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Hermitian Connections and Dirac Operators.

PAUL GAUDUCHON

* unto. - In questo articolo si espongono i fondamenti della geometria quasi
hermitiana, ed in particolare si da una trattazione approfondita dello
spazio affine delle connessioni hermitiane e dei corrispondenti operatori
di Dirac. Come -applicazione, si ottiene una formulazione esplicita per
Loperatore di Riemann-Dirac nel generale contesto quasi hermitiano.
Lultima sezione & dedicata alle proprieta di invarianza conforme degli
operatort hermitiani di Dirac.

atroduction.

The present paper principally includes:

(i) A unified presentation of a canonical class of (almost) her-
fitian connections, already considered by P. Libermann in [10], in-
uding the Lichnerowiecz first and second canonical connections [13],
e Libermann connection [10], the Bismut connection [2] as well as
torsion-minimizing hermitian connection, which seems not to have
en considered so far;

(i) explicit expressions for the corresponding hermitian Dirac
~ lerators, as well as the riemannian Dirac operator in the almost-
rmitian framework, in particular for the canonical Spin‘-struc-
Ye, which are well known in the Kihler case, cf. e.g. [7], but seem
ibe lacking in the current literature in the general case.

The first two sections of the paper constitute a reworked version
{a part of my old Lecture Notes [5] and are strongly related with
{ll-known previous contributions on the subject, in particular [10],
11, (12], [15], [18], [6]. On the other hand, no explicit mention is
of curvature properties of hermitian connections; for that
Reader may consult, in particular [13], [16], [4].

make these Notes as self-contained as possible and I
loward exhaustive references. As they are, I propose
r as a kind of a vade mecum for some basics of al-
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most-hermitian geometry, thus partially fulfilling a whish that
Franco Tricerri had often expressed to me.
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1. — The space of 2-forms with values in the tangent bundle of
an almost-hermitian manifold.

1.1. Elements of almost-hermitian geometry. In the whole pa-
per, (M,g,J) will denote an almost-hermitian manifold of .real di-
mension 7 = 2m > 2, where: g is a (positive definite) riemannian met-
rie, J is a g-orthogoal almost-complex structure.

We denote by: TM the (real) tangent bundle of M; T*M the (re-
al) cotangent bundle; A? M, p=1,...,n, the bundle of real p-forms;

(+,) the inner product induced by g on these bundles, with the fol-

lowing convention for the exterior and the scalar products on
forms:

(@A ... A a,,)Xl_,,,,Xp = det((ai)AXj)) ’
(@i Ao Nay, i ... ABy) =det((a;,B),

where det denotes the determinant. The almost-complex operator J
is extended to T*M by setting: (Ja)y= — a, for any covector a
and any vector X, so that J commutes with the riemannian duality
between TM and T* M. The Levi-Civita connection of g will be de-
noted by D.

We consider the following objects: the Nijenhuis tensor, or com-
_plex torsion, N, defined by:
(L12)  4Nyy=[JX,JY]-JIJX,Y] - J[X,JY] - [X,Y],

for any vector fields X and Y, which vanishes if and only if J is inte-
grable (Newlander-Nirenberg theorem [14]); the Kdihler form F, de-
fined by: Fy y=g;x y; the Lee form 6, defined equivalently by:

(1.1.1)

(1.1.3) 0=JoF,
where 6= — xd* is the codifferential with respect to g, or by:
(1.14) 0=A(dF),

where dF' denotes the exterior differential of the Kihler form F and
A denotes the contraction by the Kihler form, defined, for any exte-
n

rior form v, by: A(y) =1/220¢(ei,Jei,~, ...y"); here, and hence-
forth, {e;};—1, ., denotes a J-adapted orthonormal frame, with
€9 =Jegl__1, l= 1, Y (B

The Lee form 6 is also determined by:

(L15) dF = (dF), + —1

(m—1)

ONF,

where (dF), denotes the primitive part of dF, i.e. its orthogonal pro-
jection of into the kernel of A.

Notice that, for n =4, (1.1.5) is reduced to: dF =0 A F.

In addition to dF, we will consider the real 8-form d°F defined
by: «
(1.1.6) (@°F)xyz=—dFx jx1z,

which plays an important role in the sequel.
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The almost-hermitian structure (g,J) is said to be: Kéhler if J is
D-parallel; symplectic if F is closed; (2,1)-symplectic if (dF)* =0,
where (dF')* denotes the part of type (2,1) + (1,2) of dF'; hermitian
if J is integrable, cf. Remark 5 below. As it is well-known, (g,J) is
Kihler if and only if it is both (2,1)-symplectic and hermitian, cf.
e.g. [8].

12. The space of TM-valued 2-forms. We denote by Q%(TM) the
space of TM-valued 2-forms on M, i.e. the space of sections of the
tensor product TM @ A2 M.

Each element B de 2%(TM) will also be considered (via g) as are-
al trilinear form, skew-symmetric with respect to the two last_ %gu
ments, by setting: By y ;= (X, By 7).

In particular, the space 22M of (real) 3-forms will be considered
as a sub-space of Q%(TM). We denote by }3 the Bianchi projector of
Q%(TM) onto Q3M, defined by:

12.1) (bB)yx,y,z= E’; (Bx,v,z+ By,zx+Bzx,y).

The trace of an element B of 22(TM) is the real 1-form tr(B) defined
by:

122) tr(B)y = i Buyx

The trace can be cons1dered as a projector of 2%(TM) onto the space
QM of real 1-forms, realized as a subspace of Q2(TM) as follows:
identify any (real) 1-form a with the element a of Q2(TM) defined

by:

(1.23) axyz= (azgxy—av9zx),

1
(n—1)

so that: tra=a.
We thus get the followmg orthogonal decomposition of
QUTM):

(12.4) QATM)=Q'M & (Q:TM))"® QM

where (2%(TM))° denotes the sub-space of trace-free elements of
Q2(TM) satisfying the Bianchi identity. Accordingly, any element B
of Q2TM can be written as follows:

(12.5) B=trB+B"+bB,
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where B° is trace-free and satisfies the Bianchi identity: bB° =0.

