Variations of Hodge structures

lecture 4: Deligne-Griffiths-Schmid's fixed part theorem

Misha Verbitsky

IMPA, sala 232

January 17, 2024

Hodge structures (reminder)

DEFINITION: Let $V_{\mathbb{R}}$ be a real vector space. **A** (real) Hodge structure of weight w on a vector space $V_{\mathbb{C}} = V_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$ is a decomposition $V_{\mathbb{C}} = \bigoplus_{p+q=w} V^{p,q}$, satisfying $\overline{V^{p,q}} = V^{q,p}$. It is called rational Hodge structure if one fixes a rational lattice $V_{\mathbb{Q}}$ such that $V_{\mathbb{R}} = V_{\mathbb{Q}} \otimes \mathbb{R}$, and an integer Hodge structure if one fixes an integer lattice $V_{\mathbb{Z}} \subset V_{\mathbb{Q}}$. A Hodge structure is equipped with U(1)-action, with $u \in U(1)$ acting as u^{p-q} on $V^{p,q}$. Morphism of Hodge structures is a rational map which is U(1)-invariant.

REMARK: Rational structure on a real vector space V is a \mathbb{Q} -subspace $V_{\mathbb{Q}} \subset V$ such that $V = V_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{R}$. Integer structure on a real vector space V is a \mathbb{Z} -sublattice $V_{\mathbb{Z}} \subset V$ such that $V = V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{R}$.

REMARK: A real Hodge structure $V_{\mathbb{C}} = \bigoplus_{p+q=w} V^{p,q}$ on $V_{\mathbb{R}}$ is rational (integer) if $V_{\mathbb{R}}$ is equipped with a rational (integer) structure.

Variations of Hodge structures (reminder)

DEFINITION: Let M be a complex manifold. A variation of Hodge structures (VHS) on M is a complex vector bundle (B, ∇) with a flat connection equipped with a parallel anti-complex involution and a Hodge structure, $B = \bigoplus_{p+q=w} B^{p,q}$ which satisfy "Griffiths transversality condition": $\nabla^{1,0}(B^{p,q}) \subset B^{p,q} \oplus B^{p+1,q-1}$.

DEFINITION: A polarized VHS (integer, rational VHS) is a VHS (B, ∇) , $B = \bigoplus_{p+q=w} B^{p,q}$ such that ∇ preserves the polarization and the integer or rational lattice.

EXAMPLE: Let $\pi: M \longrightarrow X$ be a proper holomorphic surjective submersion. Consider the bundle $V:=R^k\pi_*(\mathbb{C}_M)$ with the fiber in x the k-th cohomology of $\pi^{-1}(x)$, the Hodge decomposition coming from the complex structure on $\pi^{-1}(x)$, and the Gauss-Manin connection. This defines a variation of Hodge structures.

REMARK: Consider a term

$$F_{d+1} := B^{p-r,q} \oplus B^{p-r-1,q+1} \oplus ... \oplus B^{p-r-d,q+d}$$

of the Hodge filtration. Then $F_{d+1} \subset B$ is a holomorphic sub-bundle.

Proof: As we have already seen, $\nabla_{\theta^{0,1}} F_{d+1} \subset F_{d+1}$.

Fixed part theorem

All VHS today are assumed to be real and polarized. We don't assume that the VHS or the polarization are rational.

The main result today:

THEOREM: (Deligne-Griffiths-Schmid's fixed part theorem)

Let $(B, \nabla, B = \bigoplus_{p+q=w} B^{p,q})$ be a variation of polarized Hodge structures over a compact base, and b a parallel section of B. Then all (p,q)-components of b are also parallel.

Proof: Later.

COROLLARY: Let $(B, \nabla, B = \bigoplus_{p+q=w} B^{p,q})$ be a variation of polarized Hodge structures over a compact base. Assume that the monodromy of ∇ is trivial. Then the Hodge decomposition is preserved by ∇ , that is, the corresponding variation of Hodge structures is constant.

