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Differential graded algebras

DEFINITION: An algebra A is called graded if A is represented as A =
⊕
Ai,

where i ∈ Z, and the product satisfies Ai · Aj ⊂ Ai+j. Instead of
⊕
Ai one

often writes A∗, where ∗ denotes all indices together. Some of the spaces Ai

can be zero, but the ground field is always in A0, so that it is non-empty.

DEFINITION: Let A∗ = ⊕i∈ZAi be a graded algebra. For x ∈ Ai, let x̃ := i.

It is called graded commutative, or supercommutative, if ab = (−1)ã̃bba.

DEFINITION: Differential graded algebra, or DG-algebra is a graded

commutative algebra A∗ = ⊕i∈ZAi with a differential d : A∗ −→A∗+1, d2 = 0,

satisfying the Leibnitz identity d(xy) = (dx)y + (−1)x̃x(dy).

EXAMPLE: De Rham algebra is clearly a DG-algebra.
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Cohomology of a differential graded algebras

CLAIM: Let (A∗, d) be a DG-algebra. Then its cohomology is equipped

with a natural graded commutative multiplication.

Proof: Leibnitz identity implies that a product of closed forms is closed. If

α = dβ and γ is closed, one has α ∧ γ = d(β) ∧ γ = d(β ∧ γ), hence a product

of closed and exact forms is exact. In other words, exact forms are an ideal

in the ring of closed forms, and the quotient ring is the ring of cohomology.

DEFINITION: The ring of cohomology of a manifold is the ring associ-

ated with its de Rham algebra.
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Symplectic manifolds

DEFINITION: A skew-symmetric 2-form ω on a vector space V is called
non-degenerate if for any non-zero x ∈ V , there exists y ∈ V such that
ω(x, y) 6= 0.

CLAIM: Let ω be a non-degenerate form on V . Then there exists a basis
x1, ..., x2n ∈ V ∗, such that ω =

∑n
i=1 x2i−1 ∧ x2i.

DEFINITION: A symplectic form on a manifold M is a closed, everywhere
non-degenerate 2-form. A manifold with a symplectic form is called a sym-
plectic manifold.

REMARK: Symplectic manifold is always oriented. Indeed, at each point
where ω =

∑n
i=1 x2i−1 ∧ x2i, one has ωn = n! x1 ∧ x2 ∧ ... ∧ x2n, hence ωn is a

nowhere degenerate volume form.

CLAIM: Let (M,ω) be a compact manifold, dimRM = 2n. Then the coho-
mology class of ωi, i = 1,2, ..., n is non-zero.

Proof: Since ωn is a volume form, it is non-zero in cohomology. Indeed,
otherwise we would have ωn = dα and

∫
M ωn =

∫
M dα = 0. Therefore, ωi is

also non-zero in cohomology.
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Homogeneous spaces (reminder)

DEFINITION: A Lie group is a smooth manifold equipped with a group

structure such that the group operations are smooth. Lie group G acts on

a manifold M if the group action is given by the smooth map G×M −→M .

DEFINITION: Let G be a Lie group acting on a manifold M transitively.

Then M is called a homogeneous space. For any x ∈ M the subgroup

Stx(G) = {g ∈ G | g(x) = x} is called stabilizer of a point x, or isotropy

subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one

has M = G/H, where H = Stx(G) is an isotropy subgroup.

Proof: The natural surjective map G−→M putting g to g(x) identifies M

with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then Stx(G)g = Sty(G): all the isotropy groups

are conjugate.
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Isotropy representation (reminder)

DEFINITION: Let M = G/H be a homogeneous space, x ∈ M and Stx(G)

the corresponding stabilizer group. The isotropy representation is the nat-

ural action of Stx(G) on TxM .

DEFINITION: A tensor Φ on a homogeneous manifold M = G/H is called

invariant if it is mapped to itself by all diffeomorphisms which come from

g ∈ G.

REMARK: Let Φx be an isotropy invariant tensor on Stx(G). For any y ∈M
obtained as y = g(x), consider the tensor Φy on TyM obtained as Φy := g(Φ).

