Variations of Hodge structures

lecture 2: Period maps and Torelli theorems

Misha Verbitsky

IMPA, sala 232

January 3, 2024

Hodge structures (reminder)

DEFINITION: Let $V_{\mathbb{R}}$ be a real vector space. **A** (real) Hodge structure of weight w on a vector space $V_{\mathbb{C}} = V_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$ is a decomposition $V_{\mathbb{C}} = \bigoplus_{p+q=w} V^{p,q}$, satisfying $\overline{V^{p,q}} = V^{q,p}$. It is called rational Hodge structure if one fixes a rational lattice $V_{\mathbb{Q}}$ such that $V_{\mathbb{R}} = V_{\mathbb{Q}} \otimes \mathbb{R}$, and an integer Hodge structure if one fixes an integer lattice $V_{\mathbb{Z}} \subset V_{\mathbb{Q}}$. A Hodge structure is equipped with U(1)-action, with $u \in U(1)$ acting as u^{p-q} on $V^{p,q}$. Morphism of Hodge structures is a rational map which is U(1)-invariant.

REMARK: Rational structure on a real vector space V is a \mathbb{Q} -subspace $V_{\mathbb{Q}} \subset V$ such that $V = V_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{R}$. Integer structure on a real vector space V is a \mathbb{Z} -sublattice $V_{\mathbb{Z}} \subset V$ such that $V = V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{R}$.

REMARK: A real Hodge structure $V_{\mathbb{C}} = \bigoplus_{p+q=w} V^{p,q}$ on $V_{\mathbb{R}}$ is rational (integer) if $V_{\mathbb{R}}$ is equipped with a rational (integer) structure.

Period space

DEFINITION: Let V be a real vector space, and $V_{\mathbb{C}} = \bigoplus_{p+q=w} V^{p,q}$ a Hodge structure. Assume that $p,q \geqslant r$ The Hodge filtration is the following filtration on the vector space $V_{\mathbb{C}}$:

$$0 \subset V^{r,w-r} \subset V^{r,w-r} \oplus V^{r+1,w-r-1} \subset V^{r,w-r} \oplus V^{r+1,w-r-1} \oplus V^{r+2,w-r-2} \oplus \dots$$

Denote by F_n the n-th term of this filtration, $F_n := \bigoplus_{i=0}^{n-1} V^{r+i,w-r-i}$. Clearly, $V^{p,w-p} = F_{p-r+1} \cap \overline{F}_{w-p-r+1}$ (prove this), hence the Hodge filtration determines the Hodge structure uniquely.

REMARK: Two subspaces $W_1, W_2 \subset V$ intersect transversally when $W_1 + W_2 = V$. Therefore, F_{p-r+1} and $\overline{F}_{w-p-r+1}$ intersect transversally.

DEFINITION: Let $V_{\mathbb{C}}=\bigoplus_{p+q=w}V^{p,q}$ a Hodge structure on V. Fix dimensions of all $V^{p,q}$; this determines the dimensions of F_i . The period space is the space of all flags $0\subset F_1\subset ...\subset F_{w-2r}=V$ such that F_{p-r+1} and $\overline{F}_{w-p-r+1}$ intersects transversally for all p.

CLAIM: The points in the period space are in bijective correspondence with the set of all Hodge structures on V having the same numbers $\dim V^{p,w-p}$.

REMARK: The period space is an open subset in the corresponding partial flag space, which is considered as a complex projective manifold.

Polarization (reminder)

DEFINITION: Polarization on a rational Hodge structrure of weight w is a U(1)-invariant non-degenerate 2-form $h \in V_{\mathbb{Q}}^* \otimes V_{\mathbb{Q}}^*$ (symmetric or antisymmetric depending on parity of w) which satisfies

$$-\sqrt{-1}^{p-q}h(x,\overline{x}) > 0 \qquad (*)$$

("Hodge-Riemann relations") for each non-zero $x \in V^{p,q}$.

REMARK: U(1)-invariance of a pairing h means that the pairing of $V^{p,q}$ with V^{p_1,q_1} vanishes unless $p-q=q_1-p_1$, or, equivalently, $p=q_1,q=p_1$.