Proof: Consider a basis $e_1, ..., e_n$ of $B|_x$ such that each e_i belongs to some $B^{p,q}$. Since the monodromy of ∇ is trivial, we can extend each e_i to a parallel section \tilde{e}_i of B. The Hodge components of each of \tilde{e}_i are parallel, but it has only one Hodge component at x. Therefore, \tilde{e}_i has only one Hodge component at each point of M, and the corresponding Hodge decomposition is also constant. \blacksquare

Kodaira-Spencer map

Let $\nabla: B \longrightarrow B \otimes \Lambda^1 M$ be a connection on a vector bundle $B = \bigoplus B_i$. We decompose the connection onto two components, $\nabla = \nabla_0 + K$, where ∇_0 takes each component B_i to $B_i \otimes \Lambda^1 M$, and $K(B_i) \subset \bigoplus_{j \neq i} B_j \otimes \Lambda^1 M$.

CLAIM: In this situation, ∇_0 is a connection, and K is $C^{\infty}M$ -linear.

Proof. Step 1: Denote by $\Pi_i: B \longrightarrow B_i$ the projection to component B_i . Denote the projection $\Pi_i: B \otimes \Lambda^1 M \longrightarrow B_i \otimes \Lambda^1 M$ by the same letter. Then $\nabla_0 = \sigma_i \Pi_i(\nabla(\Pi_i(b)))$, hence for each section $b \in B_i$, and $f \in C^{\infty}M$, one has

$$\nabla_{0}(fb) = \Pi_{i}(\nabla(fb)) = \Pi_{i}(df \otimes b + f\nabla(b)) = df \otimes b + f\nabla_{0}(b).$$

This is why ∇_0 is a connection.

Step 2: The difference $\nabla - \nabla_0$ applied to $b \in B_i$ is equal to $\sum_{j \neq i} \Pi_j(\nabla(fb))$, and $\Pi_j(\nabla(fb)) = \Pi_j(df \otimes b + f\nabla(b)) = f\Pi_j(\nabla(b))$. Therefore, K is $C^{\infty}M$ -linear. \blacksquare

REMARK: Let $(B, \nabla, B = \bigoplus B^{p,q})$ be a variation of Hodge structures, and $\nabla = \nabla_0 + K$ its decomposition obtained as above. The Griffiths transversality condition is rewritten as $K(B^{p,q}) \subset \Lambda^{0,1} \otimes B^{p+1,q-1} \oplus \Lambda^{1,0} \otimes B^{p-1,q+1}$.

DEFINITION: In these assumptions, we denote the component of K which takes $B^{p,q}$ to $\Lambda^{0,1}\otimes B^{p+1,q-1}$ (for all indices (p,q)) by KS. It is called the Kodaira-Spencer map.

Connections and holomorphic structures

DEFINITION: Let V be a smooth complex vector bundle with connection $\nabla: V \longrightarrow \Lambda^1(M) \otimes V$ and holomorphic structure $\overline{\partial}: V \longrightarrow \Lambda^{0,1}(M) \otimes V$. Consider the Hodge type decomposition of ∇ , $\nabla = \nabla^{0,1} + \nabla^{1,0}$, where

$$\nabla^{0,1}: V \longrightarrow \Lambda^{0,1}(M) \otimes V, \quad \nabla^{1,0}: V \longrightarrow \Lambda^{1,0}(M) \otimes V.$$

We say that the connection ∇ is compatible with the holomorphic structure if $\nabla^{0,1} = \overline{\partial}$.

DEFINITION: A holomorphic Hermitian vector buncle is a smooth complex vector bundle equipped with a Hermitian metric and a holomorphic structure.

DEFINITION: Chern connection on a holomorphic Hermitian vector bundle is a unitary connection compatible with the holomorphic structure.

Chern connection: existence and uniqueness

THEOREM: Every holomorphic Hermitian vector bundle admits a Chern connection, which is unique.

Proof. Step 1: Given a complex vector bundle B, define complex conjugate bundle \overline{B} as the same \mathbb{R} -bundle with complex conjugate \mathbb{C} -action. Then a connection ∇ on B defines a connection $\overline{\nabla}$ on \overline{B} , with $\overline{\nabla}^{1,0} = \overline{\nabla^{0,1}}$ and $\overline{\nabla}^{0,1} = \overline{\nabla^{1,0}}$.

Step 2: Define $\nabla^{1,0}$ -operator on a complex vector bundle B as a map $B \stackrel{\nabla^{1,0}}{\longrightarrow} \Lambda^{1,0}(M) \otimes B$, satisfying $\Lambda^{1,0}(fb) = \partial(f) \otimes b + f \nabla^{1,0}(b)$ for any $f \in C^{\infty}M, b \in B$. A $\overline{\partial}$ -operator on B defines an $\nabla^{1,0}$ -operator on \overline{B} , and vice versa.

