Topologia das Variedades

Cohomology, lecture 10: Hopf theorem

Misha Verbitsky June 12, 2018

IMPA, Tuesdays and Thursdays, 10:30, Sala 224

Bialgegras

DEFINITION: Let A^{\bullet} , B^{\bullet} be graded commutative algebras The **tensor prod**uct algebra is $A^{\bullet} \otimes B^{\bullet}$ with the product $a \otimes b \cdot a' \otimes b' = (-1)^{\tilde{b}\tilde{a}'}aa' \otimes bb'$.

REMARK: By Künneth formula, $H^{\bullet}(X \times Y)$ is isomorphic to $H^{\bullet}(X) \otimes H^{\bullet}(Y)$ as an algebra.

DEFINITION: Let A^{\bullet} be a graded commutative algebra over a field k. We say that A^{\bullet} is a **bialgebra** if it is equipped with a homomorphism of algebras $A \xrightarrow{\Delta} A \otimes A$, called **comultiplication** which is **coassociative**, that is, satisfies

$$\Delta \circ \Delta \otimes \operatorname{Id}_A = \Delta \circ \operatorname{Id}_A \otimes \Delta : A \longrightarrow A \otimes_k A \otimes_k A.$$

Counit of a bialgebra is an algebra homomorphism $A \xrightarrow{\varepsilon} k$ which satisfies $\Delta \circ (\varepsilon \otimes \operatorname{Id}_A) = \Delta \circ (\operatorname{Id}_A \otimes \varepsilon) = \operatorname{Id}_A$ In the sequel, we shall tacitly assume that all bialgebras have counit.

REMARK: Coassociative comultiplication means that the dual space $(A^{\bullet})^{*}$ is equipped with an algebra structure. Compatibility of comultiplication with the multiplication in A^{\bullet} means that this algebra structure on $(A^{\bullet})^{*}$ is given by a morphism of A-modules.

Examples of bialgebras

EXAMPLE: Let *N* be a set equipped with an associative operation $N \times N \xrightarrow{m} N$ with unit *e* (such a structure is called **the structure of a monoid**, or **semigroup with unit** Then **the ring of** *k*-valued functions C(N) is a bialgebra, with comultiplication morphism given by m^* : $C(N) \longrightarrow C(N \times N) = C(N) \otimes_k C(N)$, and counit $\varepsilon(v) = v(e)$.

REMARK: The notion of a bialgebra is an abstraction of this observation: heuristically speaking, **bialgebras are alrebras of functions on monoids**.

EXAMPLE: Let N be a topological space equipped with a continuous map $N \times N \xrightarrow{m} N$ inducing the structure of a monoid. Consider the comultiplication on the cohomology algebra $H^{\bullet}(N)$, given by $m^* \colon H^{\bullet}(N) \longrightarrow H^{\bullet}(N \times N) = H^{\bullet}(N) \otimes_k H^{\bullet}(N)$. Then $H^{\bullet}(N)$ is a bialgebra. Indeed, coassociativity of m^* follows from associativity of N, and counit is given by the pullback to $H^{\bullet}(e) = H^{0}(e) = k$.

H-spaces

DEFINITION: An *H*-space is a topological space *M* equipped with a continuous map $M \times M \xrightarrow{\mu} M$ ("the multiplication map") and an element $e \in M$ ("the unit") which satisfy "semigroup conditions up to homotopy", namely the following.

* Homotopy associativity: the maps $\mu \times \operatorname{Id} \circ mu : M \times M \times M \longrightarrow M$ and $\operatorname{Id} \times \mu \circ \mu : M \times M \times M \longrightarrow M$ are homotopic.

* Homotopy unit: the map μ : $M \times \{e\} \longrightarrow M$ is homotopic to identity.

EXAMPLE: Clearly, any toplogical group is an *H*-space.

CLAIM: Let M be an H-space. Then the cohomology algebra $H^{\bullet}(M)$ is a bialgebra.

Loop spaces as *H*-spaces

EXAMPLE: Let $\Omega(M, x)$ be the space of loops, that is, paths γ : $[0, 1] \longrightarrow M$ starting and ending in x. We can multiply loops by mapping a pair γ_1, γ_2 : $[0, 1] \longrightarrow M$ to a loop $\gamma_1 \gamma_2$ $[0, 1] \longrightarrow M$ equal to $\gamma_1(2t)$ on [0, 1/2] and to $\gamma_2(2t-1)$ on [1/2, 1]. The homotopy unit is the constant loop. This defines **the structure of an** *H*-group on the loop space.

