Variations of Hodge structures

lecture 8: Lefschetz pencils

Misha Verbitsky

IMPA, sala 232

February 14, 2024

Lefschetz pencils

REMARK: Let $f \in \mathcal{O}_M$ be a holomorphic function on a complex manifold, and $x \in M$ its critical point. The Hessian is the matrix of second derivatives of f.

EXERCISE: Prove that the Hessian form $\operatorname{Hess}(f) \in \operatorname{Sym}^2(T_x^*M)$ is independent from the choice of coordinates.

DEFINITION: Let $X \subset M$ be a hypersurface locally given by an equation f = 0, for a holomorphic function $f \in \mathcal{O}_M$, and $x \in X$ its singular point. Then $df|_{T_xM} = 0$. We say that x is an ordinary double point of X if Hess(f) is a non-degenerate 2-form on T_xM .

DEFINITION: Let L be a holomorphic line bundle on a compact complex manifold M, and $W \subset H^0(M,L)$ a 2-dimensional subspace. The zero sets of $x \in W \setminus 0$ is a collection D_t of divisors parametrized by $\mathbb{P}H^0(M,L) = \mathbb{C}P^1$. It is called a pencil of divisors. Its base locus is the intersection of all $D_t, t \in \mathbb{C}P^1$.

DEFINITION: A Lefschetz pencil is a pencil of divisors such that its base locus B is smooth and all D_t are smooth along B, and all singularities of D_t are ordinary double points.

Projective dual variety

Let $\mathbb{P}^n = \mathbb{P}V$ be a complex projective space. We denote $\mathbb{P}V^*$ by $\check{\mathbb{P}}^n$, and identify it with the set of all projective hyperplanes in \mathbb{P}^n .

DEFINITION: Let $X \subset \mathbb{P}^n$ be a complex manifold. The projectively dual variety X^{\vee} is the space of all hyperplanes $V \in \check{\mathbb{P}}^n$ tangent to some point in X.

DEFINITION: Consider the set $P_X \subset \mathbb{P}^n \times \check{\mathbb{P}}^n$ of all pairs $x \in X, W \in \check{\mathbb{P}}^n$ such that W is tangent in x to X. The variety P_X is called **projectivised** conormal bundle. Clearly, X^\vee is the image of P_X under the projection map $\pi: \mathbb{P}^n \times \check{\mathbb{P}}^n \longrightarrow \check{\mathbb{P}}^n$.

REMARK: P_X is the set of all pairs $(x \in C, \lambda \in \check{\mathbb{P}}^n)$ such that the corresponding functional $\lambda^{\circ} \in V^*$ vanishes on T_xC . In other words, $\lambda^{\circ} \in (T\mathbb{P}^n/TX)^*$. This is why P_X is identified with the projectivised conormal bundle to $X \subset \mathbb{P}^n$.

DEFINITION: Let $S \subset \mathbb{P}^n$ be a smooth hypersurface. The Gauss map takes a smooth point $x \in S$ to the tangent space $T_x S \in \check{\mathbb{P}}^n$.

REMARK: If X is a hypersurface, X^{\vee} is its image under the Gauss map.

Conical Lagrangial varieties

DEFINITION: A Lagrangian subvariety in a holomorphic symplectic manifold is a subvariety which is Lagrangian in all its smooth points.

DEFINITION: Let $V = \mathbb{C}^n$ be a vector space, considered as a holomorphic symplectic manifold and $L \subset V \times V^*$ a Lagrangian subvariety. It is called **conical** if it is invariant under dilation of V^* .

EXAMPLE: Let $X \subset V$ be a complex subvariety, and C_X its conormal bundle, that is, the closure of the set of all $(x,y) \in V \times V^*$ such that x is smooth and $y|_{T_X}X = 0$. Clearly, C_X is a conical Lagrangian subvariety.

CLAIM: Any irreducible conical Lagrangian subvariety $L \subset V \times V^*$ is obtained this way.

Proof: Consider the projection $\pi:L \longrightarrow V$. Since L is conical, its image is also the image of its projectivization, which is proper, hence $Y:=\pi(L)$ is a complex subvariety of V. Since C_Y and L have the same dimension, to prove that $L=C_Y$ it would suffice to show that $L\subset C_Y$. Equivalently, we need to prove that for any $(v,\nu)\in L$, we have $v\in Y$, and $\nu|_{T_vY}=0$. The

first is clear from the definition. To prove the second, we notice that vector $(0,\nu)\in T_{(v,\nu)}(V\times V^*)$ is tangent to the dilatation, hence belongs to $T_{(v,\nu)}L$. When $v\in Y$ is smooth, the projection $d\pi: T_{(v,\nu)}L\longrightarrow T_vY$ is subjective. Since $(0,\nu)$ is symplectic orthogonal to any $(x,0)\in T_{(v,\nu)}L$, this gives $\nu|_{T_vY}=0$ for any smooth point $v\in Y$.

