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Pullback of a differential form (reminder)

DEFINITION: Let M
ϕ−→ N be a morphism of smooth manifolds, and

α ∈ ΛiN be a differential form. Consider an i-form ϕ∗α taking value

α
∣∣∣ϕ(m)(Dϕ(x1), ...Dϕ(xi))

on x1, ..., xi ∈ TmM . It is called the pullback of α. If M
ϕ−→ N is a closed

embedding, the form ϕ∗α is called the restriction of α to M ↪→ N .

LEMMA: (*) Let Ψ1,Ψ2 : Λ∗N −→ Λ∗M be two maps which satisfy graded
Leibnitz identity, supercommutes with de Rham differential, and satisfy
Ψ1|C∞M = Ψ2|C∞M . Then Ψ1 = Ψ2.

Proof: The algebra Λ∗M is generated multiplicatively by C∞M and d(C∞M);
restrictions of Ψi to these two spaces are equal.

CLAIM: Pullback commutes with the de Rham differential.

Proof: Let d1, d2 : Λ∗N −→ Λ∗+1M be the maps d1 = ϕ∗ ◦ d and d2 = d ◦ ϕ∗.
These maps satisfy the Leibnitz identity, and they are equal on C∞M.
The super-commutator δ := {di, d} is equal to d ◦ ϕ∗ ◦ d, it commutes with d,
and equal 0 on functions. By Lemma (*), δ = 0. Then di supercommutes
with d. Applying Lemma (*) again, we obtain that d1 = d2.
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Lie derivative (reminder)

DEFINITION: Let B be a smooth manifold, and v ∈ TM a vector field. An

endomorphism Liev : Λ∗M −→ Λ∗M , preserving the grading is called a Lie

derivative along v if it satisfies the following conditions.

(1) On functions Liev is equal to a derivative along v. (2) [Liev, d] = 0.

(3) Liev is a derivation of the de Rham algebra.

REMARK: The algebra Λ∗(M) is generated by C∞M = Λ0(M) and d(C∞M).

The restriction Liev |C∞M is determined by the first axiom. On d(C∞M) is

also determined because Liev(df) = d(Liev f). Therefore, Liev is uniquely

defined by these axioms.

THEOREM: (Cartan’s formula) Let iv be a convolution with a vector field,

iv(η) = η(v, ·, ·, ..., ·) Then {d, iv} is equal to the Lie derivative along v.
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Flow of diffeomorphisms (reminder)

DEFINITION: Let f : M × [a, b]−→M be a smooth map such that for all

t ∈ [a, b] the restriction ft := f
∣∣∣M×{t} : M −→M is a diffeomorphism. Then f

is called a flow of diffeomorphisms.

CLAIM: Let Vt be a flow of diffeomorphisms, f ∈ C∞M , and V ∗t (f)(x) :=

f(Vt(x)). Consider the map d
dtVt|t=c : C∞M −→ C∞M , with d

dtVt|t=c(f) =

(V −1
c )∗dVtdt |t=cf . Then f −→ (V −1

t )∗ ddtV
∗
t f is a derivation (that is, a vector

field).

THEOREM: Let M be a compact manifold, and Xt ∈ TM a family of

vector fields smoothly depending on t ∈ [0, a]. Then there exists a unique

diffeomorphism flow Vt, t ∈ [0, a], such that V0 = Id and d
dtV
∗
t = Xt.
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Lie derivative and a flow of diffeomorphisms (reminder)

DEFINITION: Let vt be a vector field on M , smoothly depending on the

“time parameter” t ∈ [a, b], and V : M× [a, b]−→M a flow of diffeomorphisms

which satisfies d
dtVt = vt for each t ∈ [a, b], and V0 = Id. Then Vt is called an

exponent of vt.

CLAIM: Exponent of a vector field is unique; it exists when M is compact.

This statement is called “Picard-Lindelöf theorem” or “uniqueness and

existence of solutions of ordinary differential equations”.

PROPOSITION: Let vt be a time-dependent vector field, t ∈ [a, b], and Vt
its exponent. For any α ∈ Λ∗M , consider V ∗t α as a Λ∗M-valued function of t.