Step 3: Hermitian form defines an isomorphism of complex vector bundles $B \stackrel{g}{\longrightarrow} \overline{B}^*$. Holomorphic structure on B defines a $\overline{\partial}$ -operator on $\overline{B} = B^*$, which is the same as $\nabla^{1,0}$ -operator $\nabla_g^{1,0}$ on B. This gives a connection operator $\nabla := \overline{\partial} + \nabla_g^{1,0}$ on B, which is Hermitian by construction.

REMARK: When people say "the curvature of a holomorphic Hermitian line bundle", they speak about the curvature of the Chern connection.

Curvature of the Chern connection

PROPOSITION: Curvaure Θ_B of a Chern connection on B is a (1,1)-form: $\Theta_B \in \Lambda^{1,1}(M) \otimes \text{End}(B)$.

Proof. Step 1: Let B be a Hermitan bundle. Consider the operator $\varphi \stackrel{\iota}{\longrightarrow} -\varphi^*$ acting on $\operatorname{End}(B)$, where $\varphi \longrightarrow \varphi^*$ denotes the Hermitian conjugation. Since $\iota^2 = \operatorname{Id}$, and this is an anticomplex operator, it defines the real structure, and its fixed point set is \mathfrak{u}_B , the Lie algebra of anti-Hermitian matrices.

Step 2: Since the Chern connection preserves the Hermitian structure g, one has $\nabla(g) = 0$, which gives $\nabla^2(g) = 0$. This means that $\Theta_B \in \Lambda^2 M \otimes \mathfrak{u}_B$, and this for is real with respect to the real structure defined by ι .

Step 3: The (0,2)-part of the curvature vanishes, because $\overline{\partial}^2 = 0$. The (2,0)-part of the curvature vanishes, because $\iota(\Theta_B) = \Theta_B$, and **any real structure on** $\operatorname{End}(B)$ **exchanges** $\Lambda^{2,0}(M) \otimes \operatorname{End}(B)$ **and** $\Lambda^{0,2}(M) \otimes \operatorname{End}(B)$.

COROLLARY: For the Chern connection $\nabla = \overline{\partial} + \nabla^{1,0}$ on B, one has $\Theta_B = \{\nabla^{1,0}, \overline{\partial}\}.$

COROLLARY: The curvature of a holomorphic Hermitian line bundle is a closed (1,1)-form.

Curvature of the Chern connection on a line bundle

REMARK: Let B he a Hermitian holomorphic line bundle, and $b \in \Gamma(B)$ a nowhere vanishing holomorphic section. Then

$$d|b|^2 = (\nabla^{1,0}b, b) + (b, \nabla^{1,0}b) = 2\operatorname{Re}(\nabla^{1,0}b, b),$$

which gives

$$\nabla^{1,0}b = \frac{\partial |b|^2}{|b|^2}b = 2\partial \log |b|b.$$

We obtain that $\Theta_B(b) = 2\overline{\partial}\partial \log |b|b$, hence $\Theta_B = -2\partial \overline{\partial} \log |b|$.

REMARK: The same formula holds for B of any rank. Consider a holomorphic section b of B, and let $(\Theta(b),b)$ be the corresponding 2-form on M. Then $(\Theta(b),b)(x,y)=\overline{\partial}\partial|b|^2(x,y)$.

The associated graded bundle

DEFINITION: Let $F_0 \subset F_1 \subset ... \subset F_n$ be a filtration on a holomorphic vector bundle. The bundle $\bigoplus F_i/F_{i-1}$ is called **the associated graded vector bundle**. It is also holomorphic.

REMARK: Let $(B, \nabla, B = \bigoplus B^{p,q})$ be a variation of Hodge structures. We identify $B^{p,q}$ as the associated graded bundle to the Hodge filtration on B. Since the Hodge filtration is holomorphic, this puts another holomorphic structure on $\bigoplus B^{p,q}$. This second holomorphic structure is distinct from the holomorphic structure on B induced by $\overline{\partial} := \nabla^{0,1}$.

