Алгебраическая геометрия 3: Нетеровы кольца

Правила: Зачеты по листкам бывают двух типов: когда сданы все (или 2/3) задачи со звездочками, либо все (или 2/3) задачи без звездочек. Задачи с двумя звездочками можно не сдавать. Сдавшим k задач с двумя звездочками разрешается не сдавать 2k задач со звездочками из того же листочка. Задачи, обозначенные (!), следует сдавать всем.

Если сданы 2/3 задач с (*) и (!), студент получает 6t баллов, если все, кроме (максимум) двух — 10t баллов.

Если сданы 2/3 задач без звездочек и с (!), студент получает 6t баллов, если все, кроме (максимум) трех – 10t баллов.

Эти виды оценок не складываются, то есть больше 10t за листочек получить нельзя.

Коэффициент t равен 1.5, если задачи сданы не позже, чем через 20 дней после выдачи, 1, если между 20 и 35 днями, и 0.7, если позже.

Результаты сдачи записываются на листке ведомости, которая выдается студенту, и ее надо хранить до получения окончательных оценок по курсу.

3.1. Условия обрыва цепочек

Определение 3.1. Пусть (S, \prec) – частично упорядоченное множество. Говорится, что в S выполнено условие обрыва возрастающих цепочек, если для каждой последовательности элементов S $a_1 \preceq a_2 \preceq a_3 \preceq a_4 \preceq \dots$ все a_i , кроме конечного числа, равны друг другу. Аналогично, выполнено условие обрыва убывающих цепочек, если в $b_1 \succeq b_2 \succeq b_3 \succeq b_4 \succeq \dots$ равны друг другу все b_i , кроме конечного числа.

Задача 3.1. Пусть M – топологическое пространство а S – множество открытых подмножеств M, упорядоченное по вложению. Докажите, что условие обрыва возрастающих цепочек в S влечет компактность M.

Определение 3.2. Такое топологическое пространство называется **нетеровы**м.

Задача 3.2. Пусть M — хаусдорфово, нетерово топологическое пространство. Докажите, что в нем конечное число точек.

Определение 3.3. Пусть R – кольцо, а S – множество всех идеалов в R, упорядоченное по вложению. Кольцо R называется **нетеровым**, если в S выполнено условие обрыва возрастающих цепочек, и **артиновым**, если выполнено условие обрыва убывающих цепочек.

Задача 3.3. Пусть R – кольцо, у которого есть всего один простой идеал. Всегда ли R артиново?

Задача 3.4. Рассмотрим кольцо R как модуль над собой. Докажите, что подмодули R суть в точности идеалы кольца R.

Определение 3.4. M есть конечно порожденный модуль над R если существует конечный набор $r_1,...,r_n\in M$ такой, что $R\cdot r_1+R\cdot r_2+R\cdot r_3+...R\cdot r_n$. В такой ситуации, $\{r_i\}$ называются образующими. Идеал в кольце R называется конечно-порожденным, если он конечно порожден как R-модуль.

Задача 3.5. Докажите, что \mathbb{Z} и $\mathbb{C}[t]$ нетеровы.

Задача 3.6. Пусть R — нетерово кольцо, $F \in R$, а R(F) — локализация R по F (кольцо, полученное из R присоединением к нему F^{-1}). Докажите, что R(F) — тоже нетерово.

Задача 3.7. Постройте кольцо, которое не нетерово и не артиново.

Задача 3.8 (*). Пусть M – окружность, а C(M) – кольцо непрерывных функций на M. Докажите, что C(M) – не нетерово. Является ли оно артиновым?

Задача 3.9 (!). Докажите, что кольцо R нетерово тогда и только тогда, когда любой его идеал конечно порожден.

3.2. Нетеровы модули

Определение 3.5. Нетеров модуль есть R-модуль, в котором выполнено условие обрыва возрастающих цепочек для подмодулей.

Задача 3.10. Докажите, что любые подмодули и фактормодули нетерова R-модуля снова нетеровы.

Определение 3.6. Короткая точная последовательность модулей над кольцом R есть последовательность R-модулей и гомоморфизмов

$$0 \longrightarrow M_1 \stackrel{i}{\longrightarrow} M_2 \stackrel{e}{\longrightarrow} M_3 \longrightarrow 0$$

такая, что $i \circ e = 0$, а ядро e совпадает с образом i.

Задача 3.11 (!). Пусть $0 \longrightarrow M_1 \stackrel{i}{\longrightarrow} M_2 \stackrel{e}{\longrightarrow} M_3 \longrightarrow 0$ — точная последовательность R-модулей, причем M_1 и M_3 нетеровы. Докажите, что M_2 тоже нетерово.

Определение 3.7. Пусть R — какое-то кольцо, а $\mathbb{Z}[\mathsf{Mod}]$ — свободная группа, образующими которой являются классы изоморфизма конечно-порожденных R-модулей. Обозначим за $K_0(R)$ группу Гротендика кольца R, полученную из $\mathbb{Z}[\mathsf{Mod}]$ факторизацией по всем соотношениям вида $[M_2]-[M_1]-[M_0]$, для всех точных последовательностей $0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$.

Задача 3.12. Докажите, что группа $K_0(R)$ порождена классами [M] для всех циклических модулей M над R.