Then Lievt(α) = (V −1
t )∗ ddt(V

∗
t α).
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Lie derivative and cohomology (reminder)

CLAIM: Let v be a vector field, and Liev : Λ∗M −→ Λ∗M be the corresponding

Lie derivative. Then Liev commutes with the de Rham differential, and

acts trivially on the de Rham cohomology.

Proof: Liev = ivd+ div maps closed forms to exact.

COROLLARY: Let Vt, t ∈ [a, b] be a flow of diffeomorphisms on a manifold

M . Then the pullback map V ∗b acts on cohomology the same way as

V ∗a .

Proof: Since (V −1
t )∗

dV ∗t
dt (η) = LieXt(η), this map it acts trivially on cohomol-

ogy. Then V ∗b − V
∗
a (η) =

∫ b
a V
∗
t LieXt(η) is exact for any closed η. Therefore,

V ∗b (η)− V ∗a (η) is exact.
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Extension of vector fields

EXERCISE: Let M ⊂ M1 be a smooth closed submanifold and v ∈ TM1|M
a tangent to M1 vector field defined on M . Prove that v can be extended

to a vector field on M1. Moreover, this extension can be chosen smoothly

for any smooth family of vector fields v.
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Homotopy equivalence of cohomology

THEOREM: Let Ft : X −→ Y be morphisms (smooth maps) of compact
manifolds, smoothly depending on t ∈ [a, b]. Consider the corresponding maps
on cohomology: F ∗t : H∗(Y )−→H∗(X). Then F ∗a = F ∗b .

Proof. Step 1: Consider the graph Γt ⊂ X × Y of Ft. Then Γt is a smooth
submanifold in X × Y , and vx := d

dtFt(x) ∈ TFt(x)Y gives a tangent vector
(0, vx) ∈ Tx,Ft(x)X×Y = TxY ×TFt(x)X. Taking all vx for all points (x, Ft(x)) ∈
Γt, we obtain a vector field βt ∈ T (X × Y )

∣∣∣Γt .
Step 2: Using the previous exercise, we extend βt to a vector field on X ×
Y . The corresponding flow of diffeomorphisms Vt : X × Y −→X × Y maps
(x, Fa(x)) to (x, Ft(x)).

Step 3: Since the flows of diffeomorphisms induce constant maps on co-
homology, the natural restriction maps H∗(X × Y )−→H∗(Γa) = H∗(X) and
H∗(X × Y )−→H∗(Γb) = H∗(X) are equal. However, the pullback map F ∗t :
H∗(Y )−→H∗(X) can be obtained as a composition of the pulback map
H∗(Y )−→H∗(X×Y ) associated with the projection, and the restriction H∗(X×
Y )−→H∗(Γt) = H∗(X). Therefore F ∗a = F ∗b , and the de Rham cohomology
are homotopy invariant.
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Tuesday lecture
is moved to May 14, Monday, 10:30, room 228
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Brouwer fixed point theorem: a preparatory lemma

LEMMA: Let B ⊂ Rn be a closed ball, and Ψ : B −→ ∂B be a map to its

boundary ∂B such that Ψ|∂B = Id∂B. Then Ψ cannot be smooth.

Proof: Suppose that Ψ is smooth. Consider the composition j ◦Ψ of em-

bedding j : ∂B −→B and Ψ. Since Hn−1(Sn−1) = R and j ◦ Ψ = Id∂B,

the map Ψ∗ ◦ j∗ acts as identity on Hn−1(Sn−1). This is impossible because

by Poincaré lemma Hn−1(B) = 0, hence j∗ : Hn−1(B)−→Hn−1(Sn−1) is

zero, and composition of Ψ∗ and j∗ vanishes on Hn−1(Sn−1).

10



Cohomology, lecture 4 M. Verbitsky

Brouwer fixed point theorem

THEOREM: (Brouwer fixed point theorem)

Let B ⊂ Rn be a closed ball, and ϕ : B −→B be a continuous map. Then B

has at least one fixed point.

Proof. Step 1: Suppose that ϕ has no fixed points. Since B is compact,

there exists ε > 0 such that d(x, ϕ(x)) > 2ε for each x ∈ B.