Chern connection on the associated graded bundle of VHS

THEOREM: Let $(B, \nabla, B = \bigoplus B^{p,q}, h)$ be a polarized variation of Hodge structures, and $\nabla = \nabla_0 + K$ the corresponding decomposition of ∇ , with $\nabla_0(\bigoplus B^{p,q}) \subset B^{p,q} \otimes \Lambda^1 M$. Then ∇_0 is the Chern connection $\bigoplus B^{p,q}$, associated with the holomorphic structure on the associated graded bundle defined above, and the Hermitian structure obtained from the polarization.

Proof. Step 1: To simplify notations, I would assume that the decomposition $B=\oplus B^{p,q}$ starts from (p+q,0). A holomorphic section α of $B^{p,q}$ comes from a holomorphic section $\tilde{\alpha}$ of the corresponding component of the Hodge filtration $F_p=\oplus_{i=0}^{i=q}B^{p-i+q,i}$. By Griffiths transversality, $\nabla_0^{0,1}(\tilde{\alpha})$ is equal to the sum of $\nabla^{0,1}(\tilde{\alpha})$ (which vanishes because $\tilde{\alpha}$ is holomorphic) and $K^{0,1}(\tilde{\alpha}) \in F_{p-1} \otimes \Lambda^{0,1}(M)$. The second term vanishes after passing to the associated graded bundle $\oplus F_i/F_{i-1}$. We have shown that $\nabla_0^{0,1}$ is the holomorphic structure operator of the associated graded bundle $\oplus B^{p,q}$.

Step 2: Consider sections $\alpha \in B^{p,q}$ and $\beta \in B^{q,p}$. The connection ∇_0 is h-orthogonal if

$$d(h(\alpha,\beta)) = h(\nabla_0 \alpha, \beta) + h(\alpha, \nabla_0 \beta).$$

Since ∇ is h-orthogonal, this equation would follow from $h(K\alpha, \beta) + h(\alpha, K\beta) = 0$. which is clear from the Hodge type decomposition of $K\alpha$ and $K\beta$.

The second fundamental form

DEFINITION: Let $0 \longrightarrow B_1 \longrightarrow B_2 \longrightarrow B_1/B_2 \longrightarrow 0$ be an exact sequence of vector bundles, and $\nabla: B_2 \longrightarrow B_2 \otimes \Lambda^1 M$ a connection on B_1 . The second fundamental form of ∇ is the map $A:=B_1 \longrightarrow (B_2/B_1) \otimes \Lambda^1 M$ obtained as a composition of $\nabla|_{B_1}: B_1 \longrightarrow B_2 \otimes \Lambda^1 M$ with the projection $B_2 \otimes \Lambda^1 M \longrightarrow (B_2/B_1) \otimes \Lambda^1 M$.

REMARK: This map is clearly $C^{\infty}(M)$ -linear.

The second fundamental form and the curvature

THEOREM: Let (B,h) be a Hermitian vector bundle and ∇ an orthogonal connection, $B_1 \subset B$ a sub-bundle, and $B_2 := B_1^{\perp}$ its orthogonal complement. Denote by $A_1 : B_1 \longrightarrow B_2 \otimes \Lambda^1 M$, $A_2 : B_2 \longrightarrow B_1 \otimes \Lambda^1 M$ the second fundamental forms, and let ∇_1, ∇_2 be connections in B_1, B_2 obtained by applying $\nabla : B_i \longrightarrow B \otimes \Lambda^1 M$ and projecting to $B_i \otimes \Lambda^1 M$. Then

- (i) $\nabla = \nabla_1 + \nabla_2 + A_1 + A_2$.
- (ii) Consider the second fundamental forms $A_1 \in \Lambda^1 M \otimes \text{Hom}(B_1, B_2)$ and $A_2 \in \Lambda^1 M \otimes \text{Hom}(B_2, B_1)$. Then for any $x \in TM$, one has $h(A_1(b_1), b_2) = h(b_1, A_2(b_2))$, in other words, $A_1 = A_2^T$.
- (iii) Let $\Lambda^2 M \otimes \operatorname{End}(B) \stackrel{\Pi}{\longrightarrow} \Lambda^2 M \otimes \operatorname{End}(B_1)$, be the orthogonal projection and let Θ_{∇_1} , Θ_{∇} be the curvature of ∇_1 , ∇ . Then $\Theta_{\nabla_1} + A_1 \wedge A_2 = \Pi(\Theta_{\nabla})$.

