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The Grassmann algebra (reminder)

DEFINITION: Let V be a vector space, and W C V ® V a subspace gen-
erated by vectors z ®y+y®x and x® x, for all x,y € V. A graded algebra
defined by the generator space V and the relation space W is called Grass-
mann algebra, or exterior algebra, and denoted A*(V). The space AY(V) is
called i-th exterior power of V, and the multiplication in A*(V) — exterior
multiplication. Exterior multiplication is denoted A.

EXERCISE: Prove that AlV is isomorphic to V.
DEFINITION: An element of Grassmann algebra is called even if it lies in
D,z NH(V) and odd if it lies in @,cz A2 T1(V). For an even or odd x € A*(V),

we define a number z called parity of x. The parity of z is O for even x and
1 for odd.

CLAIM: In Grassmann algebra, z Ay = (—1)%y A z.
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De Rham algebra (reminder)

DEFINITION: Let o € (V¥)® and a € (V*)® be polylinear forms on V.
Define the tensor multiplication a ® g as

a B(xla ceey xz—l—]) L= Oé(a?]_, sy ZCJ)B(CEZ_|_]_, ceey mz—l—])

DEFINITION: Let ®.T*M -5 A*M be the antisymmetrization map,

1

N(a)(x1,...,2n) = Z (—1)%a(xoqy; Togy s Tap)-

n: oceSym,,
Define the exterior multiplication A : A'M x ANNM — NTIM as a A B =

N(a® B), where a® B is a section A'M ® NVM C ®;4,;T*M obtained as their
tensor multiplication.

REMARK: The fiber of the bundle A*M at z € M is identified with the
Grassmann algebra A*T 7M. This identification is compatible with the Grass-
mann product.

DEFINITION: Let ¢q,...,t, be coordinate functions on R", and a € A*R"
a monomial obtained as a product of several dt;: « = dt;; Ndt, N\ ... N\di;,
11 <12 < ...< 1. T'hen « is called a coordinate monomial.
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De Rham differential (reminder)

THEOREM: There exists a unique operator C°M -4 Alp -4 A2p7 4
A3M -y . satisfying the following properties

1. On functions, d is equal to the differential.

2. d°=0

3. (Graded Leibnitz identity) d(nA&) = d(n) AE+ (=1)TyAd(E), where
ii= 0 where n € A2M is an even form, and n € \2+1)f is odd.

DEFINITION: The operator d is called de Rham differential.

DEFINITION: A form n is called closed if dn = 0, exact if n € imd. The

group ‘i(re{j is called de Rham cohomology of M.
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Pullback of a differential form (reminder)

DEFINITION: Let M -2 N be a morphism of smooth manifolds, and
a € A'N be a differential form. Consider an -form ¢*a taking value

0] p(my (Dp(x1), .. Do (7))
©

on x1,....,x; € IT;mM. It is called the pullback of a. If M — N is a closed
embedding, the form ¢*« is called the restriction of o« to M — N.

LEMMA: (*) Let W1,Ws: A*N — A*M be two maps which satisfy graded
Leibnitz identity, supercommutes with de Rham differential, and satisfy
\U1|CooM = \U2|C’°OM- Then Vi = WV,,

Proof: The algebra A*M is generated multiplicatively by C*°M and d(C*°M);
restrictions of W, to these two spaces are equal. =

CLAIM: Pullback commutes with the de Rham differential.

Proof: Let di,d> : A*N — A*T1M be the maps di = ¢*od and dy = d o ©*.
These maps satisfy the Leibnitz identity, and they are equal on C°°M.
The super-commutator § := {d;,d} is equal to do ¢* od, it commutes with d,
and equal 0 on functions. By Lemma (*), § = 0. Then d; supercommutes
with d. Applying Lemma (*) again, we obtain that d{ = d>. =
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Lie derivative (reminder)

DEFINITION: Let B be a smooth manifold, and v € T'M a vector field. An
endomorphism Liey : A*M — A*M, preserving the grading is called a Lie
derivative along v if it satisfies the following conditions.
(1) On functions Lie, is equal to a derivative along v. (2) [Liey,d] = 0.
(3) Liey is a derivation of the de Rham algebra.

REMARK: The algebra A*(M) is generated by C®°M = A°(M) and d(C>®°M).
The restriction Liey |gwps is determined by the first axiom. On d(C*°M) is
also determined because Liey(df) = d(Liey f). Therefore, Lie, is uniquely
defined by these axioms.