Step 2: By Stone-Weierstrass, any continuous map can be ε-approximated

by a smooth map ϕ1 such that d(x, ϕ1(x)) > d(x, ϕ(x)) − d(ϕ(x), ϕ1(x)) > ε.

This implies that ϕ1 has no fixed points, and we may assume that ϕ is

smooth.

Step 3: Let lx ⊂ Rn be an oriented line connecting x to ϕ(x). Then lx

intersects the boundary ∂B in two points, distinguished by its orientation.

Let Ψ(x) be the first point of intersection of lx and ∂B. Clearly, the map

x−→Ψ(x) is smooth and Ψ(x) = x for all x ∈ ∂B. This is impossible by

the previous lemma.
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Long exact sequence

DEFINITION: A complex is a sequence of vector spaces and homomor-
phisms ...

d−→ Ci−1 d−→ Ci
d−→ Ci+1 d−→ ... satisfying d2 = 0. Homo-

morphism (C∗, d)−→ (C∗1, d) of complexes is a sequence of homomorphism
Ci −→ Ci1 commuting with the differentials.

DEFINITION: An element c ∈ Ci is called closed if c ∈ ker d and exact if
c ∈ im d. Cohomology of a complex is a quotient ker d

im d . One denotes the i-th
group of cohomology of a complex by Hi(C∗)

REMARK: A homomorphism of complexes induces a natural homomorphism
of cohomology groups.

DEFINITION: Short exact sequence of complexes
0−→A∗ −→B∗ −→ C∗ −→ 0 is a sequence of morphisms of complexes A∗ x−→
B∗

y−→ C∗ such that x : Ai −→Bi is injective, y : Bi −→ Ci is surjective (for
all i), and ker y = imx.

THEOREM: Let 0−→A∗ −→B∗ −→ C∗ −→ 0 be an exact sequence of com-
plexes. Then there exists a long exact sequence of cohomology

...−→Hi−1(C∗)−→Hi(A∗)−→Hi(B∗)−→Hi(C∗)−→Hi+1(A∗)−→ ...
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Differential forms on closed subsets

DEFINITION: Let M be a manifold, and Z ⊂ M a closed subset. Let α, β
be two differential forms defined in open sets Uα and Uβ containing Z. We
say that α and β are equivalent if α = β on Uα∩Uβ. The space of equivalence
classes is denoted Λ∗(Z) and called the space of differential forms on Z or
the space of germs of differentials forms in Z.

REMARK: If Z is a manifold with boundary, Λ∗(Z) is the space of
differential forms on Z, by definition of differential forms on manifolds with
boundary.

EXERCISE: Using partition of unity, prove that the natural restriction
map Λ∗(M)−→ Λ∗(Z) is surjective for any closed Z ⊂M.

REMARK: The de Rham differential is well defined on Λ∗(Z), allowing us to
define the de Rham cohomology of Z as usual. Poincaré lemma holds in
this situation, too.

CLAIM: Let X ⊂ Rn be a closed starlike subset. Then Hi(X) = 0 for all
i > 0.

Proof: Same as for open X.
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Mayer-Vietoris long exact sequence

CLAIM: Let X,Y ⊂M be closed subsets. Then the restriction maps define
an exact sequence of complexes:

0−→ Λ∗(X ∪ Y )
ϕ−→ Λ∗(X)⊕ Λ∗(Y )

ψ−→ Λ∗(X ∩ Y )−→ 0. (∗)

Here ϕ is restriction to both components, and ψ is restriction |X∩Y on the
first component and −|X∩Y on the second component.

Proof: The map ϕ is clearly injective; ψ is surjective because all forms in
Λ∗(X∩Y ) can be smoothly extended to M . Now, kerψ is pairs α ∈ Λ∗(X), β ∈
Λ∗(Y ) such that α|X∩Y = −β|X∩Y , and this is precisely pairs which agree on
an open neighbourhood of X ∩ Y , that is, obtained by restriction from some
γ ∈ Λ∗(X ∪ Y ).

COROLLARY: (Mayer-Vietoris long exact sequence) Let X,Y ⊂ M be
closed subsets. Then there is a long exact sequence associated with
(*):

...−→Hi−1(X)⊕Hi−1(Y )−→Hi−1(X ∩ Y )−→Hi(X ∪ Y )−→
−→Hi(X)⊕Hi(Y )−→Hi(X ∩ Y )−→Hi+1(X ∪ Y )−→ ...
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Computation of de Rham cohomology

THEOREM: Let M be a smooth manifold. Then M admits a polyhedral
structure and a triangulation.

