Topologia das Variedades

Cohomology, lecture 6: de Rham theorem

Misha Verbitsky May 14, 2018

IMPA, Tuesdays and Thursdays, 10:30, Sala 224

Long exact sequence (reminder)

DEFINITION: A complex is a sequence of vector spaces and homomorphisms ... $\stackrel{d}{\longrightarrow} C^{i-1} \stackrel{d}{\longrightarrow} C^i \stackrel{d}{\longrightarrow} C^{i+1} \stackrel{d}{\longrightarrow} ...$ satisfying $d^2 = 0$. Homomorphism $(C^*, d) \longrightarrow (C_1^*, d)$ of complexes is a sequence of homomorphism $C^i \longrightarrow C_1^i$ commuting with the differentials.

DEFINITION: An element $c \in C^i$ is called **closed** if $c \in \ker d$ and **exact** if $c \in \operatorname{im} d$. Cohomology of a complex is a quotient $\frac{\ker d}{\operatorname{im} d}$. One denotes the *i*-th group of cohomology of a complex by $H^i(C^*)$

REMARK: A homomorphism of complexes induces a natural homomorphism of cohomology groups.

DEFINITION: Short exact sequence of complexes

 $0 \longrightarrow A^* \longrightarrow B^* \longrightarrow C^* \longrightarrow 0$ is a sequence of morphisms of complexes $A^* \xrightarrow{x} B^* \xrightarrow{y} C^*$ such that $x \colon A^i \longrightarrow B^i$ is injective, $y \colon B^i \longrightarrow C^i$ is surjective (for all *i*), and ker $y = \operatorname{im} x$.

THEOREM: Let $0 \longrightarrow A^* \longrightarrow B^* \longrightarrow C^* \longrightarrow 0$ be an exact sequence of complexes. Then there exists a long exact sequence of cohomology

$$\dots \longrightarrow H^{i-1}(C^*) \longrightarrow H^i(A^*) \longrightarrow H^i(B^*) \longrightarrow H^i(C^*) \longrightarrow H^{i+1}(A^*) \longrightarrow \dots$$

M. Verbitsky

Differential forms on closed subsets (reminder)

DEFINITION: Let M be a manifold, and $Z \subset M$ a closed subset. Let α, β be two differential forms defined in open sets U_{α} and U_{β} containing Z. We say that α and β are equivalent if $\alpha = \beta$ on $U_{\alpha} \cap U_{\beta}$. The space of equivalence classes is denoted $\Lambda^*(Z)$ and called the space of differential forms on Z or the space of germs of differentials forms in Z.

REMARK: If Z is a manifold with boundary, $\Lambda^*(Z)$ is the space of differential forms on Z, by definition of differential forms on manifolds with boundary.

EXERCISE: Using partition of unity, prove that the natural restriction map $\Lambda^*(M) \longrightarrow \Lambda^*(Z)$ is surjective for any closed $Z \subset M$.

REMARK: The de Rham differential is well defined on $\Lambda^*(Z)$, allowing us to **define the de Rham cohomology of** Z **as usual.** Poincaré lemma holds in this situation, too.

CLAIM: Let $X \subset \mathbb{R}^n$ be a closed starlike subset. Then $H^i(X) = 0$ for all i > 0.

Proof: Same as for open X.

Mayer-Vietoris long exact sequence (reminder)

CLAIM: Let $X, Y \subset M$ be closed subsets. Then the restriction maps define an exact sequence of complexes:

$$0 \longrightarrow \Lambda^*(X \cup Y) \xrightarrow{\varphi} \Lambda^*(X) \oplus \Lambda^*(Y) \xrightarrow{\psi} \Lambda^*(X \cap Y) \longrightarrow 0. \quad (*)$$

Here φ is restriction to both components, and ψ is restriction $|_{X \cap Y}$ on the first component and $-|_{X \cap Y}$ on the second component.