REMARK: The topology on the loop space $\Omega(M, x)$ can be defined, for example, by assuming that M is a metric space, and consider the uniform topology on the maps $\gamma : [0,1] \longrightarrow M$. In more generality, we take the compact-open topology, with the base sets consisting of all loops which map a given compact $K \subset [0,1]$ to an open set $U \subset M$.

Bialgebras of finite type

Let V^{\bullet} be a graded vector space. Denote by $\operatorname{Sym}_{gr}(V^{\bullet})$ the tensor product $\operatorname{Sym}^*(V^{\operatorname{even}}) \otimes \Lambda^*(V^{\operatorname{odd}})$ with a natural grading. On $\operatorname{Sym}^*(V^{\operatorname{even}}) \otimes \Lambda^*(V^{\operatorname{odd}})$ one has a natural structure of an algebra.

DEFINITION: Free commutative algebra is a polynomial algebra. Free graded commutative algebra is $Sym_{gr}(V^{\bullet})$, where V^{\bullet} is a graded vector space.

DEFINITION: A graded algebra of finite type is an algebra graded by $i \ge 0$, with all graded components finitely-dimensional.

THEOREM: (Hopf theorem) Let A^{\bullet} be a graded bialgebra of finite type over a field k of characteristic 0. Then A^{\bullet} is a free graded commutative k-algebra.

REMARK: This allows one to compute the multiplicative structure on all Lie groups and on all loop spaces of finite CW-spaces.

REMARK: For any Lie group $H^*(G)$ is finite-dimensional, hence $H^*(G)$ is isomorphic to a Grassmann algebra. In particular, dim $H^*(G) = 2^n$.

6

Heinz Hopf (1894-1971)

Heinz Hopf (1894-1971)

Primitive elements in a bialgebra

DEFINITION: An element x of a bialgebra is called **primitive** if $\Delta(x) = x \otimes 1 + 1 \otimes x$.

REMARK: First, the Hopf theorem is proven for all bialgebras, generated (multiplicatively) by the primitive elements, and then we prove that finite type bialgebras are generated by primitive elements.

DEFINITION: Let A be a Hopf algebra, and $P \subset A$ the space of primitive elements. Consider the natural homomorphism $\operatorname{Sym}_{gr}(P) \xrightarrow{\psi} A$. We say that A is free up to degree k if $\bigoplus^{i \leq k} \operatorname{Sym}_{gr}^{i}(P) \xrightarrow{\psi} A$ is an embedding.

REMARK: The following lemma immediately implies Hopf theorem for all bialgebras generated by primitive elements.

LEMMA: Let A[•] be a bialgebra which is free up to degree k. Then A[•] is free up to degree k + 1.

Hopf theorem for bialgebras generated by primitive elements

LEMMA: Let A^{\bullet} be a bialgebra which is free up to degree k. Then A^{\bullet} is free up to degree k + 1.

Proof. Step 1: Let $\{x_i\}$ be a basis in the space P of primitive elements. Consider a polynomial relation of degree k + 1, say, $Q(x_1, ..., x_n) = 0$, and represent it as a polynomial of x_1 with coefficients which are polynomials of $x_2, ..., x_n$: $Q = Q_m x_1^m + Q_{m-1} x_1^{m-1} + ... + Q_0$. Clearly, $\Delta(Q) = Q \otimes 1 + 1 \otimes Q + R$, where $R \in \mathfrak{A} := \left(\bigoplus^{i \leq k} \operatorname{Sym}_{gr}^i(P) \right) \otimes \left(\bigoplus^{i \leq k} \operatorname{Sym}_{gr}^i(P) \right)$.

Step 2: Since $\psi : \bigoplus^{i \leq k} \operatorname{Sym}_{gr}^{i}(P) \xrightarrow{\psi} A$ is an embedding, and elements of \mathfrak{A} belong to im $\psi \otimes \operatorname{im} \psi$, each element of \mathfrak{A} can be uniquely represented as a sum of monomials $\lambda \otimes \mu$, where λ, μ are degree $\leq k$ monomials on x_i . Denote by $\Pi : \mathfrak{A} \longrightarrow x_1 \otimes \left(\bigoplus^{i \leq k} \operatorname{Sym}_{gr}^{i}(P) \right)$ the projection to the sum of all monomials of form $x_1 \otimes \mu$. Since $\Delta(x_i) = x_i \otimes 1 + 1 \otimes x_i$, one has $\Delta(x_1^m) = (x_1 \otimes 1 + 1 \otimes x_1)^m$, **giving** $\Pi(\Delta(x_1^m)) = mx_1 \otimes x_1^{m-1}$.