13. The type of @ TM-valued 2-form. The decomposition (1.2.4)
of the space Q2(TM) follows from the corresponding decomposition
of the vector bundle TM ® A%M, while the latter refers to the de-
composition of the space R"® A2(R™* under the action of the or-
thogonal group O(n). The next step consists in refining this decom-
position when restricting the action of O(n) to the unitary group
U(m). For that, we introduce the following notation:

DEFINITION 1. — An element B of Q%(TM), viewed as o TM-
valued 2-form, is said to be:

of type (1,1), if Byx;y=Byxy,
of type (2,0), if Byx.y=J(Bxy),
of type (Oy2)9 7f BJX,Y= —J(BX,Y)y

Sfor any vector fields X, Y.

We denote by 2%2(TM), 22°(TM) and Q(TM) the subspaces
of Q2(TM) of elements of type (0,2), (2,0) and (1,1) respectively,
and, for each element B of 2%(TM), we denote by B2, B%® and B!
the corresponding components. For later use, we introduce the invo-
lution 9 of 2%(TM) defined by:

(13.1) (MB)x,v,z=Bx,sv.7z -

This involution is an isometry. Its eigenspaces with respect to +1
and —1 are the subspaces QV1(TM) and Q%%(TM) & Q%°(TM)
respectively.

REMARK 1. - The terminology of Definition 1 is motivated by the
fact that the real tangent bundle TM of M can also be considered as a
complex vector bundle of rank m by identifying the action of J with
the multiplication by the complex number i=1/—1. Nevertheless,
elements of Q%(TM) are real; in particular, the subspace Q%2(TM)
is not the «conjugate» of Q%°(TM) in any sense.

In terms of representations of the unitary group U(m), the sub-
gpaces Q%2(TM), Q%>°(TM) and Q%1(TM) correspond to the real
parts of the complex representations V®A2V, V®A2V and
V®VQ®YV respectively, where V=C™ denotes the standard repre-

§entat10n of U(m). In particular, the (real) dimensions of these

spaces are m?(m — 1), m%(m — 1) and 2m3 respectively.
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REMARK 2. — As observed above, a (real) 3-form y on M can be
viewed as a (totally skew-symmetric) section of Q2(TM). It thus ad-
mits two different type decompositions:

(@) a decomposition as a 3-form:
(18.2) py=yp +yp*,
¢ y* denotes the ((2,1) +(1,2))-part and " the ((3,0) +
8))-part of y in the usual sense;
- (i) a type deecmpositmn as an element of Q2%(TM), according
tﬂ’zﬁh@ Definition 1. The two decompositions are related by

(1.3.8) =y,

(1.3.4) pt =920+ yll, P
1

(1.3.5) w2'°=%(w+—mw+), w1’1=§(w++ﬁflw*)-

On the other hand, any 3-form ¢ * of type (2,1) + (1,2) (as a 3-form),
“satisfies the identity:

136) v*(X,Y,2)=
vt (X, JY,JZ) + 9 (JX,Y,JZ) +p* JX,JY,Z),
or, equivalently:
(13.7) | W =3b(My*).
Since y* =by*, the above identity immediately implies:

(1.3.8) (w*,mtw*)=§|w*|2-

It then follows from (1.3.5) that the norms of the componemts P20
and y%! of ¥ are related by:

1
(1.3.9) |p20|2= —Iw“lz-

In particular, a non-zero 3-form yp* of type (2,1) +(1,2) (as a 3-
form) cannot be of «pure type» as an element of QETM).

In the sequel, the spaces of real 3-forms of type (231) +(1,2) and
(3,0) +(0,3) will be denoted by 2>*M and Q% M respect-
ively. \

Notice that ©%~ M is contained in the space 2¢M of primitive
3-forms.
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For n =4, the spaces Q% M and Q3M are both reduced to
{0}.

1.4. Symmetries of elements of pure type in Q%(TM). The rela-
tionship between (1.2.4) and the decomposition into types of ele-
ments of Q2(TM) is explained in the next three lemmas.

LEMME 1. - For any element B of 22, we have:

@) tr(B)=0;
(ii) the components B® and HB both belong to Q"2(TM).

In particular, as a 3-form, BB is of type (3,0) +(0,3).

LEMME 2. - The restriction of the Bianchi projector b to Q% 0(TM )
is an isomorphism from Q>°(TM) onto Q>+ M.

More precisely, for any B in Q%(TM), bB belongs to 2%+ M and
we have:

1.4.1) B= % (6B — I(6B)).

LEMME 3. - (i) The space 2 (TM) admits the following orthogo-
nal splitting:

(14.2) QUYTM) = QLYY (TM) ® 2L (TM),

- where Q3" (TM) denotes the subspace of elements of QV(TM) satis-

Sfying the Bianchi identity: bB=0, and QL(TM) denotes the sub-
space of Q1 (TM) orthogonal to QL(TM).

(i) The restriction of b to QL(TM) is an isomorphism from
QLYTM) onto Q%+ M.

More precisely, for any A in QLY TM), BA belongs to Q>+ M
and we have:

(14.3) A= % (bA + M(BA)) .

PROOF. — For any B in 2%%, we have:
(14.4) Byxv,z=Bx,jv,z=Bxyv,1z -

Lemma 1 follows easily. Lemmas 2 and 3 can be deduced from the
Schur Lemma or by direct verification. For example, the injectivity
of the restriction of b to 2%°(TM) can be directly checked as follows:
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if B in Q%°(TM) satisfies the Bianchi identity: bB =0, we have (by
applying the Bianchi identity two times):
0=Byx jv,sz t+ Biv,yz,x + Bizx,ov =
—Bxyz+ByzxtBzxy=—2Bxyz. W
REMARK 3. — The subspaces 211(TM) and Q7' (TM) are respect-
ively associated with the representation spaces VRS2 V' and
V® A2V of U(m), where S2V, resp. A%V, denotes the symmetric, re-
sp. skew-symmetric, part of V® V. By Lemmas 2 and 3, the ‘l?lanchl
projector b identifies each space Q*°(TM) and Q,‘,’_I(TM ) Wlth the
space Q%+ M of 3-forms of type (2,1) +(1,2). We infer an lsomor-
phism from Q2°(TM) onto Q7' (TM), denoted by &, and the au.erse
isomorphism from Q%!(TM) onto QZ’O(TM ), denoted by @ !, given
by: .