THEOREM: (Cartan’s formula) Let i, be a convolution with a vector field,
iv(n) =n(v,-, - ...,-) Then {d,i,} is equal to the Lie derivative along v.
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Flow of diffeomorphisms (reminder)

DEFINITION: Let f: M X [a,b] — M be a smooth map such that for all
t € [a,b] the restriction f; = f‘MX{t} . M — M is a diffeomorphism. Then f
is called a flow of diffeomorphisms.

CLAIM: Let V; be a flow of diffeomorphisms, f € C®°M, and V*(f)(x) =
f(Vi(x)). Consider the map %thtzc . C°M — C*®M, with %Vﬂt:c(f) =
(Vc_l)*%ltch. Then f—>(\/;_1)*%vt*f iIs a derivation (that is, a vector
field).

THEOREM: Let M be a compact manifold, and X; € TM a family of
vector fields smoothly depending on t € [0,a]. Then there exists a unique
diffeomorphism flow V4, t € [0,a], such that V; =1d and %V;* = X4.
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Lie derivative and a flow of diffeomorphisms (reminder)

DEFINITION: Let v+ be a vector field on M, smoothly depending on the
“time parameter” t € [a,b], and V : M X [a,b] — M a flow of diffeomorphisms
which satisfies %Vt = v for each t € [a,b], and Vy =1d. Then V4 is called an
exponent of v;.

CLAIM: Exponent of a vector field is unique; it exists when M is compact.
This statement is called “Picard-Lindelof theorem” or “uniqueness and
existence of solutions of ordinary differential equations’.

PROPOSITION: Let v4 be a time-dependent vector field, t € [a,b], and V,
its exponent. For any a € A*M, consider V,*a as a A*M-valued function of ¢.
Then Liey, (o) = (V; 1)*4(Vi*a).
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Lie derivative and cohomology

CLAIM: Let v be a vector field, and Lie, : N*M — AN*M be the corresponding
Lie derivative. Then Lie, commutes with the de Rham differential, and
acts trivially on the de Rham cohomology.

Proof: Liey = 1,d + di, maps closed forms to exact. m

COROLLARY: Let V4, t € [a,b] be a flow of diffeomorphisms on a manifold
M. Then the pullback map Vb* acts on cohomology the same way as
V.

Proof: Since (\Q‘l)*dd—?(n) = Liex,(n), this map it acts trivially on cohomol-
ogy. Then Vi* —Vi(n) = fé’ Vi*Liex,(n) is exact for any closed n. Therefore,
Vif(n) — Vi (n) is exact. m
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Poincaré lemma

DEFINITION: An open subset U C R" is called starlike if for any x € U the
interval [0, x] belongs to U.

THEOREM: (Poicaré lemma) Let U C R"™ be a starlike subset. Then
HY(U) =0 for i > 0.

Proof: Consider the map V; : U — U mapping z to txz, where t € [0,1]. Then
the map n — (Vt_l)*dvt(n) commutes with d and maps closed forms to exact,

and hence acts trivially on cohomology. Therefore, V" — Vg = fo (V- 1)*th
also acts trivially on cohomology. However, VJ maps any n € AY(M), i >0
t0 0. =
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Homogeneous spaces

DEFINITION: A Lie group is a smooth manifold equipped with a group
structure such that the group operations are smooth. Lie group G acts on
a manifold M if the group action is given by the smooth map G x M — M.

DEFINITION: Let G be a Lie group acting on a manifold M transitively.
Then M is called a homogeneous space. For any x € M the subgroup
St.(G) ={g9g€ G | g(x) =} is called stabilizer of a point z, or isotropy
subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one
has M = G/H, where H = St;(G) is an isotropy subgroup.

Proof: The natural surjective map G — M putting g to ¢g(x) identifies M
with the space of conjugacy classes G/H. =

REMARK: Let g(x) =y. Then St;(G)J9 = Sty(G): all the isotropy groups
are conjugate.
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Isotropy representation

DEFINITION: Let M = G/H be a homogeneous space, x € M and St;(G)
the corresponding stabilizer group. The isotropy representation is the nat-
ural action of St;(G) on T, M.

DEFINITION: A tensor & on a homogeneous manifold M = G/H is called
iInvariant if it is mapped to itself by all diffeomorphisms which come from

geaq.

