Алгебраическая геометрия 2: эквивалентность категорий и теорема Гильберта у нулях

Правила: Зачеты по листкам бывают двух типов: когда сданы все (или 2/3) задачи со звездочками, либо все (или 2/3) задачи без звездочек. Задачи с двумя звездочками можно не сдавать. Сдавшим k задач с двумя звездочками разрешается не сдавать 2k задач со звездочками из того же листочка. Задачи, обозначенные (!), следует сдавать всем.

Если сданы 2/3 задач с (*) и (!), студент получает 6t баллов, если все, кроме (максимум) двух -10t баллов.

Если сданы 2/3 задач без звездочек и с (!), студент получает 6t баллов, если все, кроме (максимум) трех -10t баллов.

Эти виды оценок не складываются, то есть больше 10t за листочек получить нельзя.

Коэффициент t равен 1.5, если задачи сданы не позже, чем через 20 дней после выдачи, 1, если между 20 и 35 днями, и 0.7, если позже.

Результаты сдачи записываются на листке ведомости, которая выдается студенту, и ее надо хранить до получения окончательных оценок по курсу.

2.1. Категории и функторы

Определение 2.1. Категорией \mathcal{C} называется набор данных ("объектов категории", "морфизмов между объектами" и так далее), удовлетворяющих аксиомам, приведенным ниже.

Данные.

- **Объекты:** Множество $\mathcal{O}b(\mathcal{C})$ объектов \mathcal{C} (иногда рассматривают не множество, а *класс* $\mathcal{O}b(\mathcal{C})$, который может и не быть множеством, например, класс всех множеств, или класс всех линейных пространств).
- **Морфизмы:** Для любых $X,Y\in \mathcal{O}b(\mathcal{C})$, задано множество $\mathcal{M}or(X,Y)$ морфизмов из X в Y.
- Композиция морфизмов: Если $\phi \in \mathcal{M}or(X,Y), \psi \in \mathcal{M}or(Y,Z)$, задан морфизм $\phi \circ \psi \in \mathcal{M}or(X,Z)$, который называется композицией морфизмов.
- **Тождественный морфизм:** Для каждого $A \in \mathcal{O}b(\mathcal{C})$ задан морфизм $\mathsf{Id}_A \in \mathcal{M}or(A,A).$

Эти данные удовлетворяют следующим аксиомам:

Ассоциативность композиции: $\phi_1 \circ (\phi_2 \circ \phi_3) = (\phi_1 \circ \phi_2) \circ \phi_3$. Свойства тождественного морфизма: Для любого морфизма $\phi \in \mathcal{M}or(X,Y)$, $\operatorname{Id}_x \circ \phi = \phi = \phi \circ \operatorname{Id}_Y$.

Определение 2.2. Пусть C_1, C_2 — категории. Ковариантным функтором (или просто функтором) из C_1 в C_2 называется следующий набор ланных.

- (i) Отображение $F: \mathcal{O}b(\mathcal{C}_1) \longrightarrow \mathcal{O}b(\mathcal{C}_2)$, ставящее в соответствие объектам \mathcal{C}_1 объекты \mathcal{C}_2 .
- (ii) Отображение морфизмов $F: \mathcal{M}or(X,Y) \longrightarrow \mathcal{M}or(F(X),F(Y)),$ определенное для любой пары объектов $X,Y \in \mathcal{O}b(\mathcal{C}_1).$

Эти даные определяют функтор из C_1 в C_2 , если $F(\phi) \circ F(\psi) = F(\phi \circ \psi)$, и $F(\mathsf{Id}_X) = \mathsf{Id}_{F(X)}$.

Определение 2.3. Пусть $X,Y\in \mathcal{O}b(\mathcal{C})$ – объекты категории \mathcal{C} . Морфизм $\phi\in \mathcal{M}or(X,Y)$ называется изоморфизмом, если существует $\psi\in \mathcal{M}or(Y,X)$ такой, что $\phi\circ\psi=\operatorname{Id}_X$ и $\psi\circ\phi=\operatorname{Id}_Y$. В таком случае, объекты X и Y называются изоморфными.

Задача 2.1. Докажите, что композиция функторов - снова функтор. Докажите, что если \mathcal{O} есть некоторое множество категорий, а $\mathcal{M}or(\mathcal{C}_1,\mathcal{C}_2)$ задан как множество функторов из категории \mathcal{C}_1 в \mathcal{C}_2 , то \mathcal{O} образует категорию.

Задача 2.2. Пусть C_1 , C_2 – две категории, которые изоморфны в смысле вышеприведенного определения категории категорий. Докажите, что их множества объектов равномощны.