145  ®B)= %— (6B+ 9(bB)), VBeQ>(TM),

146 & 1A)= %(bA _om(b4)), VYAeQLYTM)

(direct consequence of (1.4.1)-(1.4.3)). The isomorphisms & and @ !
are not isometries; more precisely, by (1.3.8), we have:

(147 |B(B)|2 = -;— |B|2, VBeQ»(TM).
It may be observed that @ is also given by:

148 (2B)xy,z= ';- (Byzx+Bzxy, VBeQ 20(TM).

REMARK 4. — By (1.4.1) and (1.4.3), for any B in Q%%TM) and any
A in QLY (TM), we have:

3
(14.9) tr(B) =3JA4(bB), tr(4A)=-— —2—JA(bA).
2. — Canonical hermitian connections on an almost-hermitian
manifold. '

91. Potential and torsion of a hermitian connection. For any
almost-hermitian manifold (M,g,J), a linear connection V on M (act-
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ing on sections of the tangent bundle TM) is hermitian if it pre-
serves the metric g and the almost-complex structure J: Vg=0 and
VJ =0 (the name hermitian for connections does’nt suppose J being
integrable).

We denote by A", or simply A, the potential of V (with respect to
the Levi-Civita connection D), defined as the difference V — D. Since
V and D both preserve the metrie g, the potential A can, and will, be
considered as an element of _QZ(TM ) by setting:

2.1.1) Axyv,z=(VxY,Z) - (DxY,Z).

The space of hermitian connections on M is an affine space, denoted
by a(g,J), modelled on the subspace QV1(TM) of Q(TM).
Since preserving g, V is entirely determined by its torsion TV, or

simply T. In the sequel, we will always consider 7' as an element of
Q%(TM) by setting: '

(2.1.2) . . TX,Y,Z = (X, TY,Z) ‘

The potential A=Avv and the torsion T=T" of any hermitian con-
nection V are related by:

213 - T=-A+3bA,
2.14) A=-T+ %E)T.
In particular, we have:

@215) bA= —;—bT, tr(A) = —tr(T), A%=—TO,

2.2. Structure of DF. In addition to the potential A and the tor-
sion T of any hermitian connection V, the following tensors will also

be considered as elements of Q2%(TM): the Nijenhuis tensor N of J,
by setting:

(2.2-1) Nxyz=X,Nyp);

the covariant derivative DF of the Kihler form F with respect to th
Levi-Civita connection D, by setting: ’

(22.2) (DF)xy,z=(DxF)y 7.

" Then we have (cf. also[6]):

PROPOSITION 1. — (i) The Nijenhuis tensor N is of type (0,2); in
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particular, it is trace-free and splits as follows:
(2.2.3) N=N"+D0N,

where N° satisfies the Bianchi identity and bN is the skew-symmet-
ric part of N. Moreover, bN is entirely determined by the component
(dF)~ of dF; more precisely, we have:

@2.4) | bN = %(ch)‘ .

(i) The component (DF)"' of DF vanishes identically, i.e.
the type decomposition of DF is reduced to: ‘
(2.2.5) DF = (DF)*? + (DF°. .

(iii) The component (DF)*2 of DF is entirely determined by
and determines N; more precisely, we have:

(2.2.6) (DF)3%.z=2N)x vz + El,’- (dF)xv,z=2Nxy,z+ (@F)xy,7,

or, equivalently:
2.2.7) (DFY%% 2=Nyxyv,zt Nivxz—Nizxy-

In particular, we have the equivalence:

2.2.8) D;J=JoD.J<J is integrable .

(iv) The component (DF)*° of DF is entirely determined by
(dF)*; more precisely, we have:

22.9) (DF%Y,z= %((dF Vi v.z— (A% gv,02) -

In particular, we have the following equivalence:

(2.2.10) D;J=—JoD.J=(g,J) s (2,1)-symplectic .

PROOF. — The fact that N is of type (0,2), as an.element of
Q2(TM), is an immediate consequence of its definition. The identity
(2.2.7) can be checked directly; (2.24) and (2.2.6) follow directly. Th.e
identity (2.2.9) is a consequence of (1.4.1) and the fact that b(Df‘) is
equal to (1/8)dF. The component (DF)*! being equal to zgro is a.n
immediate consequence of the fact that DJ anticommutes with J. F{-
nally, as an element of Q2(TM), DF is of type (2,0) if and only if
Dyx=dJ oDxJ and of type (0,2) if and only if D;xJ = —J oDxJ, for
any vector field X. ®
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COROLLARY 1. — For any almost-hermitian structure (g,J), we
have the inequality:

@2.11) |DF|? = |dF|2 + 4|N°|? - §|(dF)-|2.

In particular, if J is integrable, we have: |DF| = |dF]|.
If n=4, we have the inequality:

2.2.12) |DF|2= |dF|?,
with equality if and only if J is integrable.