Proof: The map φ is clearly injective; ψ is surjective because all forms in $\Lambda^*(X \cap Y)$ can be smoothly extended to M. Now, ker ψ is pairs $\alpha \in \Lambda^*(X), \beta \in \Lambda^*(Y)$ such that $\alpha|_{X \cap Y} = -\beta|_{X \cap Y}$, and this is precisely pairs which agree on an open neighbourhood of $X \cap Y$, that is, obtained by restriction from some $\gamma \in \Lambda^*(X \cup Y)$.

COROLLARY: (Mayer-Vietoris long exact sequence) Let $X, Y \subset M$ be closed subsets. Then there is a long exact sequence associated with (*):

$$\dots \longrightarrow H^{i-1}(X) \oplus H^{i-1}(Y) \longrightarrow H^{i-1}(X \cap Y) \longrightarrow H^{i}(X \cup Y) \longrightarrow H^{i}(X) \oplus H^{i}(X) \oplus H^{i}(Y) \longrightarrow H^{i}(X \cap Y) \longrightarrow H^{i+1}(X \cup Y) \longrightarrow \dots$$

Singular cohomology

DEFINITION: Let M be a topological space and C_i the group of singular *i*chains, that is, the group freely generated by continuous maps $f: \Delta^k \longrightarrow M$, where Δ^k is *i*-simplex. Boundary operator maps a *k*-simplex f to a sum $\sum_{i=0}^{k} (-1)^i f_i$, where $f_i \in C_{i-1}$ is *i*-th face of f. Cohomology of this complex are called singular homology of M.

DEFINITION: The group of *i*-cochains is $C^i := \text{Hom}(C_i, \mathbb{Z})$. The boundary operator $\partial : C_i \longrightarrow C_{i-1}$ defines the coboundary operator (denoted by the same letter) $\partial : C^i \longrightarrow C^{i-1}$. The cohomology of the complex

$$\ldots \xrightarrow{\partial} C^i \xrightarrow{\partial} C^{i+1} \xrightarrow{\partial} \ldots$$

are called singular cohomology of M.

DEFINITION: Let R be a ring (typically, R will be a field \mathbb{R}). The group of *i*-cochains with values in R is $C_R^i := \text{Hom}_{\mathbb{Z}}(C_i, R)$, where $\text{Hom}_{\mathbb{Z}}$ denotes the homomorphism of abelian groups. Cohomology of the corresponding cochain complex are called cohomology with coefficients in R.

Properties of singular cohomology

REMARK: Singular homology are functorial. Indeed, for any continuous map $f: X \longrightarrow Y$, the map f maps any chain in X to a chain in Y. Then any cochain on Y gives a cochain on X. This operation is called **the pullback** of a cochain.

CLAIM: Singular cohomology are homotopy invariant, that is, for any map F_t : $X \times [0,1] \longrightarrow Y$, the map F_0 : $X \longrightarrow Y$, $F_0(x) = F_t(x \times \{0\})$ acts on the cohomology in the same way as F_1 : $X \longrightarrow Y$, $F_1(x) = F_t(x \times \{1\})$.

Proof: Left as an exercise for now (we shall return to it later). ■

Homology are dual to cohomology

DEFINITION: Define singular chain with coefficients in a field R as a formal linear combination of maps $f: \Delta^k \to M$, with coefficients in R. The boundary map ∂ is defined the space $C_k(R)$ of such chains in a natural way. homology with coefficients in R is $\frac{\ker \partial|_{C_k}(R)}{\partial(C_{k+1}(R))}$.

REMARK: There is a natural pairing between homology and cohomology. Indeed, a coboundary vanishes on cycles, hence the natural pairing between a cycle and a cocycle descends to cohomologies.

DEFINITION: A non-degenerate, or **perfect** pairing between two vector spaces V and W over a field R is a bilinear map $B : V \times W \longrightarrow R$ such that for any non-zero vector $v \in V$ there exists $w \in W$ such that $B(v, w) \neq 0$, and for all non-zero $w \in W$ there exists $v \in V$ with such a property.