Proof: Was proven earier.

COROLLARY: Let M be a compact smooth manifold. Then the coho-
mology of M are finite-dimensional.

Proof. Step 1: Suppose that M is a union of n closed subsets K1, ..., Kn
which are starlike in some coordinates, and such that any intersection of any
family of Ki is also starlike. Using induction by n, we may assume that the
union of n−1 starlike sets with this property has finite cohomology. Consider
the Mayer-Vietoris exact sequence

...−→Hi−1(X ∩ Y )−→Hi(X ∪ Y )−→Hi(X)⊕Hi(Y )−→ ...

where X = K1 and Y =
⋃n
i=2Ki. Induction assumption gives that Hi(Y ) and

Hi(X∩Y ) has finite-dimensional cohomology, and Hi(X) is finite-dimensional
by Poincaré lemma. Then Hi(X ∪ Y ) is also finite-dimensional.

Step 2: For any triangulation or a polyhedral structure, the simplices or
polyhedra and their intersections are starlike, hence satisfy assumptions of
Step 1.
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Singular cohomology

DEFINITION: Let M be a topological space and Ci the group of i-chains,

that is, the group freely generated by continuous maps f : ∆i −→M , where ∆i

is i-simplex. Boundary operator maps a k-simplex f to a sum
∑k
i=0(−1)kfi,

where fi ∈ Ci−1 is i-the face of f . Cohomology of this complex are called

singular homology of M .

DEFINITION: The group of i-cochains is Ci := Hom(Ci,Z). The bound-

ary operator ∂ : Ci −→ Ci−1 defines the coboundary operator (denoted by

the same letter) ∂ : Ci −→ Ci−1. The cohomology of the complex

...
∂−→ Ci

∂−→ Ci+1 ∂−→ ...

are called singular cohomology of M .

DEFINITION: Let R be a ring (typically, R will be a field R). The group of

i-cochains with values in R is CiR := HomZ(Ci, R), where HomZ denotes the

homomorphism of abelian groups. Cohomology of the corresponding cochain

complex are called cohomology with coefficients in R.
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Singular cohomology

In the next lecture, I will prove
THEOREM: (de Rham theorem) Let Hi

dR(M) denote de Rham coho-
mology of a manifold M and Hi(M,R) denote the singular cohomology with
coefficients in R. Then Hi

dR(M) = Hi(M,R).

To prove equivalence of different cohomology theories,

Eilenberg and MacLane developed the theory of categories.

Saunders MacLane (1909-2005) and Samuel Eilenberg (1913-1998)
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Categories

DEFINITION: A category C is a collection of data called “objects” and

“morphisms between objects” which satisfies the axioms below.

DATA.

Objects: A class Ob(C) of objects of C.

Morphisms: For each X,Y ∈ Ob(C), one has a set Mor(X,Y ) of mor-

phisms from X to Y .

Composition of morphisms: For each ϕ ∈ Mor(X,Y ), ψ ∈ Mor(Y, Z)

there exists the composition ϕ ◦ ψ ∈Mor(X,Z)

Identity morphism: For each A ∈ Ob(C) there exists a morphism IdA ∈
Mor(A,A).

AXIOMS.

Associativity of composition: ϕ1 ◦ (ϕ2 ◦ ϕ3) = (ϕ1 ◦ ϕ2) ◦ ϕ3.

Properties of identity morphism: For each ϕ ∈ Mor(X,Y ), one has

Idx ◦ϕ = ϕ = ϕ ◦ IdY
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Categories (2)

DEFINITION: Let X,Y ∈ Ob(C) be7objects of C. A morphism ϕ ∈Mor(X,Y )

is called an isomorphism if there exists ψ ∈Mor(Y,X) such that ϕ ◦ψ = IdX
and ψ ◦ ϕ = IdY . In this case, the objects X and Y are called isomorphic.

Examples of categories:

Category of sets: its morphisms are arbitrary maps.