DEFINITION: The objects of the category of real (rational, integer) Hodge structures are Hodge structures, morphisms are \mathbb{R} -linear (\mathbb{Q} -linear, \mathbb{Z} -linear) maps of vector spaces which preserve the Hodge decomposition.

DEFINITION: The objects of the category of rational or integer polarized Hodge structures are rational or integer Hodge structures admitting a polarization, and morphisms are morphisms of Hodge structures. The polarization is not fixed, the morphisms are not necessarily compatible with the polarization.

Period space for polarized Hodge structures

DEFINITION: Let V be a real vector space, and $V_{\mathbb{C}}=\bigoplus_{p+q=w}V^{p,q}$ a Hodge structure. Fix a polarization $h\in V^*\otimes V^*$ (symmetric or antisymmetric depending on parity of w). The period space of Hodge structures with polarization h is the space of all flags $0\subset F_1\subset ...\subset F_{w-2r}=V$ such that F_{p-r+1} and $\overline{F}_{w-p-r+1}$ intersects transversally for all p, and h restricted to this intersection satisfies the Hodge-Riemann condition $-\sqrt{-1}\,^{2p-w}h(x,\overline{x})>0$, for all non-zero $x\in F_{p-r+1}\cap \overline{F}_{w-p-r+1}$, and the pairing of all other Hodge components vanishes.

The Hodge-Riemann condition is open, but the condition "pairing of all other Hodge components vanishes" is closed. However, it can be formulated in terms of the Hodge filtration.

CLAIM: Let $h \in V^* \otimes V^*$ be a pairing. Then h vanishes on all Hodge components except $V^{p,q} \times V^{q,p}$ if and only if $F_p^{\perp} = \overline{F}_{w-p-r}$.

Proof: Left as an exercise.

Complex manifolds (reminder)

DEFINITION: Let M be a smooth manifold. An almost complex structure is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case I is called a **complex structure operator**. A manifold with an integrable almost complex structure is called a **complex manifold**.

"The usual definition": A complex manifold is a smooth manifold with an atlas of open balls $\{U_i\}$, each U_i diffeomorphic to $B \subset \mathbb{C}^n$ and the transition functions complex analytic.

THEOREM: (Newlander-Nirenberg)

These two definitions are equivalent.

Kähler manifolds (reminder)

DEFINITION: A Hermitian metric on an almost complex manifold is a Riemannian metric g such that g(Ix, Iy) = g(x, y). The corresponding Hermitian form is $\omega(x, y) := g(Ix, y)$, which is non-degenerate and antisymmetric.

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then the following conditions are equivalent.

- (i) The complex structure I is integrable, and the Hermitian form ω is closed.
- (ii) One has $\nabla(I) = 0$, where ∇ is the Levi-Civita connection

$$\nabla : \operatorname{End}(TM) \longrightarrow \operatorname{End}(TM) \otimes \Lambda^{1}(M).$$

Proof: http://verbit.ru/MATH/KAHLER-2020/slides-Kahler-2020-10.pdf ■

DEFINITION: A complex Hermitian manifold M is called **Kähler** if either of these conditions hold. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called **the Kähler class** of M. The set of all Kähler classes is called **the Kähler cone**.

Teichmüller space

DEFINITION: The space of almost complex structures is an infinite-dimensional Fréchet manifold X_M of all tensors $I^2 = -\operatorname{Id}_{TM}$, equipped with the natural Fréchet topology.

Definition: Let M be a compact complex manifold, and $Diff_0(M)$ a connected component of its diffeomorphism group (the group of isotopies). Denote by Comp the space of complex structures on M, and let Teich := $Comp / Diff_0(M)$. We call it the Teichmüller space.

REMARK: The space of $\mathsf{Diff}_0(M)$ -orbits in a small neightbourhood of a point in Comp is always a **finite-dimensional complex space** (Kodaira-Spencer-Kuranishi-Douady). However, the quotient $\mathsf{Comp} \, / \, \mathsf{Diff}_0(M)$ is often non-Hausdorff.

DEFINITION: We call $\Gamma := Diff(M)/Diff_0(M)$ the mapping class group.