The choice of g is not unique, however, for another g′ ∈ G which satisfies

g′(x) = y, we have g = g′h where h ∈ Stx(G). Since Φ is h-invariant, the

tensor Φy is independent from the choice of g.

We proved

Theorem 1: G-invariant tensors on M = G/H are in bijective correspon-

dence with isotropy invariant tensors on TxM, for any x ∈M .
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Representations acting transitively on a sphere

THEOREM: Let G be a group acting on a vector space V with scalar product

g. Suppose that G acts transitively on a unit sphere {x ∈ V | g(x) = 1}.
Then a G-invariant bilinear symmetric form is unique up to a constant

multiplier.

Proof. Step 1: Since G preserves the sphere, which is a level set of the

quadratic form g, g is G-invariant.

Step 2: For any G-invariant quadratic form g′, the function x−→ g′(x)
g(x) is

constant on spheres and invariant under homothety, hence it is constant.
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Complex projective space

DEFINITION: Let V = Cn be a complex vector space equipped with a Her-

mitian form h, and U(n) the group of complex endomorphisms of V preserving

h. This group is called the complex isometry group.

DEFINITION: Complex projective space CPn is the space of 1-dimensional

subspaces (lines) in Cn+1.

REMARK: Since U(n+1) acts on lines transitively, CPn is a homogeneous

space, CPn = U(n+1)
U(1)×U(n), where U(1)× U(n) is a stabilizer of a line in Cn+1.

EXAMPLE: CP1 is S2.
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Fubini-Study form

EXAMPLE: Consider the natural action of the unitary group U(n + 1) on

CPn. The stabilizer of a point is U(n)× U(1).

THEOREM: There exists an U(n + 1)-invariant Riemann metric on CPn.

Moreover, such a metric is unique up to a constant multiplier.

Proof. Step 1: To construct a U(n+1)-invariant Riemann form on CPn, we

take a U(n)-invariant form on TxCPn and apply Theorem 1. To show that a

U(n)-invariant form on TxCPn exists, take any Riemannian form and average

it with U(n)-action.

Step 2: Uniqueness follows because the isotropy group acts transitively on a

sphere.

REMARK: This Riemannian structure is called the Fubini-Study metric.
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Fubini-Study form

DEFINITION: Let v ∈ CPn be a point, which we consider as 1-dimensional

subspace in Cn+1. Then TvCPn = HomC(v, v⊥), hence it is a complex vector

space. Denote by I : TvCPn −→ TvCPn the corresponding complex structure

operator, I2 = − Id.

REMARK: Since I ∈ U(1) ⊂ U(n)× U(1) (stabilizer of a point), the Fubini-

Study metric is I-invariant: g(Ix, Iy) = g(x, y). This gives

g(x, Iy) = g(Ix, I2y) = −g(Ix, y) = −g(y, Ix).

In other words, the form ω(x, y) := g(x, Iy) is anti-symmetric.

DEFINITION: Let g be a Fubini-Study metric on CPn. The 2-form ω(x, y) :=

g(x, Iy) is called the Fubini-Study form. It is clearly non-degenerate.

CLAIM: The Fubini-Study form on CPn is symplectic.

Proof: Let ω be a Fubini-Study form. Then dω is an isotropy-invariant 3-form

on TxCPn. However, the isotropy group contains − Id, hence all isotropy-

invariant odd tensors vanish.
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Projective manifolds

DEFINITION: A projective manifold is a submanifold of CPn obtained as

the set of solutions of a system homogeneous polynomial equations

P1(z1, ..., zn+1) = P2(z1, ..., zn+1) = ... = Pk(z1, ..., zn+1) = 0.

REMARK: Let Z ⊂ CPn be a projective manifold. Then TvZ is the set

of vectors x ∈ TvCPn such that the differentials of Pi (in appropriate affine

coordinates) vanish on x. Therefore, I(TvZ) = TvZ.