PROOF. — Immediate consequence of (2.2.6) and (2.2.9). If n=4,

the component (dF)~ vanishes identically for any almost-hermitian
structure. =

NOTE. — The norms appearing in the Corollary above are not the
tensorial norms; instead, the norms for dF or (dF)~ is the norms in
A%M, according to (1.1.1), whereas the norm for DF or N° is the

norm in TM®A%*M, with the same convention for the factor
AZM. i

REMARK 5. — By Proposition 1, for a general almost-hermitian
structure (g,J), DF is the sum of four components, each correspond-
ing to some irreducible representation of U(m), respectively identi-
fied to N°, (dF)~, 0 and (dF); . '

The celebrated Gray-Hervella classification directly follows
from this decomposition: each of the 16 =2* categories of almost-her-
mitian structures listed in [6] corresponds to the vanishing of some
subset of the set of 4 «irreducible components» of DF'. In this paper,
in addition to the general case (no condition) and the Kdihler case (all
components vanish), we only consider the symplectic or almost
Kihler case (vanishing of the three components (dF)~, 6 and
(dF)¢ ), the (2,1)-symplectic case (vanishing of the two components
6 and (dF)¢ ) and the hermitian or integrable case (vanishing of

~ (dF)” and N°). Notice that the two latter categories are complemen-
tary to each other, cf. also (2.2.8) and (2.2.10) in Proposition 1) (the
~ terminology concerning the various categories of almost-hermitian
_ structures has not been definitively settled yet; the name (2,1)-sym-
plectic, quasi-Kdhler in [6], has been proposed by S. Salamon).
For m =4, the Gray-Hervella classification is reduced to 4 =22
sategories; in particular, in this case the symplectic and (2,1)-sym-
plectic categories coincide. ‘
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2.3. Describing a hermitian connection by its torsion. As we al-
ready observed, a hermitian connection V is entirely determined by
its torsion T. The properties of T are described by the following
proposition, cf. also[13],[12]:

PROPOSITION 2. — For any hermitian connection V, let T be the
torsion of V, viewed as an element of Q%*(TM). Then:

(i) The component T "2 of type (0,2) of T is independent of V,
equal to the Nijenhuis tensor N:

23.1) T%2=N.

(i) The skew-symmetric part of (T>°— TLY) is independent.

of V, equal to (1/3)(d°F)*: 3
23.2) T2 -TEY = %(chﬁ .
Equivalently, the difference (T>°— & ~1(TLY)), in Q%°TM, is inde-
pendent of V. equal to:

(283) T2 — @~} (TLY) = %((d”lﬂ’)+ - Id°F)*)=(DF)>°(J.,-,-).

(i) T is entirely determined by its component TJ' and its
component (bT)*, which can be chosen arbitrarily.

More precisely, for any real 3-form v ™ of type (2,1) + (1,2) and

any section B, of QL1(TM), there exists a unique hermitian connec-
tion V, whose torsion T satisfies the two following conditions:

23.4) TL1=B,, (bT)*=y*.

The remaining part of the torsion is then determined by (2,3.1
- and by: ‘
6720 =4 (v + §@pr),

(2.3.5)
b(Tyh =

DN|= DO

(w* - %(dc_F)*),

i.e the torsion is given by:

©236) T=N+ %(d‘F)* - %:m(al"z")+ + —g-w* - %fmw* +B,.

The cofresponding hermitian connectidn V is then équal to D+ A.

where the potential A is obtained from T by (2.1.4).
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PROOF. — The linear connection V=D + A is hermitian if and only
if A, as a section of Q%(TM), satisfies

2.3.7) Ax vzt Axy 2= —(DF )x,v,7 -

Due to (2.1.4), this holds if and only if the torsion 7 of V satis-
fies:

(2.3.8) Tx,svz+ Txy, 2~ % ((0T)x,sv,z + (bT)x,v,72) = (DF)x v 5 .

Since Ty, z+ TxY% ;z=0, the condition (2.3.8) is equivalent to the
following system:

(2.3.9) 2T})X2,Y,z —3(bT)jx,v,z =DF )?",%f,z ;
2310) ~2T3%7~ 3 (OT) v,z + (OT)v,10) = DFEY, .

Then, assertion (i) follows easily from (2.3.9) and (2.2.6).

By (1.4.1) and (1.4.3), (2.3.10) is easily checked to be equivalent to
(2.3.3) (itself equivalent to (2.3.2)). This proves (ii).

Finally, the above argument shows that V is hermitian if and

only if its torsion 7 satisfies (2.3.1) and (2.3.2). This proves
).

2.4. Hermitian connections of minimal torsion. For reasons
which will become clear in the sequel, the 3-form ¥ ™ that appears in
(2.3.5)-(2.3.6) is better expressed as follows:

. ef-1)
VT3

where fis a real function on M and ¢ is orthogonal to (d°F)* at any
point of M.

Then, (2.3.6) reads as follows:

2.4.1) dnt+ys,

©42) 1=-N+F 4_ 1 (d°F)* —
| (f+1D) cmy+ g + _ § +
1 IM(AEF) +8¢0 Smapo +B,.

om (2.4.2), we easily infer

PROPOSITION 3. — For any hermitian connection V, the torsion T
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of V satisfies the following inequality, at any point of M:
243) IT|2> N2+ §|dF|2.

Equality in (2.4.3) holds if and only if T satisfies:

@24.4) TH=0, (BT)*=-§@F)",

if and only if T satisfies:

24.5) T=N- % MACF)* .

PROOF. — From (2.4.2), (2.2.4) and (1.3.8), we infer g? following
series of equalities and inequalities: '

246) |T|2=
|N°|2+§|(dcm-|2+|Bs|2+%(3f252f+1)|(dczr)+|2+%7|¢0+|2>
IN®|2 + —;;|(ch)‘ 2+ %(3f2—2f+ D[ F)* 2=

N2+ él(ch)‘ 2+ %|(d°F)+ 2=

INC[2+ £ |2

Equality holds at any point if and only if B, and y¢ both vanish
identically and the function f is constant, equal to 1/3. m

COROLLARY 2. — For any almost-hermitian structure (g,J) on M,
there exists a uniquely defined hermitian commection, denoted by
Vmin - characterized by its torsion being of minimal norm at any
point of M.

