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After the pioneering work of Kobayashi (cf. [8]), the relation between stable
holomorphic vector bundles and Einstein-Hermitian connections is now quite well-
understood by works of Donaldson, Narasimhan, Seshadri, Simpson, Uhlenbeck,
Yau and others (cf. [3,4,5,9,12,13,15,16,17,18,19,20]). The purpose of this
paper is to generalize the results for vector bundles to the case of reflexive sheaves
by extending the notion of “Einstein-Hermitian metrics”.

We recall the definition of stable sheaves and introduce the notion of admissible
Hermitian metrics on torsion free sheaves.

Definition. Let £ be a torsion free coherent analytic sheaf on an n-dimensional
compact Kahler manifold (X,w) with the fundamental form w. We define the slope
p(€) of € by

u(€) = (e1(€) U [w)" 1) [X]/ranke.

1) £ is called (semi-)stable, if for any subsheaf S such that 0 < rankS < rank€& we
have p(S) < u(€) (u(S) < u(€)), respectively.

2) £ is called poly-stable, if it is a direct sum of stable sheaves £; with the same
slope u(€;) = p(€).

3) A Hermitian metric h of £ defined on the locally free part of £ is called admissi-
ble, if its curvature tensor F' is square integrable and its trace AF with respect
to the base metric w is uniformly bounded.

The admissible Hermitian metrics play the role of the ordinary Hermitian metrics
for vector bundles.

Theorem 1. Any reflexive sheaf £ on an n-dimensional compact Kihler manifold
(X,w) admits an admissible Hermitian metric.

The meaning of admissibleness of a Hermitian metric is understood by the fol-
lowing

Theorem 2. Let (E, h) be a holomorphic vector bundle with a Hermitian metric h

defined on a Kahler manifold (Y,w) (not necessary compact nor complete) outside a

closed subset S with locally finite Hausdorff measure of real co-dimension 4. Assume

that its curvature tensor F' is locally square integrable on Y, then

a) E extends to the whole space Y as a reflexive sheaf £, and for any local section
s € (U, E), log™ h(s, s) belongs to H}\ ..
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b) If AF is locally bounded, then h(s, s) is locally bounded, and h belongs to L%, .
for any finite p where £ is locally free.

¢) If (E, h) is Einstein-Hermitian, then h smoothly extends as an Einstein-Hermit-
ian metric over the place where £ is locally free.

This is a combination of the removable singularity theorem [1] and the slicing
theorem [14]. Theorem 2 and the compactness theorem for Yang-Mills connections
[10] yield the following Corollary which generalizes the results of Uhlenbeck [16],
[17] to the higher dimensional case.

Corollary 2. Let (E;, h;) be a sequence of Einstein-Hermitian holomorphic vector
bundles with fixed first and second Chern classes on a compact Kahler manifold
(X,w). Then there exist a subsequence, which we still call (E;, h;), and a reflexive
sheaf € with an admissible Einstein-Hermitian metric h such that under suitable
gauge change (E;, h;) smoothly converges to (£,h) outside a closed subset with
finite Hausdorff measure of real co-dimension 4.

For examples of convergence to sheaves in higher dimension, see [11].
Our main result is

Theorem 3. A reflexive sheaf £ on an n-dimensional compact Kéihler manifold
(X,w) admits an admissible Einstein-Hermitian metric, if and only if £ is poly-
stable.

Corollary 3. For a poly-stable reflexive sheaf £, we have the Bogomolov inequality
(2rea(€) — (r = 1er(€)®) U [w]*2[X] > 0,

where r = rank€. And the equality holds if and only if £ is locally free and its
Einstein-Hermitian metric gives a projectively flat connection.

For non-stable ones we have the following result.

Theorem 4. Let £ be a reflexive sheaf on (X,w). If € is not stable, then it “breaks
up” into a direct sum of Einstein-Hermitian sheaves via the heat equation considered
below.

It is an interesting question whether the sum is isomorphic to the reflexization
of Gr€ or not.

Remark. We can work with torsion free sheaves. But since it would result in
some complication of the statement and since metrics essentially deal with the
reflexization, we restrict ourselves to reflexive sheaves.