COROLLARY: Let Z ⊂ CPn be a projective manifold, and g|Z be restriction

of the Fubini-Study form. Then ωZ(x, y) := g(x, Iy) defines a symplectic

form on Z.

Proof: The form ωZ is non-degenerate because g|Z is positive definite, and

closed because restriction of a closed form is closed (this is because restriction

is pullback, and pullback commutes with the de Rham differential).
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Homogeneous and affine coordinates on CPn

DEFINITION: We identify CP1 with the set of n + 1-tuples x0 : x1 : ... : xn
defined up to equivalence x0 : x1 : ... : xn ∼ λx0 : λx1 : ... : λxn, for each

λ ∈ C∗. This representation is called homogeneous coordimates. Affine

coordinates in the chart xk 6= 0 are are x0
xk

: x1
xk

: ... : 1 : ... : xnxk
; the space CPn

is a union of n + 1 affine charts identified with Cn, with the complement to

each chart identified with CPn−1.

DEFINITION: Let π : Cn+1\0−→ CPn be the natural projection. The Hopf

map H : S2n+1 −→ CPn is the restriction of this map to a unit sphere.

CLAIM: Identify the complement of affine chart 1 : x1 : ... : xn with CPn−1,

using the homogeneous coordinates 0 : x1 : ... : xn. Let (x0, x1, ..., xn) ∈
S2n+1 ⊂ Cn+1 be a point on the unit sphere, distinct from (1,0,0, ...,0).

Then lim
t→0

(tx0 : x1 : ... : xn) = H(x1 : ... : xn).

COROLLARY: CPn is obtained from CPn−1 by gluing a cell homeo-

morphic to a unit ball B ⊂ CPn, with x ∈ ∂B = S2n+1 glued to H(x).
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Cellular homology

DEFINITION: A k-dimensional CW-complex is defined inductively as fol-

lows. A 1-dimensional CW-complex is a graph. To define a k-dimensional

CW-complex Xk, let Xk−1 be a k − 1-dimensional CW-complex and let {Bi}
be a collection of k-dimensional closed balls. For each of Bi fix a continuous

map δi : ∂Bi −→Xk−1. Then Xk is obtained as a quotient space of Xk−1
∐
iBi

by a relation v ∼ δi(v) for each v ∈ ∂Bi; in other words, Xk is obtained by

gluing the cells {Bi} to Xk−1 using the maps δi.

DEFINITION: Let Zk−1 ⊂ Xk−1 be a k − 1-dimensional cell of a CW-

complex X, and Zk ⊂ Xk its k-dimensional cell. Consider the map ΨZk−1
:

Xk−1 −→ Sk−1 obtained by gluing the boundary of Zk−1, Xk−2 and the rest

of the k − 1-dimensional cells to a point. Then the composition of δZk :

Sk−1 = ∂Zk −→Xk−1 and ΨZk−1
: Xk−1 −→ Sk−1 is a map from spere to a

sphere. Denote by δ(Zk, Zk−1) its degree. The cell complex of X is the

complex (C∗, d), where Ck is a free abelian group generated by k-cells, and

d(Zk) =
∑
Ri δ(Zk, Ri), where Ri runs from all k− 1-cells such that δ(Zk, Ri) is

non-zero (there are finitely many).
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Cellular homology of CPn

THEOREM: Cohomology of the cell complex of X are equal to its

singular cohomology.

Proof: It was proven in lectures by M. B.

REMARK: In the cellular decomposition of CPn there are n + 1 cells, with

one in each even dimension i = 0,2,4, ...,2n. Therefore, Hi(CPn) = Z when i

is even, 0 6 i 6 2n, and Hi(CPn) = 0 when i is odd.

COROLLARY: The cohomology algebra of CPn is the algebra of trun-

cated polynomials: R[ω]/[ω]n+1, where ω is the Fubini-Study form and [ω]

its cohomology class.

Proof: Since cohomology are dual to homology, one has Hi(CPn,R) = R
when i is even, 0 6 i 6 2n, and Hi(CPn) = 0 when i is odd. Since ωi is never

cohomologous to 0, it generates H2i(CPn,R).
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