REMARK: The topology of the space Teich $/\Gamma$ is often bizzarre. However, its points are in bijective correspondence with equivalence classes of complex structures.

Kodaira-Spencer stability theorem

REMARK: A complex structure I on M is called **of Kähler type** if (M,I) admits a Kähler metric.

THEOREM: (Kodaira-Spencer stability theorem)

Let B be a manifold and $I_t, t \in B$ be a smooth family of complex structures on a compact manifold M parametrized by $t \in B$. Denote by $B \subset B$ the set of all $t \in B$ such that I_t is of Kähler type. Then B_0 is open in B.

Proof: http://verbit.ru/MATH/LCK-2014/lck-07.pdf, page 18. ■

REMARK: From now on, speaking of Teichmüller spaces, we will always tacitly consider the Teichmüller space of complex structures of Kähler type. By Kodaira-Spencer stability theorem, this space is open in the Teichmüller space of all complex structures.

Period map

Let M_t be a smooth family of compact complex manifolds of Kähler type, $t \in \mathbb{R}$. Using degeneration of the Hodge to de Rham spectral sequence and semicontinuity of cohomology, we obtain the following

PROPOSITION: Let M_t be a smooth family of compact complex manifolds of Kähler type, $t \in \mathbb{R}$. Then the numbers dim $H^{p,q}(M_t)$ are constant in t.

Proof: S. R. Bell, R. Narasimhan, Proper holomorphic mappings of complex spaces, Encyclopaedia Math. Sci. 69, 1990. ■

This implies that the Hodge structure on $H^*(M_t)$ has the same combinatorial type and the same period space.

DEFINITION: Let (M,I) be a compact complex manifold of Kähler type, and Teich $\ni I$ the corresponding connected component of the space of complex structures of Kähler type on M. With each $I_1 \in$ Teich we can associate the Hodge structure $\bigoplus_{p+q=w} H^{p,q}(M,I_1)$ on cohomology. This defines **the period map** Per: Teich $\longrightarrow \mathbb{P}$ er, where \mathbb{P} er is the period space of Hodge structures of this particular combinatorial type on $H^w(M,\mathbb{R})$.

"Torelli theorems"

REMARK: A theorem of Torelli type is a result claiming that Per: Teich \longrightarrow Per is locally an embedding, or locally a diffeomorphism, or an embedding globally, or a diffeomorphism globally.

The name "Torelli theorem" is due to André Weil, André Weil (1957), "Zum Beweis des Torellischen Satzes", Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. IIa: 32-53.

Chez les Weil. André et Simone

André Weil: 6 May 1906 - 6 August 1998.

"Simone et André à Penthiévre, 1918-1919"

Torelli-type theorems: torus, Riemann surface

THEOREM: Let M be a compact torus, and Per: Teich $\longrightarrow \mathbb{P}$ er the period map associated with $H^1(M)$. Then Per is a diffeomorphism.

THEOREM: Let M be a compact 1-dimensional complex manifold (that is, a Riemann surface), and Per: Teich $\longrightarrow \mathbb{P}$ er the period map associated with $H^1(M)$. Then Per is a closed embedding.

Pseudopolarizations

DEFINITION: Let V be a vector space, and $V_{\mathbb{C}} = \bigoplus_{p+q=w} V^{p,q}$ a Hodge structure. A bilinear form $h \in V^* \otimes_{\mathbb{R}} V^*$ is called **a pseudo-polarization** if it is non-degenerate, U(1)-invariant, symmetric for w even and anti-symmetric for w odd.

REMARK: U(1)-invariance means that $q(V^{p,q},V^{p_1,q_1})=0$ unless $p=q_1$ and $q=p_1$. Therefore, U(1)-invariance of h is equivalent to $F_p^{\perp}=\overline{F}_{w-p-r}$, where F_i is the Hodge filtration defined above.

DEFINITION: Let V be a real space equipped with a Hodge structure $V_{\mathbb{C}} = \bigoplus_{p+q=w} V^{p,q}$, and h a pseudopolarization. The period space $\mathbb{P}er_h$ of pseudopolarized Hodge structures is the space of all filtrations $0 \subset F_1 \subset ... \subset F_{2w-2r}$ such that $V_{\mathbb{C}} = \bigoplus_p F_p \cap \overline{F}_{w-p-r+1}$ and $F_p^{\perp} = \overline{F}_{w-p-r}$.

