions of ordinary differential equations”.

PROPOSITION: Let vt be a time-dependent vector field, t ∈ [a, b], and Vt
its exponent. For any α ∈ Λ∗M , consider V ∗t α as a Λ∗M-valued function of t.

Then Lievt(α) = (V −1
t )∗ ddt(V

∗
t α).
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Lie derivative and cohomology

CLAIM: Let v be a vector field, and Liev : Λ∗M −→ Λ∗M be the corresponding

Lie derivative. Then Liev commutes with the de Rham differential, and

acts trivially on the de Rham cohomology.

Proof: Liev = ivd+ div maps closed forms to exact.

COROLLARY: Let Vt, t ∈ [a, b] be a flow of diffeomorphisms on a manifold

M . Then the pullback map V ∗b acts on cohomology the same way as

V ∗a .

Proof: Since (V −1
t )∗

dV ∗t
dt (η) = LieXt(η), this map it acts trivially on cohomol-

ogy. Then V ∗b − V
∗
a (η) =

∫ b
a V
∗
t LieXt(η) is exact for any closed η. Therefore,

V ∗b (η)− V ∗a (η) is exact.
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Poincaré lemma

DEFINITION: An open subset U ⊂ Rn is called starlike if for any x ∈ U the

interval [0, x] belongs to U .

THEOREM: (Poicaré lemma) Let U ⊂ Rn be a starlike subset. Then

Hi(U) = 0 for i > 0.

Proof: Consider the map Vt : U −→ U mapping x to tx, where t ∈ [0,1]. Then

the map η −→ (V −1
t )∗dVtdt (η) commutes with d and maps closed forms to exact,

and hence acts trivially on cohomology. Therefore, V ∗1 − V
∗

0 =
∫ 1
0 (V −1

t )∗dVtdt
also acts trivially on cohomology. However, V ∗0 maps any η ∈ Λi(M), i > 0

to 0.
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Homogeneous spaces

DEFINITION: A Lie group is a smooth manifold equipped with a group

structure such that the group operations are smooth. Lie group G acts on

a manifold M if the group action is given by the smooth map G×M −→M .

DEFINITION: Let G be a Lie group acting on a manifold M transitively.

Then M is called a homogeneous space. For any x ∈ M the subgroup

Stx(G) = {g ∈ G | g(x) = x} is called stabilizer of a point x, or isotropy

subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one

has M = G/H, where H = Stx(G) is an isotropy subgroup.

Proof: The natural surjective map G−→M putting g to g(x) identifies M

with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then Stx(G)g = Sty(G): all the isotropy groups

are conjugate.
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Isotropy representation

DEFINITION: Let M = G/H be a homogeneous space, x ∈ M and Stx(G)

the corresponding stabilizer group. The isotropy representation is the nat-

ural action of Stx(G) on TxM .

DEFINITION: A tensor Φ on a homogeneous manifold M = G/H is called

invariant if it is mapped to itself by all diffeomorphisms which come from

g ∈ G.

REMARK: Let Φx be an isotropy invariant tensor on Stx(G). For any y ∈M
obtained as y = g(x), consider the tensor Φy on TyM obtained as Φy := g(Φ).

The choice of g is not unique, however, for another g′ ∈ G which satisfies

g′(x) = y, we have g = g′h where h ∈ Stx(G). Since Φ is h-invariant, the

tensor Φy is independent from the choice of g.

We proved

THEOREM: Homogeneous tensors on M = G/H are in bijective cor-

respondence with isotropy invariant tensors on TxM, for any x ∈ M .
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Cohomology of homogeneous spaces

CLAIM: Let M = G/H be a homogeneous space, with G connected and

compact. Denote by Λ∗(M)G the space of G-invariant differential forms.

Then the natural morphism of complexes

Λ0(M)G
d−→ Λ1(M)G

d−→ Λ2(M)G
d−→ ...