Proof: (i) is clear, and (iii) follows from (i), because $\Pi(\Theta_{\nabla}) = \Pi((\nabla_1 + \nabla_2 + A_1 + A_2)^2) = \Pi(\nabla_1^2 + A_1 \wedge A_2)$. The condition (ii) is implied by taking

$$0 = \nabla(h)(b_1, b_2) = d(h(b_1, b_2)) + h(\nabla(b_1), b_2) + h(b_1, \nabla(b_2)) =$$

= $h(A_1(b_1), b_2) + h(b_1, A_2(b_2)).$

The curvature of a holomorphic sub-bundle

Let now $B_1 \subset B$ be a holomorphic sub-bundle of a holomorphic Hermitian bundle (B,h). Then $\nabla^{0,1}(B_1) \subset B_1 \otimes \Lambda^{0,1}(M)$, which gives $A_1 \in \Lambda^{1,0}(\operatorname{Hom}(B_1,B_2))$, where $B_2 = B_1^{\perp}$. As before, we denote by $\Lambda: \Lambda^2(M) \otimes \operatorname{End}(B) \longrightarrow \operatorname{End}(B)$ the operator adjoint to multiplication by ω .

CLAIM: Let $B_1 \subset B$ be a holomorphic sub-bundle of a holomorphic Hermitian bundle (B,h), $B_2 := B_1^{\perp}$, and $A_1 \in \Lambda^1 M \otimes \text{Hom}(B_1,B_2)$, $A_2 \in \Lambda^1 M \otimes \text{Hom}(B_2,B_1)$ the corresponding second fundamental forms. Then $\sqrt{-1} \operatorname{Tr} \Lambda(A_1 \wedge A_2) \geqslant 0$, and the inequality is strict wherever $A_1 \neq 0$.

Proof: For each $z\in T_m^{1,0}M$, the operator $A_1(z)$ is anti-Hermitian and adjoint to $A_2(\overline{z})$ because $h(A_1(b_1),b_2)=h(b_1,A_2(b_2))$. Therefore, the operator $A:=A_1\wedge A_2(z,\overline{z})$ is a square of an anti-Hermitian operator. **The square of an anti-Hermitian operator** R is a Hermitian operator with negative eigenvalues: $h(R(b),R(b))=-h(R^2(b),b)\geqslant 0$. Since $\Lambda(A_1\wedge A_2)=\sum_i A_1\wedge A_2(z_i,\overline{z}_i)$ for some orthonormal basis $z_1,...,z_n\in T_m^{1,0}M$, and each of these terms is either zero or sign-definite of the same sign, this implies $\sqrt{-1}$ $\text{Tr}\,\Lambda(A_1\wedge A_2)=\sqrt{-1}$ $\sum_i A_1\wedge A_2(z_i,\overline{z}_i)\geqslant 0$, with equality at $m\in M$ only when $A_1|_{T_mM}=0$.

Plurisubharmonic functions

DEFINITION: A real (1,1)-form ω on a complex manifold is called **positive** if $\omega(x, Ix) \ge 0$ for any $x \in TM$.

DEFINITION: A smooth real-valued function ψ on a complex manifold is called **plurisubharmonic** (psh) if $dd^c\psi = -\sqrt{-1}\,\partial\overline{\partial}\psi$ is a positive (1,1)-form. **EXAMPLE:** $|x|^2$ on \mathbb{C}^n is psh.

LEMMA 1: Let $\mu: \mathbb{R} \longrightarrow \mathbb{R}$ be a monotonously non-decreasing, convex smooth function, and $f \in C^{\infty}M$ plurisubharmonic. Then $f(\psi)$ is also psh. **Proof:** Chain rule gives

$$dd^c(\mu(f)) = \mu'(f(z))^2 dd^c f + \mu''(f(z)) df \wedge d^c f.$$

DEFINITION: A holomorphic Hermitian line bundle L is called **positive** if $-\sqrt{-1} \Theta$ is positive, where Θ is its curvature form.

CLAIM: Let v be a holomorphic section of a positive holomorphic Hermitian line bundle L. Then $|v|^2$ is psh.

Proof: Curvature of L is $\partial \overline{\partial} \log |v|^2$, and this form is positive, hence $\psi := \log |v|^2$ is psh. Then $|v|^2 = e^{\psi}$ is psh by Lemma 1. \blacksquare

PROPOSITION: Let (M,I) be a compact complex manifold, and φ a psh function on M. Then $\varphi = const$.