The idea of the proof of Theorem 1, 3 and 4 is as follows. First let us assume
that X is projective algebraic. Then there exits a resolution - -- — EY — Ey —
£V — 0 of the dual sheaf £V of a reflexive sheaf £ on (X, w) by holomorphic vector
bundles. Taking its dual 0 — & — Ey — Ej, we get an embedding of £ into a
holomorphic vector bundle Ey as a holomorphic subbundle outside S where £ fails
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to be locally free. We fix an arbitrary Hermitian metric hy on Ep. It induces a
Hermitian metric h on £ outside S. For the general case, we perform the above
construction locally, and patch the locally defined Hermitian metrics to get the
global h. We deform h by the heat equation

dh

Eh“ = —(v=1AF — X(E)]),

where A(£) = 2mnu(€)/[w]"[X] and I stands the identity endomorphism of the
fibre. We show that the solution for ¢t > 0 is an admissible one. If £ is stable, we
obtain an admissible Einstein-Hermitian metric as the limit as ¢t tends to infinity.

1. Removable singularity theorem

Here we consider Theorem 2. As the theorem is of local nature, we can assume
Y to be a domain in C", S of finite Hausdorff measure of real co-dimension 4 and
F square integrable.

The following is a direct consequence of the removable singularity theorem [1]
and the slicing theorem [14].

Lemma 1. Let (E,h) be a Hermitian holomorphic vector bundle defined on the
complement of a closed subset S of a product of balls B> x B"2 ¢ C% x C"~2

Assume that S has finite Hausdorff measure of real co-dimension 4 and there exists
a compact subset K of B? such that S is contained in K x B2 If the curvature
tensor of (E, h) is square integrable, then E extends to the whole space B? x B"~2
as a reflexive sheaf.

Let us first consider a) of Theorem 2. Fix an arbitrary point, say 0, in Y. Then
by assumption, for a generic projection p : Y ¢ C® — C™~2 the set SN p~1(0)
consists of a countable number of points which may accumulate only at 0. Shrinking
the domain Y, we may assume we are in the situation of Lemma 1. Thus F extends
as a reflexive sheaf £. Fix an arbitrary section s € T'(Y,£). We put Y; = p~1(¢),
S; = SNY; and u, = log™ A(s, 3)|K . Let ¢ be a smooth function on B2 with compact
support which equals 1 on a neighborhood of K. Except for ¢ which belongs to a set
of measure zero, Y; contains only a finite number of points in S; and the restriction
F, of F to Y, is square integrable. We fix such a point ¢{. In section 3 of [1] we
essentially showed that u; belongs to HJ. . and satisfies the following inequality

loc

Apuy > —4|F,

where A, is the Laplacian on Y;. Then we get for any e > 0

2 4F 2 V 2. 2
]YtW(abut)s SL | t|¢ut+/yt| o7

2o | fiu? 42t ] P+ [ [Vopud
Y: Y. Y:
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We apply the Poincaré inequality and get

Vgu)P <2 [ [Vl +C [ SR
Y: Y. Y:

Here and hereafter we denote a general positive constant by C which may differ
in the different appearance. We integrate it in ¢ and get for a compact subset
B c =i

/ V' (Gun)? < 2 [ Vo2u? + C / SR,
P~ 1K) p~1(K’) p~1(K’)

where V'’ stands the derivation along the fibres of the projection p. Since we can
use any generic projection p, it shows the desired result u € H, .

Once logt h(s,s) € H]. is known, it is easy to see that AF € L{2 implies
logt h(s,s) € L in view of

Nlogt h(s,s) > —2|AF|.

c) is a consequence of b) and the standard regularity theorem of linear elliptic
partial differential equations.

The last half of b) follows from

Proposition 1. Let h be a rank r Hermitian matrix valued function defined on
an n-dimensional Kahler manifold (Y,w) which belongs to H' Assume that h and
h~! are uniformly bounded and it satisfies

AB(BRRY) = f (1)

in a weak sense with a uniformly bounded function f, then h belongs to Cllo': for
any 0 < a < 1 and admits an estimate depending only on ||h|ite, [[R71| Lo, || f]lze~
and the geometry of (Y,w).

One can show Proposition 1 by modifying the argument which was used to
show the corresponding result for harmonic mappings in [7]. Since the proof is
essentially the same, we restrict ourselves only to pointing out the places where
change is necessary. Again we work locally. We denote the complex Laplacian by
0= Ay/—183 and its Green’s function by G(z,y).

Step 1: h is continuous. The equation (1) means that for any matrix valued
function k € L* N H' with compact support we have

/trahh_lékw"—l + /trfkw“ =fj,
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Let ¢ be a cut off function such that ¢ = 1 on B(xy, p), = 0 outside B(zo,2p) and
V| < 2p~1. We substitute k = ¢G(-, z9)h and get the estimate

[ o Gz < Clblum(1+ =)
B To,pP

as in [7]. Thus for any 0 < p < 1 there exists po such that p < po < \/p and
1 C

=3 [ VA" < ——.