Category of vector spaces: its morphisms are linear maps.

Categories of rings, groups, fields: morphisms are homomorphisms.

Category of topological spaces: morphisms are continuous maps.

Category of smooth manifolds: morphisms are smooth maps.
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Functors

DEFINITION: Let C1,C2 be two categories. A covariant functor from C1

to C2 is the following set of data.

1. A map F : Ob(C1)−→ Ob(C2).

2. A map F : Mor(X,Y )−→ Mor(F (X), F (Y )) defined for any pair of

objects X,Y ∈ Ob(C1).

These data define a functor if they are compatible with compositions, that

is, satisfy F (ϕ) ◦ F (ψ) = F (ϕ ◦ ψ) for any ϕ ∈ Mor(X,Y ) and ψ ∈ Mor(Y, Z),

and map identity morphism to identity morphism.
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Example of functors

A “natural operation” on mathematical objects is usually a functor.

Examples:

1. A map X −→ 2X from the set X to the set of all subsets of X is a functor

from the category Sets of sets to itself.

2. A map M −→M2 mapping a topological space to its product with itself is

a functor on topological spaces.

3. A map V −→ V ⊕V is a functor on vector spaces; same for a map V −→ V ⊗V
or V −→ (V ⊕ V )⊗ V .

4. Identity functor from any category to itself.

5. A map from topological spaces to Sets, putting a topological space to the

set of its connected components.

EXERCISE: Prove that it is a functor.
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Contravariant functors

DEFINITION: Let C be a category. Define the opposite category Cop with

the same set of objects, and MorCop(A,B) = MorC(B,A). The composition

ϕ ◦ ψ in C gives the composition ψop ◦ ϕop in Cop.

DEFINITION: A contravariant functor from C1 to C2 is the usual (“co-

variant”) functor from C1 to C
op
2 .

EXAMPLE: A map from the category of topological spaces to category

of rings mapping a space to a ring of continuous functions on it gives a

contravariant functor.

EXAMPLE: Let X ∈ Ob(C) be an object of C. A map Y −→ Mor(X,Y )

defines a covariant functor from C to the category Sets of sets. A map

Y −→ Mor(Y,X) defines a contravariant functor from C to Sets. Such functors

to Sets are called representable.
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Equivalence of functors

DEFINITION: Let X,Y ∈ Ob(C) be objects of a category C. A morphism

ϕ ∈ Mor(X,Y ) is called an isomorphism if there exists ψ ∈ Mor(Y,X) such

that ϕ◦ψ = IdX and ψ ◦ϕ = IdY . In this case X and Y are called isomorphic.

DEFINITION: Two functors F,G : C1 −→ C2 are called equivalent if for any

X ∈ Ob(C1) we are given an isomorphism ΨX : F (X)−→G(X), in such a way

that for any ϕ ∈Mor(X,Y ), one has F (ϕ) ◦ΨY = ΨX ◦G(ϕ).

REMARK: Such commutation relations are usually expressed by commu-

tative diagrams. For example, the condition F (ϕ) ◦ ΨY = ΨX ◦ G(ϕ) is

expressed by a commutative diagram

F (X)
F (ϕ)−−−→ F (Y )

ΨX

y yΨY

G(X)
G(ϕ)−−−→ G(Y )

A collection of morphism ΨX : F (X)−→G(X) is called a natural transform

of functors if this diagram is commutative for all ϕ ∈Mor(X,Y ).
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Equivalence of cohomology: framework argument

REMARK: All cohomology theories give a contravariant functor from topo-

logical spaces to abelian groups.

THEOREM: Let Hi
1, H

i
2 be contravariant functors (“cohomology theories”)

from the category of topological spaces to vector spaces, where i = 0,1,2, ....

Suppose that they satisfy the following axioms.

1. For any starlike set B, one has Hi
1(B) = Hi

2(B) = 0 and H0
i (B) = R.

2. Both cohomology theories H∗1 and H∗2 have Mayer-Vietoris long exact

sequences.

3. There is a natural transform of functors H1
Ψ−→ H2 inducing isomorphism

on cohomology of a starlike set.

Then Ψ is an equivalence of functors.

In this situation we also say that cohomology theories H∗1 and H∗2 are

equivalent.
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