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Bialgegras

DEFINITION: Let A®, B* be graded commutative algebras ‘I:he tensor prod-
uct algebra is A° ® B* with the product a®b-d’ @ b = (—1)%7aa’ @ bb'.

REMARK: By Kiinneth formula, H*(X x Y) is isomorphic to H*(X) ® H*(Y)
as an algebra.

DEFINITION: Let A® be a graded commutative algebra over a field k. We
say that A® is a bialgebra if it is equipped with a homomorphism of algebras

A 2y A®A. called comultiplication which is coassociative, that is, satisfies

AoARIdy=AocldsQA: A— AQ, A®, A

Counit of a bialgebra is an algebra homomorphism A —=s k which satisfies
Ao(e®lIdy) = Ao (Idy®e) =1d4 In the sequel, we shall tacitly assume that
all bialgebras have counit.

REMARK: Coassociative comultiplication means that the dual space
(A°)* is equipped with an algebra structure. Compatibility of comultipli-
cation with the multiplication in A® means that this algebra structure on
(A*)* is given by a morphism of A-modules.
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Examples of bialgebras

EXAMPLE: Let N be a set equipped with an associative operation N x N BULN
N with unit e (such a structure is called the structure of a monoid, or
semigroup with unit Then the ring of k-valued functions C(N) is a
bialgebra, with comultiplication morphism given by m* : C(N) — C(N x
N)=C(N)®; C(N), and counit e(v) = v(e).

REMARK: The notion of a bialgebra is an abstraction of this observation:
heuristically speaking, bialgebras are alrebras of functions on monoids.

EXAMPLE: Let N be a topological space equipped with a continuous map
N x N % N inducing the structure of a monoid. Consider the comultiplica-
tion on the cohomology algebra H*(N), given by m*: H'(N) — H'(N xN) =
H'(N) ®, H'(N). Then H°'(N) is a bialgebra. Indeed, coassociativity of
m* follows from associativity of N, and counit is given by the pullback to
H*(e) = HO%e) = k.
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H-spaces
DEFINITION: An H-space is a topological space M equipped with a con-
tinuous map M x M - M ( “the multiplication map’ ) and an element e €¢ M

(“the unit”) which satisfy “semigroup conditions up to homotopy”, namely
the following.

* Homotopy associativity: the maps u x Idomu : M x M x M — M and
Idxpou: M x M x M — M are homotopic.

* Homotopy unit: the map u: M x {e} — M is homotopic to identity.
EXAMPLE: Clearly, any toplogical group is an H-space.

CLAIM: Let M be an H-space. Then the cohomology algebra H*(M) is
a bialgebra. =
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LOooOp spaces as H-spaces

EXAMPLE: Let Q(M, z) be the space of loops, that is, paths~y: [0,1] — M
starting and ending in . We can multiply loops by mapping a pair ~v1,vo :
[0,1] — M to a loop ~17v2 [0,1] — M equal to ~1(2t) on [0,1/2] and to
v (2t — 1) on [1/2,1]. The homotopy unit is the constant loop. This defines
the structure of an H-group on the loop space.

REMARK: The topology on the loop space Q2(M,x) can be defined, for
example, by assuming that M is a metric space, and consider the uniform
topology on the maps ~ : [0,1] — M. In more generality, we take the
compact-open topology, with the base sets consisting of all loops which
map a given compact K C [0,1] to an open set U C M.
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Bialgebras of finite type

Let V* be a graded vector space. Denote by Symg.(V*) the tensor product
Sym*(Veven) g A*(V°dd) with a natural grading. On Sym*(Veven) g A*(10dd)
one has a natural structure of an algebra.

DEFINITION: Free commutative algebra is a polynomial algebra. Free
graded commutative algebra is Symg-(V°), where V* is a graded vector
space.

DEFINITION: A graded algebra of finite type is an algebra graded by
1 > 0, with all graded components finitely-dimensional.

THEOREM: (Hopf theorem) Let A® be a graded bialgebra of finite type
over a field k of characteristic 0. Then A° is a free graded commutative
k-algebra.

REMARK: This allows one to compute the multiplicative structure on all
Lie groups and on all loop spaces of finite CW-spaces.

REMARK: For any Lie group H*(G) is finite-dimensional, hence H*(G) is
iIsomorphic to a Grassmann algebra. In particular, dim H*(G) = 2".
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Heinz Hopf (1894-1971)

e

A% = !
Heinz Hopf (1894-1971)
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Primitive elements in a bialgebra

DEFINITION: An element z of a bialgebra is called primitive if A(z) =
r®R14+1Kx.

REMARK: First, the Hopf theorem is proven for all bialgebras, generated
(multiplicatively) by the primitive elements, and then we prove that finite type
bialgebras are generated by primitive elements.