Po B(zo,p0) —logp

Let ho be the average of h on the ball B(zo,po). Then there exists a positive
constant C such that

O(trpho + trpgh — 2r) > ~C.
Hence applying the Poincaré inequality we obtain

sup |h—ho)2<C sup (trpho+ trp,h — 2r)

B(zo,27'p) B(z0,27 1 po)
<0 [ fhhoP+ed)
B(zo,p0)
<o@™ [ VR +Ad)
B(zo,po)
< .
L6 i p)

Step 2: h is Holder continuous. Fix a sufficiently small positive number p and
let hg be the average of h on B(xg,2p)\B(xo,p). Since h is continuous, there exist
positive constants a and C such that in a neighborhood of zg it holds

alh — ho|? > a|Vh|® - C.

Multiplying it by ¢G(-, zg), integrating by parts and again applying the Poincaré
inequality, we obtain

g2 [ V]2 < C G(., z0)| VA2
B(zxo,p)

B(EO!p)

< Clpm / b — ho[2 + p?)
B(z0,2p)\ B(xo,p)

< C(prn / VAP + 62),
B(zo,2p)\B(xo,p)

which implies the Holder continuity.

Step 3: h belongs to C1* Instead of the formula (6.32) in the page 84 in [7],
we apply the following formula. For k € H ! with compact support

/trahgkw"—l “+ [trah(h“lho — Nokw™ ! + /trfhokw“ =0,

with hg = h(zo). Then the argument in [7] shows the desired result.
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2. Heat kernel estimate

For later use, we show the uniform boundedness of heat kernels for a certain
type of degeneration of metrics.

Proposition 2. Let (X,w) be an n-dimensional compact Kihler manifold and
m:Y — X a blowing up with non-singular center. Fix an arbitrary Kahler metric
@onY andset w, = m*w+e€f for0 < € < 1. Let H, be the heat kernel with respect
to the metric w,, then we have a uniform estimate 0 < H, < C(t™™ + 1) with a
positive constant C.

For the proof we start with the following lemma.

Lemma 2. If a real n-dimensional Riemannian manifold (M, g) satisfies the Sobo-
lev inequality

n—1

(fro1=)" <5 [1v¢l  tor pecian,
then the product manifold M x R also satisfies the Sobolev inequality with the
Sobolev constant S™/™+1

Proof . For an arbitrary point (z,t) in M x R and a function ¢ € C}(M x R), we
have

I6(z, )] < / Vé(z, )| ds
R
and

(] wwor=a) ™ <s [ vowola

[ = [ ewortay
< [a[ 100 OI=ray) ™ ( [ 18wl a)*

<S8 fR di /M IV¢I(y,t)dy( /Mdy fR |Vl(y, s) ds)%

atl

(], 5

Lemma 3. Let (X,w) be an n-dimensional compact Kihler manifold and 7 : Y —
X a blowing up with non-singular center. Fix an arbitrary Kihler metric 6 on Y
and set w. = m*w + € for 0 < € < 1. Then (Y, w,) satisfies the Sobolev inequality

Thus

n-—1

([1e1=) ™ <5 [1val+19l  tor seciv),
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with S independent of e.

Proof. We denote the blowing up of C* at the origin by C* and its restriction to
a ball B¥ by BF. We fix an arbitrary point p in X. Then in a neighborhood of p
the blowing up is given by 7 : BF x B! — B* x B! for some k, I. We first show
the uniform Sobolev inequality for the functions ¢ whose supports are contained in

Bk x B!:
]|¢|zn = s/|V¢|

For two metrics gg, g1 such that c;g0 < g1 < 299, the corresponding Sobolev
constants Sy, S, satisfy (¢1/e2)"So < 81 < (ec2/e1)™Sy- Hence it is sufficient to
consider the family of metrics v/—199(|z|? + elog|z|? + |w|?), where (z,w) is the
coordinate of BF x B!. Changing the coordinate by (z,w) — /e(z, w), we reduce
the problem to the verification of Sobolev inequality on (C* x C!,/=183(|z|* +
log |2|? + |w|?)). Since that for (C*,+/—=109(|z|> + log|z|?)) is trivial, Lemma 2
implies the uniform Sobolev inequality on B¥ x BL. Let p; be a partition of unity
on X corresponding to the covering given by B¥ x B!'s considered above. Then,
since it holds sup |V7*g;|.. < sup|Vp;|., summing up the Sobolev inequalities for
(7~ p;)@ we get the desired uniform Sobolev inequality on Y

The following result obtained by Cheng and Li [2] concludes the proof of Propo-
sition 2.

