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Tensor product of complexes

DEFINITION: Bicomplex of vector spaces is a sequence of vector spaces

Cp,q equipped with the differentials d1,0 : Cp,q −→ Cp+1,q and d0,1 : Cp,q −→ Cp,q+1,

such that d0,1 ◦ d0,1 = d1,0 ◦ d1,0 = 0 and d0,1 ◦ d1,0 = d1,0 ◦ d0,1.

EXAMPLE: Let ...
dC−→ Ci

dC−→ Ci+1 dC−→ ... and ...
dD−→ Di dD−→ Di+1 dD−→ ...

be complexes of vector spaces. Their tensor product is the bicomplex Cp⊗Dq

with d1,0 = dC ⊗ IdD∗ and d0,1 = IdC∗⊗dD.

DEFINITION: Totalization of a bicomplex (C∗,∗, d1,0, d0,1) is the complex

...
d−→

⊕
p+q=i

Cp,q
d−→

⊕
p+q=i+1

Cp,q
d−→ ...

where the differential d is defined as d|Cp,q = d1,0 + (−1)pd0,1.

REMARK: To see that d2 = 0, we use (d1,0)2 = 0, (d0,1)2 = 0 and

d1,0(−1)pd0,1 + (−1)p+1d0,1d1,0 = 0.
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Cohomology and the tensor product

THEOREM: Let ...
dC−→ Ci

dC−→ Ci+1 dC−→ ... and ...
dD−→ Di dD−→ Di+1 dD−→

... be complexes of vector spaces, and ((C⊗D)∗, d) be the totalization of their
tensor product bicomplex. Then

Hi((C ⊗D)∗) =
⊕

p+q=i

(Hp(C)⊗Hq(D)). (∗ ∗ ∗)

Proof. Step 1: Consider the direct sum decomposition C∗ = C∗1⊕C
∗
2. Then

Hi((C⊗D)∗) = Hi((C1⊗D)∗)⊕Hi((C2⊗D)∗), and
⊕
p+q=i(H

p(C)⊗Hq(D)) =⊕
p+q=i(H

p(C1) ⊗ Hq(D)) ⊕
⊕
p+q=i(H

p(C2) ⊗ Hq(D)). Therefore, whenever
we represent C∗ as a direct sum

⊕
iC
∗
i , it suffices to prove the isomorphism

(***) for each subcomplex C∗i ⊗D
∗.

Step 2: Every complex of vector spaces is a direct sum of two types of
complexes,

...
d−→ 0

d−→ V
d−→ 0

d−→ ...

and

...
d−→ 0

d−→ V
d=IdV−→ V

d−→ 0
d−→ ...

where V is a one-dimensional vector space. It would suffice to prove (***)
when C∗ and D∗ is one of these two types of complexes.
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Cohomology and the tensor product (2)

THEOREM: Let ...
dC−→ Ci

dC−→ Ci+1 dC−→ ... and ...
dD−→ Di dD−→ Di+1 dD−→

... be complexes of vector spaces, and ((C⊗D)∗, d) be the totalization of their
tensor product bicomplex. Then

Hi((C ⊗D)∗) =
⊕

p+q=i

(Hp(C)⊗Hq(D)). (∗ ∗ ∗)

Step 2: Every complex of vector spaces is a direct sum of two types of

complexes, ...
d−→ 0

d−→ V
d−→ 0

d−→ ... and ...
d−→ 0

d−→ V
d=IdV−−−−−→ V

d−→
0

d−→ ... where V is a one-dimensional vector space. It would suffice to prove
(***) when C∗ and D∗ is one of these two types of complexes.

Step 3: When C∗ = ...
d−→ 0

d−→ V
d−→ 0

d−→ ..., with V in degree 0, we
have (C⊗D)∗ ∼= D∗ and

⊕
p+q=i(H

p(C)⊗Hq(D)) ∼= Hi(D) hence (***) holds
tautologically.