Lagrangian duality

DEFINITION: Let $A \subset V$ be a \mathbb{C}^* -invariant algebraic subvariety, and $C_A \subset V \times V^*$ its conormal variety. Consider C_A as a conical Lagrangian subvariety of $V^* \times V$. Then C_A is a conormal subvariety of $A^{\vee} \subset V^*$. The variety A^{\vee} is called **the Lagrangian dual** of A.

PROPOSITION: $(A^{\vee})^{\vee} = A$.

Proof: Let C_A^{\vee} be the subset of $V^* \times V$ obtained from C_A by permutation of two components. Since A is \mathbb{C}^* -invariant, C_A^{\vee} is a conical Lagrangian subvariety, hence C_A^{\vee} is the conormal variety of $\pi(C_A^{\vee}) = A^{\vee}$, that is, $C_A^{\vee} = C_{A^{\vee}}$. Then the second dual of A^{\vee} is obtained by projecting C_A^{\vee} to the second component; by definition, this gives A again. \blacksquare

REMARK: The idea to deduce projective duality from Lagrangian duality is due to *Evgueni Tevelev*, *Projectively Dual Varieties*, *arXiv:math/0112028*.

Projective duality theorem

DEFINITION: Open affine cone of a projective manifold $X \subset \mathbb{P}V$ is its preimage $X^{\circ} \subset V$ under the projection map $V \setminus 0 \longrightarrow \mathbb{P}V$. Closed affine cone is its closure, which is an affine subvariety in V.

REMARK: Let $X \subset \mathbb{P}V$ be a projective variety, and $X^{\circ} \subset V$ its affine cone. The projection $\pi(C_{X^{\circ}})$ to the second argument is a \mathbb{C}^* -invariant subset of V^* . By definition, its closure coincides with X^{\vee} .

THEOREM: Let $X \subset \mathbb{P}V$ be a projective variety. The double dual of X is X again, $(X^{\wedge})^{\wedge} = X$.

Proof: The dual of X is projectivization of the Lagrangian dual to the cone X° , hence the second projective dual is the projectivization of the Lagrangian second dual to X° . However, the Lagrangian second dual to X° is X° , as shown above. \blacksquare

COROLLARY: The Gauss map $G: X \longrightarrow X^{\vee}$ is a local diffeomorphism in all points $a \in X$ such that G(a) is a smooth point on X^{\vee} .

Proof: The composition of Gauss maps $X \xrightarrow{G} X^{\vee} \xrightarrow{G} X$ is identity in all points where it is well defined. \blacksquare

Lines transversal to X^{\vee}

Let $A=\mathbb{C}P^{n-2}\subset \mathbb{P}^n$ be a projective subspace, embedded in the standard way, and $Z\subset \check{\mathbb{P}}^n$ the set of all planes containing A. Clearly, Z is a pencil of divisors. We identify Z with its image $L=\mathbb{C}P^1\subset \check{\mathbb{P}}^n$.

Fix a closed, irreducible, smooth $X \subset \mathbb{P}^n$. The intersection of Z with X gives a pencil of divisors on X with the base set $Y = A \cap X$.

DEFINITION: The pencil $L \subset \check{\mathbb{P}}^n$ is transversal to X^{\vee} if L meets X^{\vee} only in its smooth part, and is transversal to X^{\vee} in all intersection points.

CLAIM: A general line $L \subset \check{\mathbb{P}}^n$ is transversal to X^{\vee} .

Proof: The set of all lines in \mathbb{P}^n is 2n-2-dimensional: a line is determined by two points in \mathbb{P}^n , and the space of pairs of points on $\mathbb{C}P^1$ is 2-dimensional. The singular set X^\vee_{sing} of X^\vee is at most n-2-dimensional, hence the set of all lines meeting X^\vee_{sing} is at most 2n-3-dimensional. The set of all lines tangent to a given smooth point $x \in X^\vee$ is n-2-dimensional, hence the set of all lines tangent to X^\vee at some smooth points has dimension dim $X^\vee + n - 2 = 2n - 3$.