Задача 3.13. Докажите, что $K_0(R) \cong \mathbb{Z}$, если R – кольцо главных идеалов, где нет делителей нуля (такое кольцо называется **целостным**).

Задача 3.14 (*). Пусть $u: M \longrightarrow M$ – сюрьективный эндоморфизм нетерова R-модуля. Докажите, что он инъективен.

Указание. Примените условие обрыва к цепочке $\ker u \subset \ker u^2 \subset \dots$

Определение 3.8. R-модуль M называется **циклическим**, если он изоморфен R/I, где I – какой-то идеал.

Задача 3.15. Докажите, что R-модуль циклический тогда и только тогда, когда он порожден над R всего одним элементом $r \in M$, то есть имеет вид $R \cdot r$.

Задача 3.16. Пусть R нетерово кольцо, а M – циклический модуль над R. Докажите, что он нетеров.

Задача 3.17 (!). Пусть M-R-модуль. Докажите, что M конечно порожден тогда и только тогда, когда существует фильтрация $0=M_0\subset M_1\subset ...\subset M_n=M$ R-подмодулями, причем все подфакторы вида M_i/M_{i-1} циклические, а n есть минимальное число образующих M.

Задача 3.18 (!). Пусть R нетерово кольцо, а M – R-модуль. Докажите, что M конечно-порожденный тогда и только тогда, когда он нетеров.

Указание. Воспользуйтесь индукцией по числу образующих и примените задачу 3.11.

3.3. Теорема Гильберта о базисе

Для какого-то кольца R, обозначим за R[t] кольцо полиномов с коэффициентами в R.

Задача 3.19. Пусть R – нетерово кольцо, $I \subset R[t]$ – идеал, $M \subset I$ – множество всех полиномов из I степени не больше $N \in \mathbb{N}$, а $I_N \subset I$ – идеал, порожденный M. Докажите, что I_N конечно порожден.

Указание. Постройте инъективный гомоморфизм R-модулей $M \hookrightarrow R^{N+1}$. Воспользуйтесь тем, что R^{N+1} нетеров модуль, чтобы найти набор $r_1, ..., r_n \in M$, порождающий I_N .

Задача 3.20. Пусть $I \subset R[t]$ идеал, а $P \in I$ полином со старшим коэффициентом a, причем $a = \sum a_i b_i$, где a_i – старшие коэффициенты полиномов $P_1, ..., P_n \in I$, а $b_i \in R$ – какие-то элементы. Предположим, что $\deg P_i \leqslant N$. Докажите, что существуют такие полиномы $Q, Q_i \in R[t]$, что $P = Q + \sum Q_i P_i$, причем $\deg Q < N$.

Указание. Поделите P в столбик на полином $\sum_i P_i b_i t^{N-\deg P_i}$.

Задача 3.21. Пусть R — нетерово кольцо, $I \subset R[t]$ идеал, а $I_{st} \subset R$ — идеал в R, порожденный старшими коэффициентами всех полиномов $P \in I$. Пусть $a_1,...,a_n \subset I_{st}$ — набор образующих для I_{st} , а $P_1,...,P_n$ — полиномы в I со старшими коэффициентами a_i (выведите из нетеровости, что такие полиномы и образующие существуют). Пусть $\deg P_i \leqslant N$. Обозначим за \check{I} идеал, порожденный всеми $P_i, i=1,...,n$. Докажите, что каждый полином $P \in I$ удовлетворяет $P = Q \mod \check{I}$, где $\deg Q < N$.

Указание. Воспользуйтесь предыдущей задачей.

Задача 3.22 (!). Докажите теорему Гильберта о базисе: для любого нетерова кольца R, кольцо R[t] тоже нетерово.

Указание. Пусть $\check{I} \subset I$ – идеал, построенный в задаче 3.21, а I_N – идеал, построенный в задаче 3.19. Воспользовавшись предыдущей задачей, докажите, что $I = I_N + \check{I}$, и убедитесь, что эти два идеала конечно-порождены.

3.4. Нетеровы кольца

Задача 3.23. Пусть $R \subset \mathbb{C}(t)$ – кольцо рациональных функций с полюсами в целых точках. Будет ли оно нетерово?

Задача 3.24 (*). Пусть R – нетерово кольцо, а R[[t]] – кольцо степенных рядов над R. Докажите, что оно нетерово.

Задача 3.25. Пусть $R \subset \mathbb{C}[[t]]$ – кольцо степенных рядов, сходящихся в некоторой окрестности 0 ("кольцо ростков голоморфных функций в нуле"). Нетерово ли оно?

Задача 3.26 (*). Пусть $R \subset \mathbb{C}[[t]]$ – кольцо степенных рядов, сходящихся везде в \mathbb{C} (такое кольцо называется **кольцом целых функций**). Нетерово ли оно?

Задача 3.27 (*). Пусть R – кольцо многочленов $P \in \mathbb{C}[x,y]$ таких, что все частные производные от P по y равны нулю в точке (x,y)=(0,0). Нетерово ли оно?

Задача 3.28 (*). Пусть R – нетерово кольцо над \mathbb{C} , G – конечная группа, действующая на R автоморфизмами, а $R^G \subset R$ – кольцо G-инвариантов. Всегда ли R^G нетерово?

Задача 3.29. Пусть R[t] нетерово. Следует ли из этого, что R тоже нетерово?