Step 4: When both C∗ and D∗ have form ...
d−→ 0

d−→ V
d=IdV−−−−−→ V

d−→
0

d−→ ..., the totalization of C∗ ⊗D∗ takes form

...
d−→ 0

d−→ V ⊗2 d=(Id
V⊗2,IdV⊗2)

−−−−−−−−−−−−→ V ⊗2⊕V ⊗2 d=(Id
V⊗2,− Id

V⊗2)
−−−−−−−−−−−−−−→ V ⊗2 d−→ 0

d−→ ...

therefore H∗((C ⊗ D)∗) = 0. Also, H∗(C) ⊗ H∗(D) = 0, hence (***) also
holds.
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Tensor product and functions on a product

THEOREM: Let C(M) be the space of functions f : M −→ R, and C(N)
the spave of functions f : N −→ R. Consider the natural map Ψ : C(M) ⊗
C(N)−→ C(M ×N). Then Ψ is injective.

Proof. Step 1: For N,M finite Ψ is an isomorphism. Indeed, for any
m ∈ M and n ∈ N , the tensor product product χm ⊗ χn of atomic functions
χm and χn is mapped to χ(m,n), hence Ψ is surjective, and it is injective
because dimC(M)⊗ C(N) = |M ||N | = dimC(M ×N).

Step 2: For any linearly independent set of k functions f1, ..., fk ∈ C(M),
consider restriction of f1, ..., fk to a finite subset M0 ⊂ M . If there is a linear
relation

∑
i λifi

∣∣∣M0
for each finite subset, this linear relation is true on M .

Therefore, linearly independent functions remain linearly independent if
restricted on a sufficiently big finite subset.

Step 3: Let {fα} be a basis in C(M), {gα} a basis in C(N). Then {fα⊗gα} is
a basis in C(M)⊗C(N), indexed by α ∈ A, β ∈ B. Any vector x ∈ C(M)⊗C(N)
takes form x =

∑
i∈A0,j∈B0

xijfi⊗ gj, where A0 ⊂ A, B0 ⊂ B are finite subsets.

Then x
∣∣∣M0×N0

is non-zero for some finite subsets M0 ⊂M , N0 ⊂ N (Step 2).

This implies that Ψ(x)
∣∣∣M0×N0

is also non-zero (Step 1).
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Stone-Weierstrass theorem

DEFINITION: Let A ⊂ C0M be a subspace in the space of continuous

functions. We say that A separates the points of M if for all distinct points

x, y ∈M , there exists f ∈ A such that f(x) 6= f(y).

DEFINITION: Let M be a topological space, and ‖f‖ := supM |f | the sup-

norm on functions. The C0-topology, or uniform topology on the space

C0(M) of continuous functions is topology defined by the sup-norm.

THEOREM: (Stone-Weierstrass)

Let A ⊂ C0M be a subring separating points, and A its closure in the C0-

topology. Then A = C0(M).

COROLLARY: For any two manifolds M and N , the ring C∞(M)⊗C∞(N)

is dense in C0(M ×N).

Proof: C∞(M)⊗ C∞(N) is a subring in C0(M ×N), as shown above, and it

is dense because it separates the points.
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Differential forms on a product

CLAIM: Let V,W be vector spaces. Then Λi(V ⊕ W ) =
⊕
p+q=iΛp(V ) ⊗

Λq(W ).

Proof: The multiplication map
⊕
p+q=iΛp(V )⊗Λq(W )−→ Λi(V ⊕W ) takes the

monomial basis in
⊕
p+q=iΛp(V )⊗Λq(W ) to the monomial basis in Λi(V ⊕W ).

COROLLARY: For any two manifolds M1 and M2, consider the projection

maps πi : M1×M2 −→Mi. Then the natural multiplication map π∗1Λ∗(M1)⊗
π∗2Λ∗(M2)−→ Λ∗(M1 ×M2) is an isomorphism.

