VHS, home assignment: Hodge decomposition on a torus

Rules: This is a home assignment for the next week. We shall discuss the solutions next Tuesday.

Exercise 1.1. Let G be a connected Lie group acting on a compact Riemannian manifold M by isometries. Using the uniqueness of the harmonic representative in any cohomology class, prove that all harmonic forms on M are G-invariant.

Exercise 1.2. Let $T = \mathbb{R}^n/\mathbb{Z}^n$ be a compact torus, equipped with a constant metric. We consider T as a group equipped with the natural free, transitive action on itself. Using the uniqueness of the harmonic representative in any cohomology class, prove that all harmonic forms on T are T-invariant. Prove that all T-invariant forms are harmonic.

Exercise 1.3. Let V be a real vector space. Prove that the Hodge structures of weight 1 on V are in bijective correspondence with linear operators $I:V\longrightarrow V$ such that $I^2=-\operatorname{Id}$.

Exercise 1.4. Let V be a real vector space, dim V = 2n and \mathfrak{W} the set of all Hodge structures of weight 1 on V. Identify \mathfrak{W} with an open subset in the Grassmannian $\operatorname{Gr}_{\mathbb{C}}(n, 2n)$. Prove that $\dim_{\mathbb{C}} \mathfrak{W} = n^2$.

Exercise 1.5. Let $T = W/\mathbb{Z}^{2n}$ be a compact complex torus, $W = \mathbb{C}^n$ and $V = (\mathbb{R}^{2n}, I)$ be the same space considered as real space, with I acting as $\sqrt{-1}$ ld. Prove that $H^1(T, \mathbb{R}) = V^*$, and this identification is compatible with the Hodge decomposition on V^* .

Definition 1.1. Let $Z \subset M$ be a d-dimensional submanifold in an n-dimensional compact manifold. The **fundamental class** of Z is defined as a class $[Z] \in H^{n-d}(M)$ which satisfies $\int_M \eta \wedge [Z] = \int_Z \eta$ for all $\eta \in H^d(M)$.

Exercise 1.6. Prove that the fundamental class is defined uniquely by this expression. Prove that $[Z] \in H^{n-d}(M, \mathbb{Z})$.

Exercise 1.7. Construct a complex manifold M and a non-trivial complex submanifold $Z \subset M$ such that [Z] = 0.

Exercise 1.8. Let $Z \subset M$ be a p-dimensional complex submanifold in an n-dimensional compact Kähler manifold. Prove that [Z] is an integer class of type (n-p, n-p). Prove that $[Z] \neq 0$.

Exercise 1.9. Let $V_{\mathbb{C}} = V^{1,0} \oplus V^{0,1}$ be a Hodge structure of weight 1 on $V = \mathbb{R}^4$. Prove that V is uniquely determined by the line $\Lambda^{2,0}(V) \subset \Lambda^2_{\mathbb{C}}(V_{\mathbb{C}})$.

Exercise 1.10. Prove that the space all Hodge structures of weight 1 on $V = \mathbb{R}^4$ is identified with a subvariety $Q \subset \mathbb{P}\Lambda^2 V_{\mathbb{C}}$ where Q is defined by the equations $\Omega \wedge \Omega = 0$, $\Omega \wedge \bar{\Omega} > 0$.

Hint. Use the previous exercise, and set Ω as a generator of $\Lambda^{2,0}(V)$.

Exercise 1.11. Using this identification, prove that a vector $\alpha \in \Lambda^2 V$ is of type (1,1) if and only if $\alpha \wedge \Omega = 0$ and $\alpha \wedge \bar{\Omega} = 0$.

Exercise 1.12. Let \mathfrak{W}_0 be the space of all Hodge structures of weight 1 on $V = \mathbb{R}^4$ such that a given non-zero class $\alpha \in \Lambda^2 V$ has type (2,2), and \mathfrak{W} be the space of all Hodge structures of weight 1 on V. Prove that $\dim_{\mathbb{R}} \mathfrak{W}_0 = \dim_{\mathbb{R}} \mathfrak{W} - 2$.

Exercise 1.13. Prove that there exists a complex torus of complex dimension 2 which does not contain complex curves.

Hint. Use the previous exercise and Exercise 1.8.