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Bialgegras

DEFINITION: Let A•, B• be graded commutative algebras The tensor prod-

uct algebra is A• ⊗B• with the product a⊗ b · a′ ⊗ b′ = (−1)b̃ã
′
aa′ ⊗ bb′.

REMARK: By Künneth formula, H•(X × Y ) is isomorphic to H•(X)⊗H•(Y )

as an algebra.

DEFINITION: Let A• be a graded commutative algebra over a field k. We

say that A• is a bialgebra if it is equipped with a homomorphism of algebras

A
∆−→ A⊗A, called comultiplication which is coassociative, that is, satisfies

∆ ◦∆⊗ IdA = ∆ ◦ IdA⊗∆ : A−→A⊗k A⊗k A.

Counit of a bialgebra is an algebra homomorphism A
ε−→ k which satisfies

∆ ◦ (ε⊗ IdA) = ∆ ◦ (IdA⊗ε) = IdA In the sequel, we shall tacitly assume that

all bialgebras have counit.

REMARK: Coassociative comultiplication means that the dual space

(A•)∗ is equipped with an algebra structure. Compatibility of comultipli-

cation with the multiplication in A• means that this algebra structure on

(A•)∗ is given by a morphism of A-modules.
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Examples of bialgebras

EXAMPLE: Let N be a set equipped with an associative operation N×N m−→
N with unit e (such a structure is called the structure of a monoid, or

semigroup with unit Then the ring of k-valued functions C(N) is a

bialgebra, with comultiplication morphism given by m∗ : C(N)−→ C(N ×
N) = C(N)⊗k C(N), and counit ε(v) = v(e).

REMARK: The notion of a bialgebra is an abstraction of this observation:

heuristically speaking, bialgebras are alrebras of functions on monoids.

EXAMPLE: Let N be a topological space equipped with a continuous map

N ×N m−→ N inducing the structure of a monoid. Consider the comultiplica-

tion on the cohomology algebra H•(N), given by m∗ : H•(N)−→H•(N×N) =

H•(N) ⊗k H•(N). Then H•(N) is a bialgebra. Indeed, coassociativity of

m∗ follows from associativity of N , and counit is given by the pullback to

H•(e) = H0(e) = k.
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H-spaces

DEFINITION: An H-space is a topological space M equipped with a con-

tinuous map M×M µ−→ M (“the multiplication map”) and an element e ∈M
(“the unit”) which satisfy “semigroup conditions up to homotopy”, namely

the following.

* Homotopy associativity: the maps µ × Id ◦mu : M ×M ×M −→M and

Id×µ ◦ µ : M ×M ×M −→M are homotopic.

* Homotopy unit: the map µ : M × {e} −→M is homotopic to identity.

EXAMPLE: Clearly, any toplogical group is an H-space.

CLAIM: Let M be an H-space. Then the cohomology algebra H•(M) is

a bialgebra.
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Loop spaces as H-spaces

EXAMPLE: Let Ω(M,x) be the space of loops, that is, paths γ : [0,1]−→M

starting and ending in x. We can multiply loops by mapping a pair γ1, γ2 :

[0,1]−→M to a loop γ1γ2 [0,1]−→M equal to γ1(2t) on [0,1/2] and to

γ2(2t− 1) on [1/2,1]. The homotopy unit is the constant loop. This defines

the structure of an H-group on the loop space.

REMARK: The topology on the loop space Ω(M,x) can be defined, for

example, by assuming that M is a metric space, and consider the uniform

topology on the maps γ : [0,1]−→M. In more generality, we take the

compact-open topology, with the base sets consisting of all loops which

map a given compact K ⊂ [0,1] to an open set U ⊂M .
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Bialgebras of finite type

Let V • be a graded vector space. Denote by Symgr(V
•) the tensor product

Sym∗(V even)⊗Λ∗(V odd) with a natural grading. On Sym∗(V even)⊗Λ∗(V odd)
one has a natural structure of an algebra.

DEFINITION: Free commutative algebra is a polynomial algebra. Free
graded commutative algebra is Symgr(V

•), where V • is a graded vector
space.

DEFINITION: A graded algebra of finite type is an algebra graded by
i > 0, with all graded components finitely-dimensional.

THEOREM: (Hopf theorem) Let A• be a graded bialgebra of finite type
over a field k of characteristic 0. Then A• is a free graded commutative
k-algebra.

REMARK: This allows one to compute the multiplicative structure on all
Lie groups and on all loop spaces of finite CW-spaces.

REMARK: For any Lie group H∗(G) is finite-dimensional, hence H∗(G) is
isomorphic to a Grassmann algebra. In particular, dimH∗(G) = 2n.
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Heinz Hopf (1894-1971)

Heinz Hopf (1894-1971)
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Primitive elements in a bialgebra

DEFINITION: An element x of a bialgebra is called primitive if ∆(x) =

x⊗ 1 + 1⊗ x.

REMARK: First, the Hopf theorem is proven for all bialgebras, generated

(multiplicatively) by the primitive elements, and then we prove that finite type

bialgebras are generated by primitive elements.

DEFINITION: Let A be a Hopf algebra, and P ⊂ A the space of primitive

elements. Consider the natural homomorphism Symgr(P )
ψ−→ A. We say

that A is free up to degree k if
⊕i6k Symi

gr(P )
ψ−→ A is an embedding.