Proof: Indeed, Λ1(M1 ×M2) = π∗1Λ1(M1)⊕ π∗2Λ1(M2), hence

Λi(M1 ×M2) = Λi(Λ1(M1 ×M2)) =

= Λi
(
π∗1Λ1(M1)⊕ π∗2Λ1(M2)

)
=

⊕
p+q=i

π∗1Λp(M1)⊗ π∗2Λq(M2).
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Differential forms on a product (2)

COROLLARY: Consider the natural multiplicative map Ψ :
⊕
p+q=iΛp(M1)⊗R

Λq(M2)−→ Λi(M1×M2) obtained by taking pullbacks and multiplying. Then

Ψ is injective, and its image is dense in C0-topology.

Proof: The image is generated multiplicatively by forms which are lifted from

M1 and M2. It would suffice to prove the statement locally in coordinates. Let

Vi be the vector spaces generated by dx1, ..., dxn, dy1, ..., dym, where x1, ..., xn

and y1, ..., ym are coordinate functions on Mi, defined in a neighbourhood of

a point. Then Λ∗(M1) is C∞M1 ⊗R Λ∗(V2), and Λ∗(M2) is C∞M2 ⊗R Λ∗(V2).

Similarly, Λ∗(M1×M2) = C∞(M1×M2)⊗RΛ∗(V1⊕V2). Since Λ∗(M1)⊗Λ∗(M2)

is equal to C∞(M1)⊗ C∞(M2)⊗ Λ∗(V1 ⊕ V2), the second is dense in the first

as we have already proven.
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Künneth theorem

THEOREM: Consider the map Ψ :
⊕
p+q=iΛp(M1) ⊗R Λq(M2)−→ Λi(M1 ×

M2) obtained by taking pullbacks and multiplying. Define the differential on

the totalization of Λ∗(M1)⊗R Λ∗(M2) in the usual way. Then Ψ commutes

with the differential and induces identity on the cohomology.

We prove this result later this lecture.

COROLLARY: (Künneth theorem)

For any two manifolds M1,M2, there is an isomorphism Hi(M1 ×M2) ∼=⊕
p+q=iH

p(M1)⊗Hq(M2).

Proof: The differential in the totalization of the bicomplex Λ∗(M1)⊗RΛ∗(M2)

is compatible with the de Rham differential on π∗1(Λ∗(M1)) ⊗ π∗2(Λ∗(M2)) =

Λ∗(M1⊗M2). However, cohomology of the latter is H∗(M1×M2), cohomology

of the former is H∗(M1) ⊗ H∗(M2). Since Ψ induces an isomorphism on

cohomology, one has H∗(M1 ×M2) ∼= H∗(M1)⊗H∗(M2).
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Hermann Künneth

Hermann Künneth (1892-1975) was the son of the high school (”Gymnasium”, the highest
form of high school) teacher Christian Künneth. Beginning with 1910, he studied mathemat-
ics at the Universit”at Erlangen and the Ludwig-Maximilians-Universit”at München with a
”break” from 1914-1919 where he served in the German army; he was injured twice and was
prisoner of war with the British. Künneth was member of the AMV Fridericiana Erlangen, a
musically oriented fraternity. His professors in Erlangen were Ernst Sigismund Fischer, Paul
Gordan, Max Noether, Richard Baldus and Erhard Schmidt.

1912 he took his first Staatsexamen to become a teacher and 1920 he took his second. In
1920 he became teacher in Bavaria, in particular at high schools (”Gymnasien”) in Kronach
and Erlangen. He remained in contact with the University in Erlangen, where he got in PhD
under the direction of Tietze in 1922 (and was assistant (professor) beginning with 1921).
The title of his thesis was ”Über die Bettischen Zahlen einer Produktmannigfaltigkeit” -
”About the Betti numbers of a product manifold” (where he proved the Künneth formula).