This commection is related to the Levi-Civita connection D by:

@47 (VE"Y,Z)=(DyY,Z) — (X,Nyz) +
1,,. S QPP 1 e+
E(d F)xv,z— E(d Fyz+ §(d F)t v,z -

PrROOF. — The first part is a direct consequence of the above
proposition; (2.4.7) follows from (2.1.4) and*(24.5). =
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25. The set of canonmical hermitian comnections. Proposition
2 (ii) singles out a distinguished set of hermitian connections (a real
affine line or a point in A(g,J)), namely the canonical hermitian con-
nections defined as follows (ef. also [10]):

DEFINITION 2. — For any almost-hermitian structure (g,J), a
hermitian connection is called canonical if its torsion T satisfies the
Jollowing condition:

2t-1)

(25.1) Ty1=0, (bT)*= —3 d°mr.

for some real number ¢.

The canonical hermitian connection corresponding to the value ¢
of the parameter will be denoted by V’.Then, by (2.4.2), the torsion
T of V' is expressed as:

©@52) T'=N+ %(3t— 1)(d°F)* ~ i<t+ 1) M(EF)*

while, by (2.1.4), the connection V! itself is related to the Levi-Civita
connection D by:

253) (V%Y,2)=(DxY,Z) - (X,Ny,z) +

% (d°Fxyz— i (d°F)iyz+ % (@°F)% jy, 0z +

L@ Pyt @ P ).
By (2.2.6), (2.5.3) also reads as follows:

(254) (V%Y,Z)=(DxY,Z) + %((DXJ) JY,Z) +

i (@ Py + @ F)Ery.02).

In particular, the hermitian connection V° coincides with the orthog-
onal projection of the Levi-Civita connection D into the affine space
A(g,J), in the following sense: by considering the Levi-Civita con-
nection D as the natural origin of the affine space @(g) of connections
on M that preserve g, A(g) is identified with the space Q%(TM) of
sections of the fiber bundle TM ® A%2M, while d(g,J) is identified
with the space of sections of the affine sub-bundle, say
(TM ® A2M)’, of elements A satisfying (2.3.7); then, at any point of
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M, V' is equal to the orthogonal projection of the origin into the fiber
of (TM ® A2M)’ at this point. _

Alternatively, let @ denote the connection 1-form of the Levi-
Civita connection D with respect to some J-adapted orthonormal
frame e = {e;,e; =Jey, ..., 1,02 =Jegy 1} of TM; then, the con-

nection 1-form »® of V° with respect to e is given by: w®(X)=
30(2m) 30(2m)

IT (w(X)), where, [] denotes the natural projection from

u(m) u(m)

80(2m) onto the sub-Lie algebra 1u(m) of U(m). Hence, V° coincides
with the first canonical connection of [13]. This fact is a Justification
a posteriori of the choice of the parameter ¢ in (2.5.1).

PROPOSITION 4. — For any almost-hermitian st
canonical hermitian connection V' is related to the «origin» V°
by: : .

25.5) Vi=V0 4+ %((d”F)* + AT .

In particular, if (g,J) is (2,1)-symplectic, the canonical set {V}ier
is reduced to {V°}, while, if (g,J) is not (2, 1)-symplectic, elements
of {V*}cr corresponding to different values of t are distinct and the

set of camomical hermitian commections form an affine line in
a(g,J):

(2.5.6) Vi=tVi+(1-¢)V°,

where V° and V! are distinct, respectively identified with the first
and the second camomical connection of[13].

PROOF. — Immediate consequence of (2.5.3). Cf. also [10] and the
next subsection. W

For the convenience of the Reader, we recall the expression of
the components of the torsion 7% of V' (directly deduced from
(2.5.2)):

25.7) (TH0=Z(@°F)* - ad°M*),

13
2

2.5.8) (THL = (t—;lz ((d*F)* +9(d°F)"),
(2.5.9) - (TH¥' =0,

re, each
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(2.5.10) prt= & 3_ D acmt+ %(dCF)‘ ,
tr (T = — “;1) 0,
2.5.11) () — (t;l) o

tr((TH>%) = —16.
2.6. Some distinguished canowical hermitian conmections.
Within the canonical set {V'}; g of hermitian connections, we distin-

guish the following ones:

t=0; as already noticed, V° is the first canomical connection

- of [13], i.e. the orthogonal projection of the Levi-Civita connection D

into the affine space @(g,J) as explained above. This connection is
characterized in d(g,J) by the condition:

2.6.1) TH1=0, T2°=0.

In particular, if J is integrablé, the torsion of V° is of type
1,1).

t=1; the connection V! is the second camonical comnection
of [13]; it is also called the Chern commection of (g,J) since, in the
integrable case, it coincides with the Chern comnection of the tan-
gent bundle viewed as a hermitian, holomorphic bundle of rank m,
cf. [3]. v '
It is characterized, in d(g,J), by the condition:

(2.6.2) Thl=0.

Equivalently, V! is characterized in d(g,J) by its part of type (0,1)
coinciding with the Cauchy-Riemann operator 9, acting on sections
of TM, defined by:

2.63) 3 Y= % J(&yJ)X) + Nyy (e N_zp),

where £ denotes the Lie derivative, cf. Proposition 4 below.
t=-1; V& sidered by J.-M. Bismut in[2]. It
is characterized in it

(2.64)
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In particular, if J is integrable, V™! is characterized by its torsion
being skew-symmetric.

In the canonical set {V'};.g, V™! is characterized by the associat-
ed Dirac operator P ! being self-dual [2], cf. also Proposition 6 be-
low and [2] for further developments.

t=1/2; V2 has been called conformal by P. Libermann
in[10]. It is characterized in d(g,J) by the condition:

(2.6.5) T—N satisfies the Bianchi identity .

In the canonical set {V'},.g, V'/2 is characterized by the correspond-
ing Dirac operator P!/? being conformally covariant, cf.[10] and
Proposition 9 below.

t=1/3; V}/3 = V™ is characterized in A(g,J) by its’ﬁ}rsion be-
ing minimal, ¢f. Corollary 2 above.