Lemma 4. If a real n-dimensional compact Riemannian manifold (M, g) satisfies
the Sobolev inequality

([1o15) <5 [1vo1 416l for s C*am),

then the heat kernel H satisfies the estimate 0 < H < C(t~™/2 + 1) with a positive
constant C which depends only onn and S.

3. Existence of admissible Hermitian metrics

Let £ be a rank r reflexive sheaf on an n-dimensional compact Kahler manifold
(X,w). We take a finite cover { U, } and local resolutions - - - — EY , — Ej , —
EV|U, — 0 of the dual sheaf £ by holomorphic vector bundles, Wthh admits the
following commutative diagram.

a b
— E]Y,aannU,@ — E(\l/,aannUﬁ Has ngUaﬂUﬂ — 0

| [z H

oY
— E;/,ﬁanﬂUg - E(\J/,.3|UanUﬁ — gleanUg =t )
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Taking its dual we get the following commutative diagram.

o %0,a
0 — EUNU; 2 EoalUanUs =3 EinelUsnUs

| [ !

¢ do,
0 — EUNU; — EoplUanUs — E18lU,NUs

This allows us to see £ locally as a subsheaf of locally defined holomorphic vector
bundles Ey . The relfexive sheaf £ is locally free outside a subvariety S of co-
dimension at least 3 and outside S the embedding £ — E;, realizes £ as a
holomorphic subbundle.

We take arbitrary Hermitian metrics hq on Ey , and a partition of unity p,
subject to the covering { U, }. Set hy = Y pg¢§af15. Then, the Hermitian metrics
{ha} on {Eg.} give the same pull back metric ¢,h,. and define a Hermitian
metric h on £ outside S. We deform h to get an admissible Hermitian metric on £
by the heat equation taking h as the initial metric.

%h*l = —(v/-1AF — X(&)]), (2)
where A(€) = 2mnu(€)/[w]™[X] and I stands the identity endomorphism of the
fibre. (To be precise, the heat equation is to be satisfied outside S.)

Since the equation has singularity on S, we make a regularization to solve it. We
take blowing up with non-singular center finite times m; : X; — X;_;, (i =1,...k),
Xo = X such that m = mgme_; ... 7 : X — X is biholomorphic outside S and
the kernel of m*¢g o : T*Ep o — T*E} o gives a holomorphic subbundle E,. E,'s
are naturally identified on the intersection of U,'s, and we get a holomorphic vector
bundle E' on X;. As in the case of £, E naturally inherits a Hermitian metric
from h,'s, which we still call h. Fix arbitrary Kahler metrics 6; on X; and define a
family of Kahler metrics on X; by wie = Wi e, e2.....6; = W+ €101 + €202 + ... + €;6;
for positive numbers {¢; };F=1. Here and hereafter we denote geometric objects and
their pulling back by the same notation.

We consider the heat equation for Hermitian metrics of the holomorphic vector
bundle E on (Xj,wk ) taking the above constructed h as the initial metric.

dh

Eh—l = —(V—1Ax,F —~ ME). (2)x
Here Aj,e means the trace taken with respect to the metric wy . Since every thing
is now in the smooth category, the result of Donaldson [4] says that (2) has a
solution untill infinite time. The curvature tensor satisfies the following.

dAg F
dt . Dk,eAk,er (3-1)k
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d|A ch
MFT — o el FI = (VA PP (3.2)
d|A. F
Ml o ax P, (3:3)k
d
L (3.4
Xk Xk
/ Ak FI(t,y) < [ Ak FI(0, ), (3.5
veEXx veXk
|Ak,€F|(tv I) S - Hk.e(tv I, y)lAk,cFl(O) y)s (36)k
YEX,

where Ok . and Hj ((t, T, y) are the complex (crude) Laplacian with respect to wg e
and its heat kernel.

Lemma 5. Let F be the curvature tensor of the initial metric h which is induced
by the metric h, on Eg o. Then its trace A; (F on (Xi,w; ¢), 0 < €; < 1, is uniformly
integrable.

Proof . Let Fp 4 be the curvature tensor of the holomorphic Hermitian vector bundle
(Eo,a) he) and p, the orthogonal projection onto £. We take a subcovering { V, }
of { U, } consisting of compact subdomains V, C U,. Then on each domain V,, we
have the inequality Vv-1F = \/“'_1paF0.apa+\/"“_15pa AOpa < \/‘_lpaFD,apa <Cw
with some positive constant C', which shows that v/—1F is bounded from above on
X;. It holds

< ntr(2Cwl — V-1F) W]}
< ntr(2Cwl — V—1F) w,:';ll,

|Ai e Flwie < (JAj(V—=1F — CwI)| + |A; Cwl|) wi,

with ¢ = (1,1,...,1). And since F gives the curvature of the holomorphic vector
bundle E on X,

] tr(2Cwl — V=IF) W<} = (2Crw] — 27¢1(E)) U [we " [Xi].
Xk

A direct calculation shows (cf. {8], [15])

Lemma 6. Let (E, h) be a holomorphic Hermitian vector bundle of rank r on an
n-dimensional compact Kahler manifold (X,w). Then we have

(2¢2(E) — c1(E)?) U [w]"2[X] = cn ]X (IF]? - IAFP)w™,

r_-.