THEOREM: Let *R* be a field. Then the natural pairing $H_i(M, R) \times H^i(M, R) \longrightarrow R$ is non-degenerate, and, moreover, $H^i(M, R) = H_i(M, R)^*$.

Proof: see the next slide

Homology are dual to cohomology (2)

THEOREM: Let *R* be a field. Then the natural pairing $H_i(M, R) \times H^i(M, R) \longrightarrow R$ is non-degenerate, and, moreover, $H^i(M, R) = H_i(M, R)^*$.

Proof. Step 1: Let $A : V \longrightarrow W$ be a linear map, and $A^* : W^* \longrightarrow V^*$ the dual map. Then the natural pairing between ker A and $V^*/\operatorname{im} A^*$ and $\operatorname{im} A$ and $W^*/\operatorname{ker} A^*$ is non-degenerate, and, moreover, $(\operatorname{im} A)^* = W^*/\operatorname{ker} A^*$. Indeed, $x \in \operatorname{ker} A \Leftrightarrow \langle Ax, y \rangle = 0 \Leftrightarrow \langle x, A^*y \rangle$, hence $\operatorname{im} A^*$ is precisely the space of functionals vanishing on $\operatorname{ker} A$. Similarly, $\langle A(z), y \rangle = 0 \Leftrightarrow \langle z, A^*(y) \rangle$, hence $\operatorname{one} y \in W^*$ vanishes on $\operatorname{im} A$ if and only if $A^*(y) = 0$.

Step 2: Let $d : C \longrightarrow C$ be a map which satisfies $d^2 = 0$. Step 1 gives an isomorphism $(\ker d)^* = C^* / \operatorname{im} d^*$ and $(\operatorname{im} d)^* = C^* / \ker d^*$. Then $(\ker d / \operatorname{im} d)^* = \frac{\ker d^*}{\operatorname{im} d^*}$.

REMARK: This statement makes no sense when the coefficients are not a field. In this case **the universal coefficients theorem** gives a precise formula relating homology and cohomology.

Cohomology of smooth chains

PROPOSITION: Let C_k be the space of k-chains on a smooth manifold M with coefficients in \mathbb{R} , and C_k^{sm} the space of smooth chains. Assume that homology of M are finite-dimensional. Then cohomology of the complex C_k and cohomology of the complex C_k^{sm} are equal, and the cohomology of the dual complexes are also equal.

Proof: Fix a complete Riemannian metric on M. Consider the "uniform norm" ν on the space of chains, defined as follows: it is the maximal norm such that for any $f,g : \Delta^k \longrightarrow M$, one has $\nu(\lambda f) \leq |\lambda|$ and $\nu(f-g) \leq \sup_{x \in \Delta^k} d(f(x), g(x))$. Clearly, the space C_k^{sm} is dense in C_k , hence the cohomology space of C_k^{sm} is dense in cohomology of C_k , which is equal to homology of M. However, cohomology of C_k is finitely-dimensional, hence $H_i(C_k^{sm}) = H_i(M)$.

REMARK: Integration over a smooth chain defines a linear map $\Lambda^k(M) \longrightarrow (C_k^{sm})^*$. Stokes' theorem gives $\int_C d\alpha = \int_{\partial C} \alpha$, hence **this map commutes with the differential.**

De Rham theorem

The main result of this lecture: de Rham cohomology are equal to the singular cohomology.

THEOREM: (de Rham theorem)

Let M be a smooth manifold (compact or with a finite polyhedral structure), $H^*_{DR}(M)$ its de Rham cohomology and $H^*_{sing}(M)$ its singular cohomology. Then the map $H^*_{DR}(M) \longrightarrow H^*_{sing}(M)$ constructed above is an isomorphism.

It will be proven later today.

Mayer-Vietoris theorem for singular homology

CLAIM: Let $M = U \cup V$ be a metrizable space, where U and V are open. Denote by $C_{U,V}^k(M)$ the space of chains generated by simplices $f : \Delta^k \longrightarrow M$ which are contained in V or U. Then the following sequence of chain complexes is exact: $0 \longrightarrow C_*(U \cap V) \longrightarrow C_*(U) \oplus C_*(V) \longrightarrow C_*^{U,V}(M) \longrightarrow 0$.