Задача 2.3. Пусть G – группа, а $\mathcal{C}(G)$ – категория с единственным объектом U, таким, что $\mathcal{M}or(U,U)$ отождествлено с G, а композиция морфизмов соответствует умножению элементов из G. Докажите, что для любых двух групп G, G', функторы $\mathcal{C}(G) \longrightarrow \mathcal{C}(G')$ взаимно однозначно соответствуют гомоморфизмам групп $G \longrightarrow G'$.

Задача 2.4 (*). Пусть C – категория векторных пространств над k, а C_0 – категория одномерных векторных пространств. Существует ли нетривиальный функтор из C в C_0 ?

Задача 2.5. Пусть \mathcal{C} – категория одномерных векторных пространств над полем k, а E – множество всех функторов из \mathcal{C} в себя. Постройте мультипликативное, сюрьективное отображение из E в группу автоморфизмов k.

¹Функторы из категории в себя называются **эндофункторы**.

Задача 2.6. Постройте эндофунктор из категории k-мерных векторных пространств в категорию векторных пространств, не переводящий прямые суммы в прямые суммы, и не отображающий все пространства в нульмерные.

Задача 2.7 (*). Найдите все эндофункторы категории конечных множеств, переводящие любое конечное множество S в множество, в котором элементов меньше, чем в S.

Задача 2.8 (*). Пусть Ψ есть эндофунктор категории конечномерных векторных пространств, такой, что размерность векторного пространства $\Psi(V)$ всегда меньше $\dim V$, для каждого пространства V размерности > 1. Докажите, что Ψ переводит любое пространство в нульмерное.

Задача 2.9 (*). Докажите, что не существует функтора на категории линейно связных топологических пространств, переводящего каждое пространство M в $\pi_1(M)$.

2.2. Контравариантные функторы

Определение 2.4. Если задана категория \mathcal{C} , определим двойственную категорию ("opposite category") \mathcal{C}^{op} . Множество объектов в \mathcal{C}^{op} то же самое, что и в \mathcal{C} , а $\mathcal{M}or_{\mathcal{C}^{op}}(A,B) = \mathcal{M}or_{\mathcal{C}}(B,A)$. Композиция $\phi \circ \psi$ в \mathcal{C} дает композицию $\psi^{op} \circ \phi^{op}$ в \mathcal{C}^{op} .

Задача 2.10. Проверьте, что это категория.

Определение 2.5. Контравариантный функтор из C_1 в C_2 это функтор из C_1^{op} в C_2 .

Задача 2.11. Для заданного векторного пространства V, пусть F(V) – двойственное пространство. Докажите, что F задает контравариантный функтор на категории векторных пространств.

Задача 2.12. Пусть Top — категория топологических векторных пространств, а F — отображение из Top в кольца, переводящее топологическое пространство M в кольцо непрерывных функций на M. Докажите, что F задает контравариантный функтор из Top в категорию колец. 2

Задача 2.13. Пусть \mathcal{C} – любая категория. Докажите, что $X \longrightarrow \mathcal{M}or(X,Y)$ задает контравариантный функтор из \mathcal{C} категории в множества.

²Морфизмы в категории колец – гомоморфизмы.

2.3. Эквивалентность категорий

Определение 2.6. Два функтора $F,G:\mathcal{C}_1\longrightarrow\mathcal{C}_2$ называются эквивалентными, если для каждого $X\in\mathcal{O}b(\mathcal{C}_1)$ задан изоморфизм $\Psi_X:F(X)\longrightarrow G(X)$, и для любого морфизма $\phi\in\mathcal{M}or(X,Y)$, имеет место

$$F(\phi) \circ \Psi_Y = \Psi_X \circ G(\phi). \tag{2.1}$$

Задача 2.14 (!). Пусть $\mathcal{C} \xrightarrow{F} Set$ — функтор из категории \mathcal{C} в категорию множеств. Предположим, что F представим: F эквивалентен функтору $Y \longrightarrow \mathcal{M}or(X,Y)$. Докажите, что "представляющий объект" X определен однозначно с точностью до изоморфизма.

Задача 2.15. Пусть V — векторное пространство над \mathbb{C} , а F_V — функтор на категории векторных пространств над \mathbb{C} , который переводит прямые суммы в прямые суммы, а одномерное векторное пространство в V. Докажите, что такой функтор задается этими условиями однозначно, с точностью до эквивалентности.

Определение 2.7. Функтор $F: \mathcal{C}_1 \longrightarrow \mathcal{C}_2$ называется эквивалентностью категорий, если найдутся функторы $G, G': \mathcal{C}_2 \longrightarrow \mathcal{C}_1$ такие, что $F \circ G$ эквивалентен тождественному функтору на \mathcal{C}_1 , а $G' \circ F$ эквивалентен тождественному функтору на \mathcal{C}_2 .

Задача 2.16 (!). Пусть C_1 , C_2 – категории, такие, что для любых объектов X,Y, Mor(X,Y) состоит из одного элемента. Докажите, что категории C_1 и C_2 эквивалентны.