REMARK: Note that $F_p^{\perp} = \overline{F}_{w-p-r}$ implies that the filtration F_i is determined by the first w-r terms. We identify $\mathbb{P}\mathrm{er}_h$ with an open subset of the partial flag space $0 \subset F_1 \subset ... \subset \overline{F}_{w-r} \subset V$ with F_i the same dimension, and such that for all p the spaces F_p , $\overline{F}_{w-p-r+1}$ intersect transversally, giving $V_{\mathbb{C}} = \bigoplus_p F_p \cap \overline{F}_{w-p-r+1}$; here F_p for p > w-r are recovered from $F_p^{\perp} = \overline{F}_{w-p-r}$.

REMARK: $\mathbb{P}er_h$ is equipped with a structure of a complex manifold, because it is an open subset in the space of partial flags, which is projective.

The Hausdorff reduction

DEFINITION: Two points x,y in a topological space M are called **non-separable** if any open neighbourhoods of x and y intersect. Denote by \sim an equivalence relation generated by non-separability. **Hausdorf reduction** of M is M/\sim with the quotient topology.

A caution: The Hausdorf reduction does not need to be Hausdorff.

REMARK: Clearly, the period map $Per: Teich \longrightarrow Per$ is factorized through the Hausdorff reduction map $Teich \longrightarrow Teich / \sim$. Indeed, any continuous map to a Hausdorff space is factorized through the Hausdorff reduction map.

A global Torelli theorem for K3 surfaces

DEFINITION: A K3 surface is a Kähler complex compact 2-dimensional manifold M with $b_1 = 0$ and $c_1(M, \mathbb{Z}) = 0$.

Let $\mathbb{P}er_q$ be the pseudopolarized period space for the Hodge structure on $H^2(M)$, where q denotes the Poincare pairing.

THEOREM: Let M be a K3 surface, and Teich a connected component of its Teichmüller space. Then non-separability is an equivalence relation, and for any non-separable $I_1, I_2 \in \text{Teich}$, the corresponding K3 surfaces are isomorphic. Moreover, the period map $\text{Per}: \text{Teich}/\sim \longrightarrow \mathbb{P}\text{er}_q$ associated with $H^2(M)$ is a homeomorphism.

Proof: https://arxiv.org/abs/0908.4121 ■

Hyperkähler manifolds

DEFINITION: A complex manifold is called **holomorphically symplectic** if it is equipped with a non-degenerate, closed (2,0)-form.

DEFINITION: For the present purposes, **hyperkähler manifold of maximal holonomy** is a compact, holomorphically symplectic manifold M of Kähler type which satisfies $\pi_1(M) = 0$ and $H^{2,0}(M) = \mathbb{C}$.

REMARK: It is not very hard to see that any smooth Kähler-type deformation of a hyperkähler manifold of maximal holonomy is again a hyperkähler manifold of maximal holonomy. Let Teich be a connected component of the Teichmüller space of Kähler-type deformations of the complex structure on a hyperkähler manifold of maximal holonomy. Then all points of Teich correspond to holomorphically symplectic deformations of M which also have maximal holonomy.

A global Torelli theorem for hyperkähler manifolds

CLAIM: Let M be a hyperkähler manifold of maximal holonomy. Then $H^2(M)$ is equipped with a Diff(M)-invariant form q, called **Bogomolov-Beauville-Fujiki form** (BBF form), defining a pseudo-polarization on $H^2(M)$ for any complex structure of hyperkähler type.

Denote by $\mathbb{P}er_q$ the pseudopolarized period space for the Hodge structure on $H^2(M)$ and the BBF form q.

THEOREM: Let M be a hyperkähler manifold of maximal holonomy, and Teich its Teichmüller space. Then non-separability is an equivalence relation, and for any non-separable $I_1, I_2 \in \text{Teich}$, the corresponding complex manifolds are bimeromorphic. Moreover, the period map Per: Teich $/ \sim \longrightarrow \mathbb{P}\text{er}_q$ associated with $H^2(M)$ is a homeomorphism.