2.1. Hermitian connections and Cauchy-Riemann operators.
As already observed, any almost-complex structure J determines a
pseudo-holomorphic structure on the tangent space TM defined by
(2.6.3) or by:

@71) FY= i([X’ Y]+ [JX,JY] +JLJX, Y] - JIX,JY),

for any real vector fields X and Y, or else by:

2.7.2) HY=[X,Y]°,

for any complex vector fields X and ¥, of type (0,1) and (1,0) re-
spectively. The Cauchy-Riemann operator so defined is indepen-
dent of the metric and will be called the intrinsic Cauchy-Riemann
operator of J.

On the other hand, each J-linear connection V also determines a
«Cauchy-Riemann operator», denoted by 3", defined as the (0,1)-
part of V:

2.73) Y= -;— (VyY +JV,5Y).

In particular, a «Cauchy-Riemann operator», denoted by 3, is at-
tached in this manner to each canonical hermitian connection V‘,

PROPOSITION 5. — For any almost-hermitian structure and any
canonical hermitian connection V¢, the corresponding Cauchy-Rie-
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mann operator 3* is related to the intrinsic Cauchy-Riemann opera-
tor 3 of J by

(t—

2.7.4) (3% Y,2)=(3yY,Z) +

1)
(@ Pt y,z— (@ F)% 1v.47) .

In particular, 3* coincides with 3 for each tif (9,J) is (2,1)-symplec-
tic, while, if (g,J) is not (2,1)-symplectic, 3* coincides with d if and

only ift=1, i.e. V' =V is the Chern connection, or second canonical
connection, of (g,J).

ProoF. — Easy consequence of (2.7.1), (2.7.4) and of the identi-
ty:

@15) (d°Fyz— @ Fixyiz=DyD)Z,X)~(DyJ) Z,JX). ®

REMARK 5. — Any J-linear connection, a fortiori any hermitian
connection on M, induces a (unitary) connection on the canonical
bundle Ky' = AZTM of (M,J) (where TM is viewed as a complex
vector bundle of rank m via J). This applies, in particular, to the
canonical connections V. Let us still denote by V! the induced con-
nection on Kj'. From (25.5), we easily infer that V' is

@.7.6) Vts=V°s+i%J0®s,

for any section s of Kj' (where i=/-1).

3. — Dirac operators on an almost-hermitian manifold.

3.1. Spin-structure on an almost-hermitian manifold. The
choice of a Spin-structure on an almost-complex manifold (M, g,J) is
equivalent to the choice of a square-root Kj/? of the canonical bundle
K,y of the complex manifold (M,J).

We then have the following identification for the corresponding
spinor bundle IM:

8.1.1) SM=A"*MQK,/?,

where: A%* M = 2 A" M denotes the bundle of complex forms of
type (0, ) (in (3 1 1), the tensor product is a C-tensor product).
In particular, the spinor bundle ZM splits as follows:

(3.1.2) M= @OZ”M,
P=
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where, for each p =0, ...,m, the sub-bundle 3 M of spinors of degree
p is identified with the bundle A%? M @ K,/? of K./*valued (0, p)-
forms. It is easily checked that 3P M is also defined as the eigensub-
bundle with respect to the eigenvalue (2p — m)i for the Clifford ac-
tion of the Kihler form F on M.

A spinor field & of degree p is locally expressed as:

(3.1.3) §=yQ®o,

where v is a form of type (0,p) and o a local, non-vanishing section of

K;{/ 2, The identification of spinors of degree p with Kj/’-valued

- (0,p)-forms as well as the representation (3.1.3) will be systematical-

ly used in the sequel without further explanation.
The Clifford action of a (real or complex) vector i?d X on a
spinor field &, denoted by a dot ., is given by:

(3.14) XE=V2AX Ay - X" _1p) ®o.

Here, X=X"°+ X% is the usual type decomposition of X; (X% is
the image of X"° by the riemannian duality, extended by C-linearity
from the complexified tangent bundle TM ® C to the complexified
cotangent spaces T*M ® C; _| denotes the natural contraction of
the complex vector field X*! with the complex (0, p)-form v, defined
by:

(3-1°5) ' (Xo’l—h/))xl ,,,,, Xp—l =¢X0'1,Xl,...,Xp_1 ’

'for any (complex) vector fields X, s Xp 1.

The corrective factor \/5 ensures that the square of the action of
X be equal to the multiplication by the scalar — (X,X), where, here
and henceforth, (-,-) denotes the C-bilinear extension of the inner
product to the complexified tangent space.

The Clifford action of exterior forms on M will also be denoted
by a dot ..

WARNING. — The C-linear riemannian duality from TM ®C to
T*M®C exchanges types: (X“%P=(X%*!. In particular, (X-%P
is a (0,1)-form! ‘

3.2. Dirac operators. The riemannian Dirac operator, denoted

“for any g-orthonormal frame {e;};-,
“induced Levi-Civita connection on M. In a similar way, for any

© (3.1.2), in the following sense:
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by P, acts on sections of SM as follows:
n
(3.2.1) PE= ,Zlei D¢,

»» Where here D denotes the

.....

hermitian -connection V, the hermitian Dirac operator associated
with V, also acting on ZM, is defined by:

(8:2.2) PTE= 3 erVok,

where, again, V denotes the induced connection on M.
In contrast to the Levi-Civita connection, each hermitian connec-
tion V is compatible with the identification (3.1.1) and the splitting

323) VxE=Vxy Qo+ y®Vya,

for any spinor field £=vy ® o of degree p, where V denotes the in-
duced connections on M in the Lh.s., on A% M and on Kj/ % in the
r.h.s.

Then, the corresponding (hermitian) Dirac operator PV splits as
follows:

(3.24) P'=PY +PY,

i.e., for any spinor field & of degree p, P V £ is the sum of a spinor field
of degree p + 1, denoted by PY &, and a spinor field of degree p -1,
denoted by PY £. By (3.1.4), we have:

325  (PYE), o= V22 (-1 (V58)z,.. 5.0

-----

(32.6) (PY8)z,.7 1= = V22 (Ve

for any vector fields Z;, -«+yZy of type (0,1) (as usual, the symbol Ej
indicates a missing argument).