DEFINITION: Let A be a Hopf algebra, and P C A the space of primitive

elements. Consider the natural homomorphism Symg.(P) i> A. We say

that A is free up to degree k if @'<FSym! (P) %, Ais an embedding.

REMARK: The following lemma immediately implies Hopf theorem for
all bialgebras generated by primitive elements.

LEMMA: Let A® be a bialgebra which is free up to degree k. Then A° is
free up to degree Lt + 1.
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Hopf theorem for bialgebras generated by primitive elements

LEMMA: Let A® be a bialgebra which is free up to degree k. Then A° is
free up to degree k + 1.

Proof. Step 1: Let {z;} be a basis in the space P of primitive elements.
Consider a polynomial relation of degree k + 1, say, Q(x1,...,zn) = 0, and
represent it as a polynomial of :1:1 with coefficients which are polynomials of
22, 0y Tt Q = QP+ Qp 127 1 +...4+Qq. Clearly, A(Q) = Q®1+10Q+R,
where R € 2 1= (EBK’“ Sym? T(P)) (EBK’“ Sym? T(P))

Step 2: Since ¥ : @ISFSym? T(P) i> A is an embedding, and elements of 2

belong to imy ®ima, each element of 2 can be uniquely represented as a sum
of monomials A ® u, where A, u are degree < k monomials on x;. Denote by
MNm: A—z1® (EBK’“ Sym (P)) the projection to the sum of all monomials of
form z; @u. Since A(z;) = 2;®1+1R®x;, one has A(2]') = (2101 +1®x1)™,
giving MN(A (")) = mz; @ 2]~ L

Step 3: Let N(R) ;=21 ® Rg. Since @ =0 in A, its component Rg is also
equal to 0. Then Step 2 gives 0 =x1 ® Rp = x1 ® >~ 1m;r;1 Qm where Q);
are polynomials defined in Step 1. Then all Q; =0. =
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Algebras with filtration

REMARK: Step 3 of the proof of previous lemma uses chark = 0. Hopf
theorem is false for char k > 0.

DEFINITION: Filtration on an algebra A is a sequence of subspaces Ag D
A]_ D) AQ D ... such that AZ . Az C AZ‘I‘J

EXAMPLE: Let I C A be an ideal. the I-adic filtration is the filtration by
the degrees of theideal I: ADIDI?2>I3D ...

DEFINITION: Let Ag D A1 D A D ... be a filtered algebra. The associated
graded algebra is Agr .= D; A;/A;41.

LEMMA: Let AD T D I?>1I3> .. bean adic filtration, and Ay := @, I*/I*T1
the associated graded algebra. Then Ay, is generated by its first and
second graded components A/I @ I/I7.

Proof: Indeed, I¥/15%+1 is generated by products of k elements in (I/I%). m
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Proof of Hopf theorem

DEFINITION: Augmentation ideal in a bialgebra is the kernel of the counit
homomorphism e: A — k.

REMARK: The counit condition gives x = [eRId 4](A(x)) and z = [Id 4 ®<](A(x)),
hence

Alz)=1z+2®1 mod (Z® Z)

THEOREM: (Hopf theorem) Let A be a graded bialgebra of finite type
over a field k of characteristic 0. Then A is a free graded commutative
k-algebra.

Proof. Step 1: Consider the filtration of A by the degrees of the augmen-
tation ideal A, and let Agr 1= P; ZZ/ZZ"'1 be the associated graded algebra.
Since A(z) =1®z+z®1 mod (Z® Z), one has A(ZP) C @4 j=p 2" ® Z7.

Step 2: This implies that all bialgebra operations on A are compatible with
the Z-adic filtration. Therefore, A, is also a Hopf algebra.

Step 3: The algebra A, is multiplicatively generated by Zl/ZQ. Since
Alz) =1®z+2z®1 mod (Z® Z), all elements of Z1/Z2 are primitive in Agy.
Therefore, the algebra A4 is generated by primitive elements. This implies
that Agr is a free algebra generated by its space of primitive elements.
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Proof of Hopf theorem (2)

Step 4: Let z; be a basis in the space of primitive elements of Ay, and
let Z; be a representative of each of z; € ZF/Zk*1 in Z,, of the same parity
as x;. Since there is no non-trivial relations between z;, there are no
non-trivial relations between z;. It remains to show that z; generate A.

Step 5: Return to the grading originally given on A. Since ¢ is compatible
with grading, the ideal Z is a direct sum of its graded components, and the
algebra Agr is equipped with a grading induced from A. Dimensions of the
graded components AP and Agf,« of A and Agr are equal, because any filtered
space is isomorphic as a vector space to its associated graded space. Let {y;}
be a set of monomials of z; € A, giving a basis in the graded component
AL, and {g;} the corresponding monomials in AP. Since {y;} are linearly
independent, the monomials {y;} are linealry independent, and since
dim AP = dim A%,, these monomials generate AP. We have shown that A
is freely generated by the vectors {y;}. =
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