Proof: https://arxiv.org/abs/0908.4121 ■

4-dimensional cubic hypersurface

For all results about 4-dimensional cubics, the universal reference is "The geometry of cubic hypersurfaces" by D. Huybrechs, https://www.math.uni-bonn.de/people/huybrech/Notes.pdf

PROPOSITION: Let M be a smooth cubic hypersurface in \mathbb{P}^5 . Then $H^4(M)$ has Hodge structure with $\dim H^{1,3}(M) = \dim H^{3,1}(M) = 1$ and $\dim H^{2,2}(M) = 20$.

THEOREM: A Kähler deformation of a 4-dimensional cubic hypersurface is a 4-dimensional cubic hypersurface.

Proof: Huybrechts, Corollary 3.14. ■

This defines a period map Per: Teich $\longrightarrow \mathbb{P}$ er, associated with the Hodge structure on H^4 . Here \mathbb{P} er denotes the polarized period space; polarization comes from the restriction of the Fubini-Study form on $\mathbb{C}P^5$.

THEOREM: Let Teich be the Teichmüller space of a 4-dimensional cubic hypersurface, and Per: Teich \longrightarrow Per its period map. Then Per is injective, and its image is open.

Calabi-Yau manifolds

DEFINITION: A compact complex n-manifold M of Kähler type with trivial canonical bundle $K_M := \Lambda^{n,0}(M)$ and $H^{n,0}(M) = \mathbb{C}$ is called a Calabi-Yau manifold.

REMARK: A Kähler deformation of a Calabi-Yau manifold is Calabi-Yau (do this as an exercise).

THEOREM: (Bogomolov-Tian-Todorov)

Let $Per: Teich \longrightarrow Per$ be the period map associated with the middle cohomology of a Calabi-Yau manifold. Then Teich admits a structure of a smooth manifold, and Per is smooth with non-degenerate differential (and hence, Per is a local diffeomorphism to its image).

Proof: F. Catanese, A Superficial Working Guide to Deformations and Moduli, arXiv:1106.1368. ■

Symmetric spaces

For literature on symmetric spaces, see A. Besse, Einstein manifolds, or P. Petersen, Riemannian Geometry.

DEFINITION: A symmetric space is a complete Riemannian manifold X such that for all $x \in X$ there exists an isometry ι_x of X fixing x and acting as -1 in T_xX .

EXERCISE: Prove that isometry group acts transitively on any symmetric manifold. This implies that any symmetric space has form G/K, where G is a Lie group and K its compact subgroup.

DEFINITION: A symmetric space is **irreducible** if it is not locally isometric to a product.

PROPOSITION: Let M be a non-compact irreducible symmetric space. Then M = G/K, where G is a simple Lie group and K its maximal compact subgroup.

Cartan duality

THEOREM: (Cartan duality) For any non-compact irreducible symmetric space G/K, denote by G_1 the compact form of the Lie group G. Then G_1/K is a compact symmetric space, and any compact symmetric space is obtained this way.

REMARK: Cartan duality defines a bijective correspondence between compact and non-compact irreducible symmetric spaces.

Exercise 1: Let (M, I, g) be an almost complex symmetric space. Assume that the isometry ι_x preserves I. Prove that (M, I, g) is Kähler.

REMARK: É. Cartan classified Kähler irreducible symmetric spaces. There are 4 series, associated with classical Lie groups, and 2 special examples, associated with special Lie groups E_6 and E_7 .

Two of these examples are associated with variations of Hodge structures.

$Gr_{++}(V)$ is a Kähler symmetric space

Recall that O(p,q), p,q>0 has 4 connected components. They are distinguished by preserving the orientation on positive and on negative definite subspaces of maximal dimension. Denote by $O^+(2,n)$ a subgroup consisting of isometries which preserve orientation on positive 2-planes; it has 2 connected components.

PROPOSITION: Let V be a vector space of signature (2,n), and $Gr_{++}(V)$ the Grassmannian of positive oriented planes. Then $Gr_{++}(V)$ is a Kähler symmetric space, and $O^+(V)$ acts on $Gr_{++}(V)$ preserving the complex structure and the Kähler metric.