REMARK: The following lemma immediately implies Hopf theorem for

all bialgebras generated by primitive elements.

LEMMA: Let A• be a bialgebra which is free up to degree k. Then A• is

free up to degree k + 1.
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Hopf theorem for bialgebras generated by primitive elements

LEMMA: Let A• be a bialgebra which is free up to degree k. Then A• is

free up to degree k + 1.

Proof. Step 1: Let {xi} be a basis in the space P of primitive elements.
Consider a polynomial relation of degree k + 1, say, Q(x1, ..., xn) = 0, and
represent it as a polynomial of x1 with coefficients which are polynomials of
x2, ..., xn: Q = Qmxm1 +Qm−1x

m−1
1 +...+Q0. Clearly, ∆(Q) = Q⊗1+1⊗Q+R,

where R ∈ A :=
(⊕i6k Symi

gr(P )
)
⊗
(⊕i6k Symi

gr(P )
)
.

Step 2: Since ψ :
⊕i6k Symi

gr(P )
ψ−→ A is an embedding, and elements of A

belong to imψ⊗ imψ, each element of A can be uniquely represented as a sum
of monomials λ ⊗ µ, where λ, µ are degree 6 k monomials on xi. Denote by
Π : A−→ x1⊗

(⊕i6k Symi
gr(P )

)
the projection to the sum of all monomials of

form x1⊗µ. Since ∆(xi) = xi⊗1+1⊗xi, one has ∆(xm1 ) = (x1⊗1+1⊗x1)m,
giving Π(∆(xm1 )) = mx1 ⊗ xm−1

1 .

Step 3: Let Π(R) := x1 ⊗ R0. Since Q = 0 in A, its component R0 is also
equal to 0. Then Step 2 gives 0 = x1 ⊗ R0 = x1 ⊗

∑m
i=1mx

m−1
1 Qm where Qi

are polynomials defined in Step 1. Then all Qi = 0.
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Algebras with filtration

REMARK: Step 3 of the proof of previous lemma uses char k = 0. Hopf

theorem is false for char k > 0.

DEFINITION: Filtration on an algebra A is a sequence of subspaces A0 ⊃
A1 ⊃ A2 ⊃ ... such that Ai ·Ai ⊂ Ai+j

EXAMPLE: Let I ⊂ A be an ideal. the I-adic filtration is the filtration by

the degrees of the ideal I: A ⊃ I ⊃ I2 ⊃ I3 ⊃ ....

DEFINITION: Let A0 ⊃ A1 ⊃ A2 ⊃ ... be a filtered algebra. The associated

graded algebra is Agr :=
⊕
iAi/Ai+1.

LEMMA: Let A ⊃ I ⊃ I2 ⊃ I3 ⊃ ... be an adic filtration, and Agr :=
⊕
i I
i/Ii+1

the associated graded algebra. Then Agr is generated by its first and

second graded components A/I ⊕ I/I2.

Proof: Indeed, Ik/Ik+1 is generated by products of k elements in (I/I2).
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Proof of Hopf theorem

DEFINITION: Augmentation ideal in a bialgebra is the kernel of the counit
homomorphism ε : A−→ k.

REMARK: The counit condition gives x = [ε⊗IdA](∆(x)) and x = [IdA⊗ε](∆(x)),
hence

∆(x) = 1⊗ x+ x⊗ 1 mod (Z ⊗ Z)

THEOREM: (Hopf theorem) Let A be a graded bialgebra of finite type
over a field k of characteristic 0. Then A is a free graded commutative
k-algebra.

Proof. Step 1: Consider the filtration of A by the degrees of the augmen-
tation ideal A, and let Agr :=

⊕
iZ

i/Zi+1 be the associated graded algebra.
Since ∆(x) = 1⊗ x+ x⊗ 1 mod (Z ⊗Z), one has ∆(Zp) ⊂

⊕
i+j=pZ

i⊗Zj.

Step 2: This implies that all bialgebra operations on A are compatible with
the Z-adic filtration. Therefore, Agr is also a Hopf algebra.

Step 3: The algebra Agr is multiplicatively generated by Z1/Z2. Since
∆(x) = 1⊗x+x⊗1 mod (Z⊗Z), all elements of Z1/Z2 are primitive in Agr.
Therefore, the algebra Agr is generated by primitive elements. This implies
that Agr is a free algebra generated by its space of primitive elements.

11



Cohomology, lecture 10 M. Verbitsky

Proof of Hopf theorem (2)

Step 4: Let xi be a basis in the space of primitive elements of Agr, and

let x̃i be a representative of each of xi ∈ Zk/Zk+1 in Zk, of the same parity

as xi. Since there is no non-trivial relations between xi, there are no

non-trivial relations between x̃i. It remains to show that x̃i generate A.

Step 5: Return to the grading originally given on A. Since ε is compatible

with grading, the ideal Z is a direct sum of its graded components, and the

algebra Agr is equipped with a grading induced from A. Dimensions of the

graded components Ap and A
p
gr of A and Agr are equal, because any filtered

space is isomorphic as a vector space to its associated graded space. Let {yi}
be a set of monomials of xi ∈ Abr giving a basis in the graded component

A
p
gr, and {ỹi} the corresponding monomials in Ap. Since {yi} are linearly

independent, the monomials {ỹi} are linealry independent, and since

dimAp = dimA
p
gr, these monomials generate Ap. We have shown that A•

is freely generated by the vectors {ỹi}.
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