Алгебраическая геометрия, контрольная 1 (к листкам 1-3)

Каждому студенту выдается по (3+t) задачи, где t=[(40-b)/10], а b- суммарное количество баллов, по состоянию на 7-го октября (за листки и первое домашнее задание). Число очков за контрольную вычисляется по формуле $\left[10\frac{s}{t}-\frac{2}{3}\max\left(\frac{s}{t},1\right)\right]$, где s – число успешно решенных задач, t – число задач, которые надо сдать данному студенту (см. список в конце этого задания). Решение письменное, сдается до 14:00 пятницы, 14-го октября. На каждой сданной работе должна быть пометка, подписанная экзаменатором, следующего содержания: фамилия, имя, курс, какие задачи получены.

Суммарное число баллов, набранное каждым студентом к 7-му октября, доступно на страничке курса, http://bogomolov-lab.ru/KURSY/AG-2011/

Успешно учащиеся студенты должны получать по 10 баллов в неделю, во избежание пересдач и других эксцессов.

1.1. Задачи к листку 1

- **Задача 1.1.** Обозначим за ω_1 наименьший несчетный ординал. Докажите, что произведение $\omega_1 \times \omega_1$ равномощно ω_1 .
- **Задача 1.2.** Пусть $P \in \mathbb{C}[z_1,...,z_n]$ полином, такой, что множество нулей P содержится в компактном подмножестве $S \subset \mathbb{C}^n$. Докажите, что $P = \mathsf{const.}$
- **Задача 1.3.** Пусть R кольцо главных идеалов (такое кольцо, что все идеалы в нем **главные**, т.е. порождены одним элементом). Пусть в R нет делителей нуля. Докажите, что любой ненулевой простой идеал в R максимальный.
- **Задача 1.4.** Пусть R конечно-порожденное кольцо над $\mathbb C$ без нильпотентов. Докажите, что пересечение всех максимальных идеалов R равно 0.
- **Задача 1.5.** Пусть R кольцо, конечномерное как векторное пространство над $\mathbb C$. Докажите, что в R есть только конечное число различных идеалов.

1.2. Задачи к листку 2

- Задача 1.6. Пусть C_1 категория всех представлений $\mathbb{Z}/2\mathbb{Z}$ (конечномерных и бесконечномерных) над \mathbb{C} , а C_2 категория всех представлений $\mathbb{Z}/6\mathbb{Z}$. Эквивалентны ли категории C_1 и C_2 ?
- Задача 1.7. Пусть C_1 категория конечномерных представлений $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ над \mathbb{C} , а C_2 категория всех конечномерных представлений $\mathbb{Z}/4\mathbb{Z}$ над \mathbb{C} . Эквивалентны ли категории C_1 и C_2 ?
- Задача 1.8. Пусть C_1 категория конечномерных представлений $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ над \mathbb{Q} , а C_2 категория всех конечномерных представлений $\mathbb{Z}/4\mathbb{Z}$ над \mathbb{Q} . Эквивалентны ли категории C_1 и C_2 ?
- **Задача 1.9.** Докажите, что следующие категории C_1 и C_2 эквивалентны: категория C_1 модулей над кольцом $\mathbb{C}[x,x^{-1},y,y^{-1}]$, и категория C_2 представлений группы $\mathbb{Z}\oplus\mathbb{Z}$.
- **Задача 1.10.** Пусть C_i категории конечномерных векторных пространств над полем k_i , i=1,2. Могут ли они быть эквивалентны, если $k_1=\mathbb{C}$, а $k_2=\mathbb{R}$?
- Задача 1.11. Докажите, что категория конечных групп не эквивалентна категории конечных абелевых групп.

1.3. Задачи к листку 3

Задача 1.12. Пусть M — нетерово топологическое пространство, а R — кольцо непрерывных функций на M со значением в \mathbb{F}_2 . Докажите, что R нетерово.

Задача 1.13. Докажите, что кольцо формальных рядов $\mathbb{C}[[t]]$ нетерово.

Определение 1.1. Пусть $S \subset R$ – подмножество кольца R, замкнутое относительно умножения, и не содержащее 0. **Локализацией** кольца R по S называется кольцо, формально порожденное элементами вида a/F, где $a \in R$, $F \in S$ и с соотношениями $a/F \cdot b/G = ab/FG$, $a/F + b/G = \frac{aG+bF}{FG}$ и $aF^k/F^{k+n} = a/F^n$.

Задача 1.14. Докажите, что локализация нетерова кольца всегда нетерова.

Задача 1.15. Пусть $S \subset \mathbb{C}[t]$ – множество всех ненулевых многочленов с целыми коэффициентами. Докажите, что локализация $\mathbb{C}[t]$ по S не конечно порождена над \mathbb{C} .

Задача 1.16. Докажите, что $\mathbb{C}[[t]]$ не конечно порождено над \mathbb{C}

Задача 1.17. Пусть $S \subset \mathbb{C}[t]$ – множество, порожденное произведениями многочленов вида t, (t+1), (t+2), ..., (t+n). Докажите, что локализация $\mathbb{C}[t]$ по S конечно порождена.

Список студентов с ненулевым количеством баллов

Все студенты, которых нет в этом списке, получают по 7 задач (6 задач выдаются экзаменатором, седьмая задача - 1.5). Остальные студенты получают по 6 задач, а для 10 баллов за контрольную им надо решить 3+t задачи, где $t=\max(0, [(40-b)/10])$, а b - суммарное количество баллов 7-го октября. Вот список.

3 задачи: Абрикосов, Кубрак, Монин, Нечаев, Плосконосов, Попов, П. Пушкарь, Щедрина, Толмачев.

4 задачи: Дурьев, Пащевская.

5 задач: Вербицкий, Малиновская.

6 задач: Благов, Ганиев, Егоров, Завалин, Зарифьян, Клименко, Колосов, Кулешов, Розанов, Рябичев, Соломатин, Ступаков, Суханов, Цвелиховский.