Step 3: Let $\Pi(R) := x_1 \otimes R_0$. Since Q = 0 in A, its component R_0 is also equal to 0. Then Step 2 gives $0 = x_1 \otimes R_0 = x_1 \otimes \sum_{i=1}^m m x_1^{m-1} Q_m$ where Q_i are polynomials defined in Step 1. Then all $Q_i = 0$.

Algebras with filtration

REMARK: Step 3 of the proof of previous lemma uses char k = 0. Hopf theorem is false for char k > 0.

DEFINITION: Filtration on an algebra A is a sequence of subspaces $A_0 \supset A_1 \supset A_2 \supset ...$ such that $A_i \cdot A_i \subset A_{i+j}$

EXAMPLE: Let $I \subset A$ be an ideal. the *I*-adic filtration is the filtration by the degrees of the ideal $I: A \supset I \supset I^2 \supset I^3 \supset ...$

DEFINITION: Let $A_0 \supset A_1 \supset A_2 \supset ...$ be a filtered algebra. The associated graded algebra is $A_{gr} := \bigoplus_i A_i / A_{i+1}$.

LEMMA: Let $A \supset I \supset I^2 \supset I^3 \supset ...$ be an adic filtration, and $A_{gr} := \bigoplus_i I^i/I^{i+1}$ the associated graded algebra. Then A_{gr} is generated by its first and second graded components $A/I \oplus I/I^2$.

Proof: Indeed, I^k/I^{k+1} is generated by products of k elements in (I/I^2) .

M. Verbitsky

Proof of Hopf theorem

DEFINITION: Augmentation ideal in a bialgebra is the kernel of the counit homomorphism $\varepsilon : A \longrightarrow k$.

REMARK: The counit condition gives $x = [\varepsilon \otimes Id_A](\Delta(x))$ and $x = [Id_A \otimes \varepsilon](\Delta(x))$, hence

$$\Delta(x) = 1 \otimes x + x \otimes 1 \mod (Z \otimes Z)$$

THEOREM: (Hopf theorem) Let A be a graded bialgebra of finite type over a field k of characteristic 0. Then A is a free graded commutative k-algebra.

Proof. Step 1: Consider the filtration of A by the degrees of the augmentation ideal A, and let $A_{gr} := \bigoplus_i Z^i/Z^{i+1}$ be the associated graded algebra. Since $\Delta(x) = 1 \otimes x + x \otimes 1 \mod (Z \otimes Z)$, one has $\Delta(Z^p) \subset \bigoplus_{i+j=p} Z^i \otimes Z^j$.

Step 2: This implies that all bialgebra operations on A are compatible with the Z-adic filtration. **Therefore,** A_{gr} is also a Hopf algebra.

Step 3: The algebra A_{gr} is multiplicatively generated by Z^1/Z^2 . Since $\Delta(x) = 1 \otimes x + x \otimes 1 \mod (Z \otimes Z)$, all elements of Z^1/Z^2 are primitive in A_{gr} . Therefore, the algebra A_{gr} is generated by primitive elements. This implies that A_{gr} is a free algebra generated by its space of primitive elements.

Proof of Hopf theorem (2)

Step 4: Let x_i be a basis in the space of primitive elements of A_{gr} , and let \tilde{x}_i be a representative of each of $x_i \in Z^k/Z^{k+1}$ in Z_k , of the same parity as x_i . Since there is no non-trivial relations between x_i , there are no non-trivial relations between \tilde{x}_i . It remains to show that \tilde{x}_i generate A.

Step 5: Return to the grading originally given on A. Since ε is compatible with grading, the ideal Z is a direct sum of its graded components, and the algebra A_{gr} is equipped with a grading induced from A. Dimensions of the graded components A^p and A_{gr}^p of A and A_{gr} are equal, because any filtered space is isomorphic as a vector space to its associated graded space. Let $\{y_i\}$ be a set of monomials of $x_i \in A_{br}$ giving a basis in the graded component A_{gr}^p , and $\{\tilde{y}_i\}$ the corresponding monomials in A^p . Since $\{y_i\}$ are linearly independent, the monomials $\{\tilde{y}_i\}$ are linearly independent, and since dim $A^p = \dim A_{gr}^p$, these monomials generate A^p . We have shown that A^* is freely generated by the vectors $\{\tilde{y}_i\}$.