Задача 2.17. Приведите пример категорий C_1 и C_2 , которые удовлетворяют условиям предыдущей задачи, но не изоморфны.

Задача 2.18. Пусть в категориях \mathcal{C} , \mathcal{C}' все морфизмы – изоморфизмы. Всегда ли \mathcal{C} эквивалентно \mathcal{C}' ?

Задача 2.19 (*). Докажите, что категория конечных расширений $\mathbb Q$ эквивалентна категории подгрупп конечного индекса в группе Галуа $\overline{\mathbb Q}$ над $\mathbb Q$.

Философский вопрос: Изоморфны ли эти категории? Ответьте на него. Мотивируйте ваш ответ.

Задача 2.20 (*). Докажите, что категория конечных накрытий линейно связного топологического пространства M эквивалентна категории множеств, снабженных действием группы $\pi_1(M)$.

2.4. Аффинные многообразия и конечно порожденные кольца

Замечание. Пусть \mathcal{O}_A – кольцо регулярных (полиномиальных) функций на аффинном многообразии A. Из теоремы Гильберта о нулях следует, что максимальные идеалы \mathcal{O}_A находятся в биективном соответствии с точками A.

Задача 2.21. Пусть A и B — два аффинных многообразия, таких, что кольца \mathcal{O}_A и \mathcal{O}_B изоморфны. Соответствующая биекция на множестве максимальных идеалов задает, в силу предыдущего замечания, отображение $\phi: A \longrightarrow B$. Докажите, что ϕ — гомеоморфизм.

Задача 2.22. Пусть Aff – категория аффинных многообразий, то есть алгебраических подмногообразий, морфизмы которой заданы алгебраическими (полиномиальными) отображениями. Рассмотрим два объекта A и B в Aff, которые изоморфны. Докажите, что $\mathcal{O}_A \cong \mathcal{O}_B$, где \mathcal{O}_A , \mathcal{O}_B – кольца полиномиальных функций на A, B.

Определение 2.8. Конечно порожденное кольцо над полем k есть фактор кольца полиномов $k[z_1,...,z_n]$ по какому-то идеалу.

Определение 2.9. Пусть I – идеал в кольце полиномов. Множество общих нулей всех $f \in I$ обозначается за V(I). Для любого подмножества $A \subset \mathbb{C}^n$, идеал полиномов, зануляющихся в A, обозначается I_A , и называется аннулятором A.

Задача 2.23. Пусть R — конечно-порожденное кольцо без нильпотентов, $R=\mathbb{C}[z_1,...,z_n]/I$, а A:=V(I). Докажите, что $\mathcal{O}_A\cong R$, где \mathcal{O}_A обозначает кольцо полиномиальных функций на A.

Задача 2.24 (!). Пусть Ring есть категория конечно-порожденных колец над $\mathbb C$ без нильпотентов (морфизмы – гомоморфизмы), а Aff – категория аффинных многообразий. Рассмотрим контравариантный функтор, переводящий аффинное подмножество $A \subset \mathbb C^n$ в кольцо полиномиальных функций на нем. Докажите, что он задает эквивалентность категорий Aff \longrightarrow Ring.

Указание. Воспользуйтесь предыдущей задачей и соотношением $V(I_A) = A$, доказанным в предыдущем листочке.

Задача 2.25. Рассмотрим категорию QAff квазиаффинных многообразий. Докажите, что естественное вложение Aff $\longrightarrow Q$ Aff – не эквивалентность.

2.5. Простые идеалы и подмногообразия

Определение 2.10. Простой идеал есть такой идеал, что в факторе по нему нет делителей нуля.

Задача 2.26 (*). Существует ли идеал в кольце непрерывных функций на окружности, который прост, но не максимален?

Определение 2.11. Идеал, порожденный одним элементом, называется **главным. Кольцо главных идеалов** – кольцо, где все идеалы главные.

Задача 2.27. Пусть R – кольцо главных идеалов. Верно ли, что любой простой идеал в R максимален?

Определение 2.12. Алгебраическое подмножество $A \subset \mathbb{C}^n$ называется **приводимым**, если A можно разложить в объединение двух алгебраических подмножеств $A = A_1 \cup A_2$, причем A_1 не содержит A_2 и наоборот. В противном случае A называется **неприводимым**.

Задача 2.28. Докажите, что A неприводимо тогда и только тогда, когда соответствующее кольцо полиномиальных функций \mathcal{O}_A не имеет делителей нуля.

Задача 2.29 (!). Постройте биекцию между множеством неприводимых подмногообразий аффинного многообразия A и множеством простых идеалов в \mathcal{O}_A .

Задача 2.30 (*). Пусть $S \subset \mathbb{C}^2$ – гладкое подмногообразие, заданное как множество нулей полинома P. Всегда ли \mathcal{O}_S – кольцо главных идеалов?