Proof. Step 1: It is not hard to see that $T_W \operatorname{Gr}(V) = \operatorname{Hom}(W,V/W)$ where $W \subset V$ is a point of the Grassman space $\operatorname{Gr}(V)$ considered as a subspace in V. In our case, the scalar product is positive definite on W and negative definite on V/W, defining an O(V)-invariant positive definite scalar product on $T\operatorname{Gr}_{++}(V)$. Consider an isometry $\tau \in O^+(V)$ acting trivially on W and as $-\operatorname{Id}$ on W^\perp . Then τ acts on $\operatorname{Gr}_{++}(V)$ preserving W and acting as $-\operatorname{Id}$ on $T_W\operatorname{Gr}(V) = \operatorname{Hom}(W,V/W)$. Therefore, $\operatorname{Gr}_{++}(V)$ is a symmetric space.

$Gr_{++}(V)$ is a Kähler symmetric space (2)

PROPOSITION: Let V be a vector space of signature (2,n), and $Gr_{++}(V)$ the Grassmannian of positive oriented planes. Then $Gr_{++}(V)$ is a Kähler symmetric space, and $O^+(V)$ acts on $Gr_{++}(V)$ preserving the complex structure and the Kähler metric.

Proof. Step 1: ...Therefore, $Gr_{++}(V)$ is a symmetric space.

Step 2: Since W is oriented and positive definite, it is equipped with a counterclockwise rotation by $\pi/2$, denoted by I_W . Extend this map to Hom(W,V/W) acting as identity on V/W. This defines an $O^+(V)$ -invariant almost complex structure on $O^+(V)$.

Step 3: As follows from Exercise 1, these operators define a Kähler structure on $Gr_{++}(V)$.

EXERCISE: Prove that an $O^+(V)$ -invariant complex structure on $Gr_{++}(V)$ is unique, and $O^+(V)$ -invariant metric is unique up to a scalar multiplier.

Polarized Hodge structures of K3 type

DEFINITION: A polarized Hodge structure of K3 type is a polarized Hodge structure $V, V_{\mathbb{C}} = V^{2,0} \oplus V^{1,1} \oplus V^{0,2}$ such that dim $V^{2,0} = 1$.

REMARK: Clearly, the line $V^{2,0}\subset V_{\mathbb C}$ uniquely determines a polarized Hodge structure: $V^{0,2}=\overline{V^{2,0}}$, and $V^{1,1}=(V^{2,0}\oplus V^{0,2})^{\perp}$. The Hodge-Riemann condition is equivalent to $h|_V^{2,0}$ being Hermitian and $h(V^{2,0},V^{2,0})=0$. This gives the following claim

CLAIM: The period space of polarized Hodge structures of K3 type is

Per :=
$$\{l \in \mathbb{P}V \mid h(l, l) = 0, h(l, \bar{l}) > 0.\}$$

Period space for Hodge structures of K3 type

PROPOSITION: Let V be a real vector space, and h a symmetric form of signature 2, n. The period space

$$Per\{l \in \mathbb{P}V \mid h(l, l) = 0, h(l, \bar{l}) > 0.\}$$

is identified with $SO(2,n)/SO(2) \times SO(n)$, which is a Grassmannian of positive oriented 2-planes in V.

Proof. Step 1: Given $l \in \mathbb{P}H^2(M,\mathbb{C})$, the space generated by $\operatorname{Im} l$, $\operatorname{Re} l$ is **2-dimensional**, because $h(l,l)=0, h(l,\bar{l})>0$ implies that $l\cap V=0$.

Step 2: This 2-dimensional plane is positive, because $h(\text{Re } l, \text{Re } l) = h(l + \bar{l}, l + \bar{l}) = 2h(l, \bar{l}) > 0.$

Step 3: Conversely, for any positive 2-dimensional plane $W \subset V$, the quadric $\{l \in W \otimes_{\mathbb{R}} \mathbb{C} \mid h(l,l) = 0\}$ consists of two lines; a choice of a line is determined by orientation.

REMARK: We have shown that the period space of polarized Hodge structures of K3 type is a Kähler symmetric space.