CLAIM: The natural embedding $C^{U,V}_*(M) \longrightarrow C_*(M)$ of complexes induces an isomorphism on cohomology of these complexes.

Proof: Fix a metric on M. Any symplex Δ in M can be partitioned onto smaller simplices which lie in U or V. Indeed, let S be a simplex in M, and ε the distance between $S \setminus U$ and $S \setminus V$. These are two non-intersecting compact sets, hence $\varepsilon > 0$. Clearly, any symplex in M of diameter $< \varepsilon$ belongs to U or V or both. Now, if we partition Δ onto smaller simplices of diameter $< \varepsilon$, we obtain a chain $\mathcal{D} \in C_*^{U,V}(M)$. However, $\Delta - \mathcal{D}$ is a boundary. This construction implies that the map $C_*^{U,V}(M) \longrightarrow C^*(M)$ is surjective on cohomology of complexes. It is injective on cohomology, because for any boundary $x \in C_*^{U,V}(M)$, $x = \partial(y)$, with $y \in C_*(M)$, y can be partitioned in a similar way, giving $y' \in C_*^{U,V}(M)$ with d(y') = x', where x' is obtained from x by partitioning it onto smaller simplices.

Mayer-Vietoris theorem for singular homology and cohomology

COROLLARY: (Mayer-Vietoris exact sequence for homology) Let $M = U \cup V$ be a metrizable space, where U and V are open. Then there exists a long exact sequence of homology

$$\dots \longrightarrow H_{i+1}(U) \oplus H_{i+1}(V) \longrightarrow H_{i+1}(U \cup V) \longrightarrow H_i(U \cap V) \longrightarrow H_i(U) \oplus H_i(V) \oplus H_i(V) \longrightarrow H_i(U \cup V) \longrightarrow H_{i-1}(U \cap V) \longrightarrow \dots$$

Proof: We obtain this long exact sequence from the exact sequence of complexes $0 \longrightarrow C_*(U \cap V) \longrightarrow C_*(U) \oplus C_*(V) \longrightarrow C_*^{U,V}(M) \longrightarrow 0$.

Dualizing this sequence, we obtain

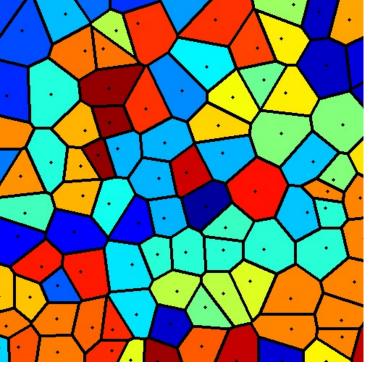
COROLLARY: (Mayer-Vietoris exact sequence for cohomology) Let $M = U \cup V$ be a metrizable space, where U and V are open. Then there exists a long exact sequence of singular cohomology with real coefficients.

$$\dots \longrightarrow H^{i-1}(U,\mathbb{R}) \oplus H^{i-1}(V,\mathbb{R}) \longrightarrow H^{i-1}(U \cap V,\mathbb{R}) \longrightarrow H^{i}(U \cup V,\mathbb{R}) \longrightarrow H^{i}(U,\mathbb{R}) \oplus H^{i}(V,\mathbb{R}) \longrightarrow H^{i}(U \cap V,\mathbb{R}) \longrightarrow H^{i+1}(U \cup V,\mathbb{R}) \longrightarrow \dots$$

REMARK: Mayer-Vietoris exact sequence exists for cohomology with any coefficients. The proof is very similar to the one for homology.

Voronoi partitions

DEFINITION: Let M be a metric space, and $S \subset M$ a finite subset. Voronoi cell associated with $x_i \in S$ is $\{z \in M \mid d(z, x_i) \leq d(z, x_i) \forall j \neq i\}$. Voronoi partition is partition of M onto its Voronoi cells.