REMARK: Let &, be an isotropy invariant tensor on St;(G). Forany ye M
obtained as y = g(z), consider the tensor &, on T, M obtained as &, = g(P).
The choice of g is not unique, however, for another ¢’ € G which satisfies
g (z) = y, we have g = ¢’h where h € St;(G). Since @ is h-invariant, the
tensor ¢, is independent from the choice of g.

We proved

THEOREM: Homogeneous tensors on M = G/H are in bijective cor-
respondence with isotropy invariant tensors on 7,.M, for any x € M.

|
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Cohomology of homogeneous spaces

CLAIM: Let M = G/H be a homogeneous space, with G connected and
compact. Denote by A*(M)C the space of G-invariant differential forms.
Then the natural morphism of complexes

AO(ME 4 AL(M)E L A2(M)E 4

| | |
AoV L ALY L A2y L

iInduces an isomorphism on cohomology.

*(n)d
Proof:. Consider the averaging map n AV> fge\%gl(g)) J where the volume and

the integral is taken with respect to a G-invariant measure dG on G. Since
g* commutes with the de Rham differential d, the map Av also commutes
with d. Since ¢g*(n) is cohomologous to n as shown above, the form Av(n)
is cohomologous to n. Therefore, ¢ is invertible on cohomology: to Av =
Id,Avor=1Id. m
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Special orthogonal group SO(n)
DEFINITION: Orthogonal group O(n) is the group of linear isometries of
R™. Special orthogonal group, denoted SO(n), is the group of orthogonal

matrices A € End(R"™) of determinant 1.

REMARK: Clearly, SO(n) acts on (n — 1)-dimensional sphere S"~1 tran-
sitively.
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The special orthogonal group SO(n) is conected

THEOREM: The group SO(n) is connected.
Proof: Each element A € SO(n) can be represented in a certain basis by a
block matrix,

where A,, € End(R?) are rotation matrices,

COS«;  Sino;

—Sino; COSq;

T hen

is @ homotopy connecting Ay = A to Apg=I1d. =

COROLLARY: Cohomology of a sphere S™ are equal to the cohomol-
ogy of the algebra of SO(n + 1)-invariant differential forms.

Proof: We have just shown that SO(n + 1) is connected; its compactness is
left as an exercise. =
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Special orthopgonal group SO(n) acting on a sphere

THEOREM: Let o be an SO(n+ 1)-invariant p-form on S™. Then p =0 or
p =n and « is either a constant or a constant times the Riemannian
volume form.

Proof. Step 1: Using induction on n, we can assume that the statement of
the theorem is true for S*, k < n (it is clearly true for S1). Since O(k + 1)
acts on S¥ in non-orientable way, all O(k 4+ 1)-invariant forms on S* are
constant O-forms.

Step 2: Let Sk C S™ be a sphere associated with a k4 1-dimensional subspace
V =Rst1 c W =R+l Clearly, the stabilizer of S¥ in SO(n+1) acts on S* as
a full orthogonal group O(k+1). Therefore, any SO(n+ 1)-invariant form
restricted to S* = S"NV gives a constant 0-form, for any k+ 1-dimensional
subspace V C WW.

Step 3: Suppose that there exists a non-zero SO(n—+1)-invariant k-form « on
S™ with 0 < k < n. Then « restricted to S*¥ is 0, for any sphere & = Sk ¢ s
obtained as & = S" N V. However, there is such a sphere tangent to any
k-dimensional subspace in T;S™ for each x € S™. Therefore, a(vqy,...,v) =0
for any vq,...,vp € T;:S". =
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Cohomology of S"

THEOREM: De Rham cohomology HP(S™) of the sphere S" are 1-
dimensional for p = 0,n and O-dimensional otherwise.

Proof. Step 1: De Rham cohomology H9(X) = R for any connected mani-
fold M. Indeed, ker(d) N AP(X) is the space of constant functions.

Step 2: De Rham cohomology HP(S") are represented by SO(n—+1)-invariant
forms, hence they vanish for 0 < p < n. The space of SO(n)-invariant n-forms
is 1-dimensional, because all such forms are proportional to the space of
Riemannian volume forms. These forms are not cohomologous to O because
the space A"—1(s7)50(n+1) js trivial, and one can compute cohomology of S”
by taking the cohomology of the complex of SO(n + 1)-invariant forms. =

17