3.3. The Dolbeault operator. The pre-holomorphic structure J
defined by (3.7.1) on sections of TM, induces a pre-holomorphie
structure, still denoted by 9, on any tensorial power of the canonieal
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bundle Ky, in particular on K;/Z. By Proposition 5, we have:

(33.1) do=(V)0lg,

for any sectlon a of Ki/?, where, as usual, V! here denotes the con-
nection on Kj/2 induced by the second canonical hermitian connec-
tion V. :

We also denote by 3 the operator on sections of A%?M defined
by:

(33.2) Fy = (dy)OP+D

for any (0,p)-form .
Upon combining these two operators, via (3.1.1) we obtam an op-
erator 8 acting on sections of XM, defined by: '}

(8.3.3) =3y Qo+(—1PyAda,

for any spinor field £=y ®o of degree .
‘We denote by 3* the hermitian adjoint of the operator 3 defined

by (3.3.3) and by O the (normalized) Dolbeault operator actmg on
sections of M, defined by: -

(33.4) O=V2(3 + 3%).

3.4. Riemannian versus hermitian Dirac operators. The rie-
mannian Dirac operator P, the hermitian Dirac operators PY and the
Dolbeault operator (] have the same principal symbol, but don’t co-
incide in general. The main goal of this and the following subsection
is to compare these operators when V is a canonical hermitian con-
nection V*, as defined in Definition 2. The corresponding (hermltlan)
connection P¥ will be simply denoted: by Pt.

PROPOSITION 6. — For any almost hermitian manifold (M,g,J)
and any real t, the hermitian Dirac operator P, corresponding to
the canomnical hermitian connection V¢, is related to the riemannian
Dirac operator D by:

t+1) 2t-1)
4 4

In particular, P* coincides with P for any t if cmd only if the almost-
hermitian structure (g,J) is symplectic.

(3.4.1) PtE=pE— l (d°F)~ &.

0§+ (A HF-ET

Y,Z—(
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ProOF. - Easy consequence of (2.1.1), (2.1.5), (2.5.10) and
(25.11). =

3.5. Riemannian Dirac operator versus Dolbeault operator. In
the Kihler case, it is well-known that the riemannian Dirac operator
P coincides with the (normalized) Dolbeault operator [J, cf. e.g. [7].
In the general case, we have:

PROPOSITION 7. — For any almost-hermitian manifold (M,g,J),
the riemannian Dirac operator P and the Dolbeault operator (1 are

related by:

851 PE=[IE + %(ch)" £ l(dCF)-.g.

~ In particular, P and O coincide if and only if the almost-hermitian

structure (g,J) is symplectic.

PROOF. — In order to compare P and [J it is convenient to first
compare [J and the hermitian Dirac operators P¢, in particular, as we
shall see, P° and P!, by using (3.2.5)-(3.2.6). We first recall the ex-
pressions of the differential and the co-differential of a form with re-
spect to any metrical connection with torsion.

LEMME 4. - For any complex p-form v, any metrical connection
V, of torsion T, any complex vector fields X,, .oy Xp,. we have:

852) (dy)x,..x,= 2( (Ve 9)x,..%,..x
];k(— 1)j+kwTXj,Xk,Xo,...,)?j,...,Xk,...,Xp’
(3.5.3) (6'(/) )Xl ,,,,, - .gl(veiw)ei,xl,“.,xﬂ_'l +
po1
Yl xy,.., X1 21(_1)7(( T)"/) Xy, Xy D>
j=

where: (-,-) denotes the C-bilinear inner:product. induced by. g on
forms, with the convention precised by (1.1.1); tr T iis the trace: of the

torsion T, i.e. the real 1-form defined by: X — 2 (e;, T, x); (41 T)" is

the dual vector field; (X;,T) denotes the complex 2-form defined. by:
X, Ty,z); 'P-,v,Xl,.u,X]—,...,X,H denotes the complex 2-form de-
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fined by: Y,Z—>wy’Z,Xh“.’Xj’.”’XP_l; the last line involves the inner

product of these two 2-forms.

- PROOF. — Easy consequence of (2.1.1)-(2.1.5). Notice that 352)

holds for any linear connection V of torsion 7. =

We make use of Lemma 4 to evaluate 3y and o* y for y a (0,p)-

form and V a kermitian connection. In this case, the torsion 7 only
oceurs via its trace tr 7' and its (2,0)-part 729, cf. IT. To be precise,
we have:

LEMME 5. - For any (0, p)-form vy, any hermitian connection V,

any vector fields Zyy ..y Zy of type (0,1), we have:

— P . =
58 O0aty= DV gy 5= P

— 1)tk 5 s
jgk( D 0, 2222y

(85.5) (.a_g"ilﬂ)z],...,z,,_1 = - E»I(Ve,-'/))ei,zl,...,z,,_l +

. p-1

Yerhz,.. 2, .~ jgl
In particular, if V=V is the first canonical connection, the identi-
ties (3.5.4)-(3.5.5) are reduced to:

-----

(3.5.7) (é"‘ll))zl,m,z,,_l = _igl(VSiw)ei,zl,...,zp_l - ';'wo’l,zl,...,z,,-l .

PROOF. - Direct consequence of Lemma 4, since the first canoni-
cal hermitian connection V° is characterized by T2° being identically

zero; on the other hand, the trace of the torsion of V° is equal to
-(1/2)6 by (25.11). =

LEMME 6. — The Dolbeault operator O and the hermitian Dirac
operator P° attached to the first canonical hermitian conmection V°
are linked together by:

(85.58) POf=[E— % 0.£.