Voronoi partition

THEOREM: Let M be a complete Riemannian manifold. Then, for an appropriate choice of the points x_i , Voronoi cells are polyhedral.

M. Verbitsky

Convex sets

DEFINITION: Let M be a metric space, and $S \subset M$ a discrete subset. The Voronoi cell associated with $x_i \in S$ is $\{z \in M \mid d(z, x_i) \leq d(z, x_i) \forall j \neq i\}$. The Voronoi partition is partition of M onto its Voronoi cells.

DEFINITION: A subset $S \subset M$ of a Riemannian manifold is called **convex** if for any two points $x, y \subset S$ the minimal geodesic connecting x to y is unique, and it belonds to S.

REMARK: Any convex set *S* is starlike. Indeed. fix an "origin" $x \in S$. For any $y \in S$, denote by γ_y : $[0, d(x, y)] \longrightarrow S$ the minimal geodesic. Then $F_t(y) = \gamma_y(t), t \in [0, 1]$ induces a smooth homotopy between identity map and the projection mapping *S* to the point $\{x\}$.

DEFINITION: Let *M* be a complete Riemannian manifold. Injectivity radius is the supremum of all numbers $\varepsilon > 0$ such that any closed ball of radius ε is convex.

THEOREM: Let M be a compact Riemannian manifold. Then the injectivity radius of M is always positive.

Proof: Uses basic differential geometry (left as an exercise). ■

Convex covers

REMARK: Let M be a compact manifold, and ε less than its injectivity radius. An ε -net is a finite subset $S \subset M$ such that M is contained in the union of ε -balls with centers in S. Then these ε -balls are convex, as well as all their intersections (an intersection of several convex sets is clearly convex).

DEFINITION: A convex cover of a Riemannian manifold is a cover $\{U_i\}$ such that all U_i and all the closures \overline{U}_i are convex.

REMARK: Clearly, any cover of M by ε -balls is convex, if ε is less that the injectivity radius of M.

REMARK: If M is a polyhedral manifold, we could take for U_i small neighbourhoods of the polyhedra. Even without the metric, it is clear that the intersections of U_i are starlike for an appropriate choice of neighbourhoods. Indeed, these intersections are neighbourhoods of the corresponding faces of the polyhedra. This gives a cover with the same properties as a convex cover.

M. Verbitsky

The proof of de Rham theorem

THEOREM: (de Rham theorem) Let M be a smooth manifold (compact or with a finite polyhedral structure), $H^*_{DR}(M)$ its de Rham cohomology and $H^*_{sing}(M)$ its singular cohomology. Then the map $H^*_{DR}(M) \longrightarrow H^*_{sing}(M)$ constructed above is an isomorphism.

Proof: Let M be a manifold and $\{U_i\}$ a finite open cover such that all U_i , all the closures \overline{U}_i and all their intersections are starlike (such a cover can be obtained from a polyhedral structure or from a convex cover as above). Poincaré lemma implies that $H_{DR}^*(\overline{K}) \longrightarrow H_{\text{sing}}^*(K)$ is an isomorphism for any K which is starlike, where \overline{K} is the closure of K. Using induction in n, we may assume that $H_{DR}^*(\overline{K}) \longrightarrow H_{\text{sing}}^*(K)$ is an isomorphism for any K which is obtained as a union of n-1 or less of U_i . Let us prove it for $K = \bigcup_{i=1}^n U_i$. Using the Mayer-Vietoris exact sequences for de Rham and singular cohomology, applied to $X = U_0$ and $Y = \bigcup_{i=2}^n U_i$, we obtain the following diagram

By induction assumption, the vertical arrows in this diagram are isomorphisms for all terms except for $H^*_{DR}(\overline{X} \cup \overline{Y}) \longrightarrow H^*_{sing}(X \cup Y)$. The 5-lemma implies that they are isomorphisms in all terms. \blacksquare .