1923 he became assistant (professor) in Berlin; interestingly, he became 1923 also teacher
(”Studienrat”) in Kronach. As already indicated, the switched to the high school Frideri-
cianum in Erlangen in 1925, where he became Oberstudienrat in 1950 [this would not be a
very high position at a high school these days, but I am not sure how it was then]. In 1942
he habilitated in Erlangen and was Privatdozent (a kind of freelancing professor) after that.
After he retired in 1957 from his teaching job, he became associate professor in Erlangen.
Otto Haupt said about this: ”[he] developed an amazing and surprising scientific activity.”
(at the age of 65)

1964 he got the Bundesverdienstkreuz am Band (the second lowest order of the ”Order of

Merit of the Federal Republic of Germany”). (See this newspaper article - it says: ”His

chivalric personality, of clear judgement, emanates human kindness and witty humour.”)
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Hermann Künneth (1892-1975)

Hermann Künneth (1892-1975)
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The proof of Künneth theorem

THEOREM: Consider the map Ψ :
⊕
p+q=iΛp(M1) ⊗R Λq(M2)−→ Λi(M1 ×

M2) obtained by taking pullbacks and multiplying. Define the differential on

the totalization of Λ∗(M1)⊗R Λ∗(M2) in the usual way. Then Ψ commutes

with the differential and induces identity on the cohomology.

Proof. Step 1: For any open subset W ⊂ M1 ×M2, denote by Λ∗p(W ) the

algebra of differential forms multiplicatively generated by products of π∗1(α)

and π∗2(β). As shown above, Λ∗p(A×B) = Λ∗(A)⊗R Λ∗(B). Denote by H∗p(W )

the cohomology of (Λ∗p(W ), d). Since H∗((C1⊗C2)∗) = H∗(C1)⊗H∗(C2), one

has H∗p(A×B) = H∗(A)⊗H∗(B).

Step 2: We assume that M1,M2 are compact or have a finite polyhedral

structure. Let U1, ..., Un be a cover of M1 and V1, ..., Vm a cover of M2 with

all Ui, Vj and all their intersections starlike and closed. As explained in Lec-

ture 6, to build such a cover, one can take small convex neighbourhood of

each polyhedra, or the Voronoi cells for an appropriate Riemannian struc-

ture. Then Ui × Vj is a cover of M1 ×M2 with the same properties. Since

H∗p(A×B) = H∗(A)⊗H∗(B), the natural map Ψ : H∗p(Ui×Vj)−→H∗(Ui×Vj)
is an isomorphism.
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The proof of Künneth theorem (2)

THEOREM: Consider the map Ψ :
⊕
p+q=iΛp(M1) ⊗R Λq(M2)−→ Λi(M1 ×

M2) obtained by taking pullbacks and multiplying. Define the differential on
the totalization of Λ∗(M1)⊗R Λ∗(M2) in the usual way. Then Ψ commutes
with the differential and induces identity on the cohomology.

Step 3: The Mayer-Vietoris long exact sequence holds for H∗p(·)-cohomology
of closed subsets in M1×M2; the argument is the same as for the usual Mayer-
Vietoris sequence. Assume that Ψ : H∗p(K)−→H∗(K) is an isomorphism
for all K ⊂ M1 ×M2 obtained as union of at most n − 1 sets obtained by
intersections of some of Ui × Vj, hence closed and starlike (indeed, U × V ∩
U ′ × V ′ = (U ∩ U ′)× (V ∩ V ′)).

We prove that Ψ : H∗p(K)−→H∗(K) is an isomorphism for all n using in-
duction by n. Let X = Ui × Vj, and Y be the union of n − 1 such sets.
Mayer-Vietoris exact sequence gives

... −−→ Hi−1
p (X ∩ Y ) −−→ Hi

p(X ∪ Y ) −−→ Hi
p(X)⊕Hi

p(X) −−→ Hi+1
p (X ∩ Y ) −−→ ...y y y y

... −−→ Hi−1(X ∩ Y ) −−→ Hi(X ∪ Y ) −−→ Hi(X)⊕Hi(X) −−→ Hi+1(X ∩ Y ) −−→ ...

By induction assumption, the vertical arrows in this diagram are isomorphisms
for all terms except for H∗p(X∪Y )−→H∗(X∪Y ). The 5-lemma implies that
they are isomorphisms in all terms. .
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