Алгебраическая геометрия 5: Теорема Нетер

Правила: Зачеты по листкам бывают двух типов: когда сданы все (или 2/3) задачи со звездочками, либо все (или 2/3) задачи без звездочек. Задачи с двумя звездочками можно не сдавать. Сдавшим k задач с двумя звездочками разрешается не сдавать 2k задач со звездочками из того же листочка. Задачи, обозначенные (!), следует сдавать всем.

Если сданы 2/3 задач с (*) и (!), студент получает 6t баллов, если все, кроме (максимум) двух — 10t баллов.

Если сданы 2/3 задач без звездочек и с (!), студент получает 6t баллов, если все, кроме (максимум) трех -10t баллов.

Эти виды оценок не складываются, то есть больше 10t за листочек получить нельзя. Коэффициент t равен 1.5, если задачи сданы не позже, чем через 20 дней после выдачи, 1, если между 20 и 35 днями, и 0.7, если позже.

Результаты сдачи записываются на листке ведомости, которая выдается студенту, и ее надо хранить до получения окончательных оценок по курсу.

5.1. Представления конечных групп

Характеристика основного поля предполагается равной 0, если не оговорено противного. Все кольца – коммутативные и с единицей.

Определение 5.1. Неприводимое представление группы G есть представление G, у которого нет нетривиальнык G-инвариантных подпространств.

Замечание. Если V – представление группы G, говорится, что G действует на V.

Задача 5.1. Докажите, что любое конечномерное представление конечной группы является прямой суммой неприводимых.

Определение 5.2. Рассмотрим пространство $\mathbb{C}[G]$, с базисом, состоящим из элементыв группы, и естественным действием G. Оно называется **групповой алгеброй** G, и еще **свободным представлением**.

Задача 5.2. Докажите, что любое неприводимое представление конечной группы G является прямым слагаемым свободного.

Определение 5.3. Пусть G – конечная группа, действующая не векторном пространстве V. Определим **пространство** G-инвариантов V^G как пространство всех G-инвариантных векторов V, а **пространство** коинвариантов V_G как фактор V по подпространству, порожденному векторами вида v-g(v), где $g\in G, v\in V$.

Задача 5.3. Пусть V – нетривиальное неприводимое представление конечной группы. Докажите, что пространства V_G и V^G тривиальны.

Задача 5.4 (!). Пусть V – конечномерное представление конечной группы. Докажите, что пространства V_G и V^G изоморфны.

Указание. Воспользуйтесь предыдущей задачей.

Задача 5.5. Пусть G – конечная группа, действующая на бесконечном векторном пространстве V, а $v \in V$ – вектор. Докажите, что v содержится в конечномерном G-инвариантном подпространстве.

Задача 5.6 (!). Пусть G – конечная группа, действующая на бесконечномерном векторном пространстве V. Докажите, что $V = \bigoplus_i V_i$, где все V_i – конечномерные представления G.

Указание. Воспользуйтесь предыдущей задачей и примените лемму Цорна.

Задача 5.7 (!). Пусть G – конечная группа, действующая на бесконечном векторном пространстве V. Докажите, что пространства V_G и V^G изоморфны.

Указание. Воспользуйтесь предыдущей задачей.

Задача 5.8 (*). Найдите бесконечную группу G, и ее представление V, такое, что V_G ненулевое, а V^G нулевое.

5.2. Эквивариантные *G*-модули

Определение 5.4. Пусть R – кольцо, на котором автоморфизмами действует группа G, а M – R-модуль. Действие G на M называется эквивариантным, если g(fm)=g(f)g(m), где $f\in R, m\in M$. Морфизм G-эквивариантных модулей есть гомоморфизм модулей, коммутирующий с действием G.

Задача 5.9. Пусть $M_1 \subset M$ – G-инвариантный подмодуль G-эквивариантного R-модуля. Докажите, что M_1 G-эквивариантен. Постройте естественную G-эквивариантную структуру на M/M_1 .

Задача 5.10. Пусть M-G-эквивариантный конечно-порожденный R- модуль. Всегда ли можно представить M как фактор R^n по G-инвариантному подмодулю?