ι

y ι

y ι

y
Λ0(M)

d−→ Λ1(M)
d−→ Λ2(M)

d−→ ...

induces an isomorphism on cohomology.

Proof: Consider the averaging map η
Av−→

∫
g∈G g

∗(η)dg

Vol(G) where the volume and

the integral is taken with respect to a G-invariant measure dG on G. Since

g∗ commutes with the de Rham differential d, the map Av also commutes

with d. Since g∗(η) is cohomologous to η as shown above, the form Av(η)

is cohomologous to η. Therefore, ι is invertible on cohomology: ι ◦ Av =

Id,Av ◦ι = Id.
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Special orthogonal group SO(n)

DEFINITION: Orthogonal group O(n) is the group of linear isometries of

Rn. Special orthogonal group, denoted SO(n), is the group of orthogonal

matrices A ∈ End(Rn) of determinant 1.

REMARK: Clearly, SO(n) acts on (n− 1)-dimensional sphere Sn−1 tran-

sitively.
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The special orthogonal group SO(n) is conected

THEOREM: The group SO(n) is connected.
Proof: Each element A ∈ SO(n) can be represented in a certain basis by a
block matrix,

gAg−1 =


Aα1 0

Aα2

. . .
0 Aαk


where Aα1 ∈ End(R2) are rotation matrices,

Aαi =
(

cosαi sinαi
− sinαi cosαi

)
Then

At := g−1


Atα1 0

Atα2

. . .
0 Atαk

 g
is a homotopy connecting At = A to A0 = Id.

COROLLARY: Cohomology of a sphere Sn are equal to the cohomol-
ogy of the algebra of SO(n+ 1)-invariant differential forms.

Proof: We have just shown that SO(n+ 1) is connected; its compactness is
left as an exercise.
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Special orthopgonal group SO(n) acting on a sphere

THEOREM: Let α be an SO(n+ 1)-invariant p-form on Sn. Then p = 0 or
p = n and α is either a constant or a constant times the Riemannian
volume form.

Proof. Step 1: Using induction on n, we can assume that the statement of
the theorem is true for Sk, k < n (it is clearly true for S1). Since O(k + 1)
acts on Sk in non-orientable way, all O(k + 1)-invariant forms on Sk are
constant 0-forms.

Step 2: Let Sk ( Sn be a sphere associated with a k+1-dimensional subspace
V = Rk+1 ⊂W = Rn+1. Clearly, the stabilizer of Sk in SO(n+1) acts on Sk as
a full orthogonal group O(k+ 1). Therefore, any SO(n+ 1)-invariant form
restricted to Sk = Sn∩V gives a constant 0-form, for any k+1-dimensional
subspace V ⊂W .

Step 3: Suppose that there exists a non-zero SO(n+1)-invariant k-form α on
Sn, with 0 < k < n. Then α restricted to Sk is 0, for any sphere S = Sk ⊂ Sn
obtained as S = Sn ∩ V . However, there is such a sphere tangent to any
k-dimensional subspace in TxSn for each x ∈ Sn. Therefore, α(v1, ..., vk) = 0
for any v1, ..., vk ∈ TxSn.
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Cohomology of Sn

THEOREM: De Rham cohomology Hp(Sn) of the sphere Sn are 1-

dimensional for p = 0, n and 0-dimensional otherwise.

Proof. Step 1: De Rham cohomology H0(X) = R for any connected mani-

fold M . Indeed, ker(d) ∩ Λ0(X) is the space of constant functions.

Step 2: De Rham cohomology Hp(Sn) are represented by SO(n+1)-invariant

forms, hence they vanish for 0 < p < n. The space of SO(n)-invariant n-forms

is 1-dimensional, because all such forms are proportional to the space of

Riemannian volume forms. These forms are not cohomologous to 0 because

the space Λn−1(Sn)SO(n+1) is trivial, and one can compute cohomology of Sn

by taking the cohomology of the complex of SO(n+ 1)-invariant forms.

17