Existence of Lefschetz pencils

DEFINITION: A Lefschetz pencil is a pencil of divisors such that its base locus Y is smooth and all D_t are smooth along Y, and all singularities of D_t are ordinary double points.

THEOREM: Let $X \subset \mathbb{P}^n = \mathbb{P}^n V$ be a submanifold, and $L \subset \check{\mathbb{P}}^n = \mathbb{P}^n V^*$ a line which is transversal to X^{\vee} . Then L defines a Lefschetz pencil on X.

Proof. Step 1: Let A be the base point of L considered as a pencil of hyperplanes in \mathbb{P}^n . Then A is transversal to X. Indeed, suppose that A is not transversal to X in $a \in X$. Then there is a hyperplane $H \in \mathbb{P}^n$ containing A and tangent to X in a. The point of \mathbb{P}^n corresponding to this hyperplane belongs to $L \cap X^{\vee}$. Since L is transversal to X^{\vee} , the space X^{\vee} is smooth in the point $H = G(a) \in L \cap X^{\vee}$. By projective duality, this implies that G(H) = a, where $G: X^{\vee} \longrightarrow \mathbb{P}^n$ denotes the Gauss map. Therefore, H is the plane in \mathbb{P}^n associated with a. Since the divisors associated to all points $l \in L$ contain a, by duality $L \subset H$, and L cannot be transveral to X^{\vee} in a.

Step 2: It remains only to show that the singularities of the divisors $D_t := H_t \cap X$, $H_t \in L$ are ordinary double points.

Existence of Lefschetz pencils (2)

Step 2: It remains only to show that the singularities of the divisors $D_t := H_t \cap X$, $H_t \in L$ are ordinary double points.

Step 3: Let $a \in H_t$ be a critical point, G the Gauss map, and $G(a) \in X^{\vee}$ the corresponding point in X^{\vee} . Since H_t and X are not transversal in a, the embedding $T_a(H_t \cap X) \longrightarrow T_aX$ is not strict, and $T_aH_t = T_aX$. This implies that L passes through G(a), where G is the Gauss map. Since L is transversal to X^{\vee} in H_t , X^{\vee} is smooth in a, hence $G: X^{\vee} \longrightarrow X$ composed with $G: X \longrightarrow X^{\vee}$ is identity, by projective duality theorem, and G is invertible.

Step 4: Consider n functions $f_i: \mathbb{C}^{n-1} \longrightarrow \mathbb{C}$, depending on variables $t_1,...,t_{n-1}$ Let $1:z_1:...:z_n$ be an affine chart in \mathbb{P}^n , and $1:f_1:...:f_n$ a hypersurface $Z=F(t_1,...,t_{n-1})$, parametrized by $t_1,...,t_{n-1}$. The cone of Z is parametrized by $(t,tf_1,...,tf_n)$, and its tangent plane is generated by $(1,f_1,...,f_n)$ and $(0,df_1(u),...,df_n(u))$. Where $u\in \langle d/dt_1,...,d/dt_n\rangle$. Then $G(F(t_1,...,t_{n-1}))$ is a subspace in V^* generated by $df_1(u),...,df_n(u)$ and $(1,f_1,...,f_n)$. After passing to the affine coordinate system, we obtain that $G(F(t_1,...,t_{n-1}))$ is a space tangent to $1:f_1:...:f_n$ and generated by $df_1(u),...,df_n(u)$.

Step 5: We choose an affine chart \mathbb{A}^n on \mathbb{P}^n around a in such a way that H_t is a coordinate plane, and X is given as a graph of a function $(f(z_2,...,z_n),z_2,...,z_n)$. Then the Gauss map $G: X \longrightarrow \mathbb{P}^n$ takes the point $v:=(f(z_2,...,z_n),z_2,...,z_n)$ to the hyperplane $\langle df(u),d/dz_2,...,d/dz_n\rangle\subset T_v\mathbb{A}^n$ We consider G(X) as a subvariety in \mathbb{P}^n parametrized by $z_2,...,z_n$. As follows from Step 2, the Gauss map takes the hyperplane \mathbb{P}^n $\langle df(u),d/dz_2,...,d/dz_n\rangle\subset T_v\mathbb{A}^n$ (considered as a point in \mathbb{P}^n) to Hess(f) evaluated in an n-1-tuple $(d/dz_2,...,d/dz_n)$; However, the Gauss map is invertible, hence the rank of dG(v) is maximal possible; this implies that det Hess $f\neq 0$. We have shown that all singularities of D_t are ordinary double points. \blacksquare