Задача 5.11 (!). Докажите, что отображение усреднения по действию $G, m \longrightarrow \frac{1}{|G|} \sum_{g \in G} g(m)$ задает R^G -линейное отображение $M \longrightarrow M^G$, причем его ядро порождено векторами вида gm-m (то есть равно ядру естественной сюрьекции на коинварианты).

Определение 5.5. Это отображение называется функтором усреднения по группе, или просто усреднением.

Задача 5.12. Рассмотрим отображения, которые сопоставляют G-эквивариантному R-модулю пространства M^G и M_G . Проверьте, что на M^G и M_G задана естественная структура R^G -модуля. Постройте естественное преобразование функторов, переводящее M^G в M_G .

Задача 5.13 (!). Пусть 0 — A — B — C — 0 — точная последовательность G-эквивариантных R-модулей, где G конечно. Докажите, что последовательности

$$0 \longrightarrow A^G \longrightarrow B^G \longrightarrow C^G \longrightarrow 0$$

И

$$0 \longrightarrow A_G \longrightarrow B_G \longrightarrow C_G \longrightarrow 0$$

тоже точны.

Указание. Воспользуйтесь изоморфизмом M_G и M^G .

Задача 5.14 (*). В условиях предыдущей задачи, пусть G бесконечна. Приведите пример, когда

a.
$$0 \longrightarrow A^G \longrightarrow B^G \longrightarrow C^G \longrightarrow 0$$

б.
$$0 \longrightarrow A_G \longrightarrow B_G \longrightarrow C_G \longrightarrow 0$$

не точны.

Задача 5.15. Пусть M – эквивариантный G-модуль, а RM^G – его подмодуль, порожденный M^G . Докажите, что RM^G – эквивариантный подмодуль в M. Найдите пример, когда G конечна, а $RM^G \neq M$.

Задача 5.16 (!). Пусть M – эквивариантный G-модуль, а $RM^G=M$. Пусть G конечна. Докажите, что для любого R^G -подмодуля $M_1\subset M^G$, имеем $RM_1\cap M^G=M_1$.

Указание. Чтобы убедиться, что $M_1 \supset RM_1 \cap M^G$, примените функтор усреднения $W \xrightarrow{Av_G} W^G$, и воспользуйтесь тем, что $Av_G(RM_1) = R^GM_1 = M_1$.

Задача 5.17. Пусть M – нетеров, G-эквивариантный R-модуль, а G конечна. Докажите, что M^G – нетеров R^G -модуль.

Указание. Воспользуйтесь предыдущей задачей.

Задача 5.18. Пусть R – кольцо с действием конечной группы G, а $I \subset R^G$ – идеал. Докажите, что $(RI)^G = I$.

Указание. Воспользуйтесь задачей 5.16.

Задача 5.19 (!). Пусть R – нетерово кольцо с действием конечной групны G. Докажите, что R^G – нетерово.

Указание. Воспользуйтесь предыдущей задачей.

5.3. Градуированные кольца

Определение 5.6. Градуированное кольцо есть кольцо A^* вида $A^* = \bigoplus_{i=0}^{\infty} A^i$, где умножение удовлетворяет закону $A^i \cdot A^j \subset A^{i+j}$. Градуированное кольцо называется кольцом конечного типа, если все A^i конечномерны.

Задача 5.20. Пусть A^* – конечно-порожденное градуированное кольцо, причем A^0 конечномерно. Докажите, что это кольцо конечного типа.

Задача 5.21 (!). Пусть A^* – градуированное кольцо, причем A^0 конечномерно. Докажите, что A^* конечно порождено тогда и только тогда, когда оно нетерово.

Указание. Воспользуйтесь нетеровостью, чтобы убедиться, что идеал $\bigoplus_{i>0} A^i$ конечно порожден.

Задача 5.22. Найдите нетерово кольцо над \mathbb{C} , которое не конечно порождено.

Определение 5.7. Фильтрация на кольце R есть набор подпространств $R = R^0 \supset R^1 \supset R^2 \supset ...$, которая согласована с умножением следующим образом, $R^i \cdot R^j \subset R^{i+j}$.