Proof: This statement immediately follows from the strong maximum principle, http://verbit.ru/IMPA/CV-2023/slides-cv-27.pdf. ■

Kodaira-Spencer map and parallel sections

THEOREM: Let $(B, \nabla, B = \bigoplus B^{p,q}, h)$ be a polarized variation of Hodge structures, and $\nabla = \nabla_0 + K$ the corresponding decomposition of ∇ . Consider a parallel section v of B, and let $v = \sum v^{p,q}$ be its Hodge components. Denote by p_0 the smallest p for which $v^{p,q} \neq 0$, and let and $u := v^{p_0,q_0}$ be the corresponding Hodge component. Then h is ∇_0 -holomorphic, that is, $u \in \ker \nabla_0^{0,1}$ and $h(u,\overline{u})$ is psh.

Proof. Step 1: To prove that u is ∇_0 -holomorphic, we note that $0 = \nabla^{0,1}(v) = \nabla^{0,1}_0(v) + K^{0,1}(v)$. Then $0 = \nabla^{0,1}_0(v^{p,q}) + K^{0,1}(v^{p-1,q+1})$ is the (p,q)-component of $\nabla^{0,1}(v)$, giving $\nabla^{0,1}_0(u) = -K^{0,1}(v^{p_0-1,q_0+1})$. Since p_0 is the smallest possible, $v^{p_0-1,q_0+1} = 0$, hence $\nabla^{0,1}_0(u) = 0$.

Step 2: From the same argument as above, $dd^c(\log h(u,\overline{u})) = \Theta_{B^{p_0,q_0}}$, where $\Theta_{B^{p_0,q_0}}$ is the curvature of the Chern connection on B^{p_0,q_0} . However, $\Theta_{B^{p_0,q_0}} = \Theta_{\nabla} + \{K^{1,0},K^{0,1}\} = \{K^{1,0},K^{0,1}\}$ because $\nabla_0 = \nabla + K^{1,0} + K^{0,1}$, and the curvature of the Chern connection has type (1,1) (here $\{\cdot,\cdot\}$ denotes the anticommutator). It remains to show that the form $R := \{K^{1,0},K^{0,1}\}$ satisfies $\sqrt{-1}(R(u),u)(x,Ix) \geqslant 0$ for all $x \in TM$.

Step 3: Clearly, $K^{0,1}(u) = 0$, which gives $R(u) = K^{0,1}K^{1,0}u$. Then $(R(u), u) = -(K^{1,0}u, K^{1,0}u)$, because $(K^{1,0})^T = -\overline{K^{0,1}}$; this follows from ∇_0 and ∇ preserving polarization.

Fixed part theorem

THEOREM: (Deligne-Griffiths-Schmid's fixed part theorem)

Let $(B, \nabla, B = \bigoplus_{p+q=w} B^{p,q})$ be a variation of polarized Hodge structures over a compact base, and v a parallel section of B. Then all (p,q)-components of v are also parallel.

Proof. Step 1: Let $v^{p,q}$ are Hodge components of v, and $u := v^{p_0,q_0}$ the non-zero component with smallest p. We are going to prove that $\nabla(u) = 0$. Replacing v by v - u, we arrive in the same situation as described by the fixed part theorem, but now v has a smaller number r of Hodge components. Repeating this argument, we arrive at the situation when r = 1 and then the only Hodge component of v is parallel by construction.

Step 2: Let $v^{p,q}$ are Hodge components of v, and $u:=v^{p_0,q_0}$ the non-zero component with smallest p. Then h(u,u) is plurisubharmonic, hence constant, because any plurisubharmonic function on a compact manifold is constant. Since $dd^ch(u,u)=(K^{1,0}u,K^{1,0}u)$, this implies that K(u)=0, and $\nabla(u)=\nabla_0(u)$.

Step 3: Since $dd^ch(u,u)=0$, and u is holomorphic, u satisfies $0=\partial\overline{\partial}h(u,u)=h(\nabla_0^{1,0}u,\nabla_0^{1,0}u)$. This implies $\nabla_0^{0,1}u=\nabla_0^{1,0}u=0$. **Then** $\nabla(u)=\nabla_0(u)=0$ **(Step 2).** By Step 1, this assertion implies the fixed part theorem.