; “e1(E)?) U )" ?(X] = o jx (IF°12 — |AF]?) w™,

(2c2(E) —
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where ¢, = (4n%n(n — 1))~! and F° stands the trace free part.

Proposition 2 says that for a fixed € = (€1, €2, ..., €x—1) the heat kernel Hj . has
a uniform bound for 0 < ¢, < 1. It is easy to see that Hy . converges to Hy_1 ¢
outside the exceptional set as € tends to 0. By the inequalities (3.5); and (3.6),
Lemma 5 implies that |A; F| has a uniform L! bound for ¢ > 0 and a uniform
L* bound for t > ty > 0 or on a compact set disjoint from the exceptional set.
Proposition 1 gives C'1* estimate on h. Lemma 6 gives the uniform L? bound on
F. Thus we can substruct a subsequence which converges to a solution of the heat
equation on X;_; as €, tends to 0,

dh,

Eh o= _(\/__1A-k—1,f’F = A(S)I)’ (2)k—1
such that F has a uniform L? bound for t > 0 and Ay_; F has a uniform L! bound
for t > 0 and a uniform L bound for t > t¢ > 0. It holds

d
G| W= [ VAL GFP, (3.4)ks
dt Xk—[ k—1
/ |Ak—1,€’F|(t1y) 3 f |Ak—1,6’F|(O: y)? (35)k—1
YEX k1 YEXk -1

|Ak—1,e'F|(ta CE) S/ X Hk—l,e’(t:xvy)lAk—l,e’FI(Os y)- (3-6)k—1
YEXk_1

Again taking the limit e,_; — 0, we have a solution of the heat equation on Xj_».
Repeating the argument, we obtain a solution of the heat equation (2) on X which
gives the desired admissible Hermitian metric A for the positive time ¢t > 0. Since
£ and E is isomorphic outside S which has at least co-dimension 3, by Fubini’s
theorem we get

(2e2(E) — T2, (6)?) U [w]™2[X] 2 en f (FO2 — AFP)ur.  (4)
& X
And it holds -~
/ / IVAF[(t,y) < f IAFP(to, ). (5)
to X X

4. Einstein-Hermitian metrics

Let € be a reflexive sheaf on an n-dimensional compact Kahler manifold (X,w).
Then as shown in the previous section, we can solve the heat equation (2) with an
admissible solution h(t) untill infinite time. By Simpson [13], the stablity condition
on & implies the existence of a subsequence h(t;), t; — oo which converges to an
admissible Einstein-Hermitian metric. The inequality (4) implies

r—1

2e2(8) = 21 (€)Y U ] 2[X] > cn f IFO2
X
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for the Einstein-Hermitian metric, which shows Corollary 3.

For a general £, the inequality (5) enables us to take a subsequence h(t;) such
that

] VAF[2(ti, y) — .
X

By the results in [18], [19], taking suitable gauge change we can further take a
subsequence so that the sequence of the corresponding holomorphic connections
converges to a weak solution of VAF = 0 outside a closed subset S” C X\S of locally
finite Hausdorff measure of real co-dimension 4. According to the eigenspaces of
AF, it splits into a sum of holomorphic Einstein-Hermitian vector bundles with L?
curvature defined on X'\(S U S’), which extend to reflexive sheaves.

The following proposition shows the poly-stability of an Einstein-Hermitian
sheaf as in the holomorphic vector bundle case.

Proposition 3. Let (£,h) be a reflexive sheaf with an admissible Einstein-Herm-
itian metric on a compact Kihler manifold (X,w). According as u(€) < 0 or
w(€) = 0, the sheaf £ admits only zero section or parallel sections s € I'(X, £).

Proof . If s is a global section of £, then by Theorem 2 b), |s| is bounded on X and
satisfies

Ols|? = |Vs|® = A(E)|s|2 > 0.

Remark. We get the admissible Einstein-Hermitian metric solving the heat equa-
tion. It is also possible to get it as a limit of Einstein-Hermitan metrics of the
holomorphic vector bundle E on X which is u-stable with respect to the metrics
wg,e for sufficiently small ¢, by taking e — 0.
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