Задача 5.23. Пусть R – кольцо с фильтрацией $R = R^0 \supset R^1 \supset R^2 \supset \dots$ Постройте на $\bigoplus_i (R^i/R^{i+1})$ структуру градуированного кольца.

Определение 5.8. Присоединенное градуированное кольцо для кольца с фильтрацией $R=R^0\supset R^1\supset R^2\supset ...$ есть $\bigoplus_i (R^i/R^{i+1})$ снабженное естественной мультипликативной структурой.

Задача 5.24. Пусть $I\subset R$ – идеал в кольце, а $R^n:=I^n$ его степени. Докажите, что R^n задает фильтрацию на $R.^1$

Задача 5.25 (!). Пусть $R_{gr}:=\bigoplus_i (I^n/I^{n+1})$ – присоединенное градуированное кольцо по I-адической фильтрации. Докажите, что R_{gr} порождено R/I и I/I^2 .

Задача 5.26. Приведите пример кольца R над \mathbb{C} с максимальным идеалом I, такого, что R не изоморфно своему присоединенному градуированному по I-адической фильтрации.

Задача 5.27 (!). Пусть $(p) \subset \mathbb{Z}$ – главный идеал, порожденный простым числом p, а (p^n) – соответствующая p-адическая фильтрация, а A^* его присоединенное градуированное кольцо. Докажите, что A^* изоморфно $\mathbb{Z}/p\mathbb{Z}[t]$.

Задача 5.28 (*). Пусть $x \in A$ – гладкая точка на аффинном многообразии, а m_x ее максимальный идеал. Рассмотрим m_x -адическую фильтрацию на \mathcal{O}_A . Докажите, что соответствующее присоединенное граду-ированное кольцо изоморфно кольцу полиномов.

Задача 5.29 (*). Постройте на кольце полиномов фильтрацию, такую, что все элементы присоединенного градуированного кольца градуировки > 0 — нильпотенты.

Задача 5.30 (*). Найдите конечно-порожденное кольцо, не допускающее градуировки конечного типа.

 $^{^{1}}$ Такая фильтрация называется I**-адической**, в честь p-адических чисел.

5.4. Теорема Нетер

Задача 5.31. Пусть $R = \mathbb{C}[z_1,...,z_n]$ – кольцо полиномов, а G – конечная группа, которая действует на пространстве, порожденном z_i , линейными автоморфизмами. ² Докажите, что это действие продолжается до действия G на R.

Задача 5.32 (!). (теорема Нетер для полиномиальных инвариантов) В условиях предыдущей задачи, докажите, что R^G конечно порождено.

Указание. Найдите на R градуировку, которая сохраняется действием G, и примените нетеровость.

Задача 5.33 (!). Пусть R — кольцо, снабженное действием конечной группы, а $I\subset R$ — G-инвариантный идеал. Докажите, что $R^G/I^G=(R/I)^G$.

Указание. Примените задачу 5.13.

Задача 5.34. Пусть R – конечно порожденное кольцо, снабженное действирм конечной группы G, а $I\subset R$ – G-инвариантный идеал. Предположим, что R^G конечно порождено. Докажите, что $(R/I)^G$ тоже конечно порождено.

Указание. Воспользуйтесь предыдущей задачей.

Задача 5.35. Пусть R – конечно порожденное кольцо с действием G. Докажите, что R, как кольцо с действием G, изоморфно $\mathbb{C}[z_1,...,z_n]/I$, где $\mathbb{C}[z_1,...,z_n]$ кольцо полиномов, снабженное линейным действием G, а I-G-инвариантный идеал.

Указание. Пусть $f_1, ..., f_k$ – образующие R. В качестве $z_1, ..., z_n$ возьмите $f_1, ..., f_k$ и все их образы при действии G, и докажите, что при естественном отображении $\mathbb{C}[z_1, ..., z_n] \xrightarrow{\phi} R$, ядро ϕ G-инвариантно.

Задача 5.36 (!). Докажите **теорему Нетер**: кольцо инвариантов действия конечной группы на конечно порожденном кольце конечно порождено.

Указание. Воспользуйтесь теоремой Нетер для полиномиальных инвариантов.

²Такое действие на кольце полиномов называется **линейным**.