(= 1)j((Zj’T2'O)’ w.,‘,Zl,...,Zj,...,Zp_l) .
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PRroOF. — Let £ =19 ® o be a section of ZM of degree p. By (3.3.1),
we have:

(359) OE=0p®0+ 3 () 8 VLo,

where, in the r.h.s., O denotes the usual (normalized) Dolbeault op-
erator acting on scalar (0,p)-forms. From (3.5.9), (3.2.5)-(3.2.6),
(3.5.6)-(3.5.7), we get:

V2

(3.5.10) 0&= é(ei-vgzp@»ﬁ e; Yy ®Vio) - ?(eh_lw) ®o.
By-(2.7.6), for any section o of K;/?, we have:
8511 Vio=V'0 - +il0®0.
| Then, (3.5.10) can be written as:
(35.12) DE=Pf— L iJ0E - %(Oh_lw) ®a,

which, by (3.1.4), is equivalent to (3.5.8). =

Now, the identity (3.5.1) is a direct consequence of (3.5.8) and of
the identity (8.4.1) for t=0. This proves Proposition 6. =

3.6. Spin°-Dirac operator versus Dolbeault operator. Up to now,
in this paragraph, M has been assumed to admit a Spin-structure,
realized by a square-root KI}/ % of the canonical bundle Ky.

In general, any almost-complex manifold (M,J) admits a canoni-
cal Spin‘-structure, determined by the anti-canonical bundle L =
Ky' itself, cf. e.g. [1],[7). The corresponding Spin -spinor bundle,
denoted by X°M, is then identified in a eanonical way with the bun-
dle A%* M of (0, = )-forms, which, locally, should be viewed as the

~ tensor product of the spinor bundle SM =A% M @ K/> by L1/%=

KA;” z which are only locally defined. ‘

Via the metric g, the complex line bundle L = Kj;* can be regard-
ed as a hermitian line bundle. Then, any unitary eennection V on L
determines a Spin‘-Dirac operator, denoted by P°, acting on sec-
tions of X°M, locally identified with the riemannian Dirae operator
P twisted by the induced connection on L1/2.

In view of (3.5.9), it is convenient to express the auxiliary unitary



=l

282 . PAUL GAUDUCHON

connection V on L as follows:

3.6.1) V=V'+ia,

for some real 1-form a on M, where, again, V! denotes the unitary

connection on L induced by the Chern connection V.

PROPOSITION 8. — Let (M,g,J) be an almost-hermitian manifold -

of real dimension n=2m>2. Consider the canonical Spin‘-struc-
ture determined by the anti-canonical bundle L = Ky;*, for which the
Spin’-spinor bundle is identified with the bundle A%* M of (0, * )-

Jorms. Let V be any wunitary comnection on L expressed by E

(3.6.1).
Then, the corresponding Spin‘-Dirac operator P° is expressed

by:

862) Poy=0Cy+ i(dCF)Mp—- %(ch)‘-t/) + —;—ia-w,

where [0 denotes the wusual (normalized) Dolbeault operator

\/5(5 + %) acting on (0, = )-forms.
In particular, we have:

363) Py =Dy + % ia-y

if and only if the almost-hermitian structure (g,J) is symplec-
tic.

PROOF. — Since the Spin‘-Dirac operator P° loecally coincides with
the riemannian Dirac operator P twisted by V, (3.6.2) is a direct con-

sequence of (3.5.1), (3.5.8) and (3.5.11). The last statement is a direct
consequence of (3.6.2). W

NoOTE. - The fact that the Spin‘-Dirac operator P° coincides, up to
the contribution of the auxiliary unitary connection; with the nor-
malized Dolbeault operator [J in the symplectic case, as in the
Kihler case is here directly deduced from the general formula (3.6.2)
and holds in any dimension. In dimension 4, it-can also be obtained
by indirect arguments and is used as a key fact in Taubes’ treat-
ment of four-dimensional symplectic manifolds in the framework: of
Seiberg-Witten invariants, cf.[9] for a general overview and refer-
ences therein.

3.7. The 4-dimensional case. In the next corollary of Proposition
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17, & denotes the parity operator on spinors or forms, defined by:

(6.7.1) sy)=yp -y,

where ¢ *, resp. v ~, denotes the even, resp. odd, part of ¢ with re-
gpect to the natural grading.

COROLLARY 3. — Let (M,g,J) be an almost-hermitian manifold of
real dimension 4. Then, the Spin°-Dirac operator P° with respect to
the canonical Spin‘-structure and the auxiliary unitary connection
V=V!+1ia is expressed by:

3.7.2) Pey=Cly + i 0.6(y) + —lz—ia.w ,
where 0 is the Lee form of (g,J).

PROOF. — Since n =4, the component (d°F)~ vanishes identically
for any almost-hermitian structure (g,J). Then, we have: (d°F)* =
d‘F=JONF=J0.F-0, so that (3.6.2) can be written as follows:

313) Pey=0y+ iJG.F.t/) - i 0. + %ia.w .

Recall that the Clifford action of the Kihler form F on A%? M coin-
cides with the multiplication with (2p —2)1.

If p= ()~ is of odd degree, i.e. is a section of 4%'M, we have:
F-¢=0 and (3.7.3) is thus reduced to;

@74 Poy=0Oy- ienp + -;—ia.w, Vy e (A% M).

If = ()" is of even degree, we have: v =y, + v, where v, resp.
P, is a section of A%°M, resp. A%2M. We have: (J.O.F — 0).y,=
— (0 +2iJ0).po= 0.y, because F.yp,=—2ip, and the Clifford
action of JO on A%°M coincides with the Clifford action of 6.
In a similar way, we have: (JO.F — 0).y,=(21J0 — 0).y5=0.y,,
because F.i5 =21y, and the Clifford action of J6 on 4%%M coincides
with the Clifford action of —i0. We thus get:

(8.75) Py=0Oy+ i—é.w + %ia.tp, Vyel(AMSA*2M). =

3.8. Conformally invariant Dirac operators. We begin this
subsection by a few general considerations concerning «conformally
invariant Dirac operators» on a general conformal Spin-manifold
(M,[g]) of dimension n. In order to avoid the choice of a metric
in the conformal class, the chosen Spin-structure is realized by
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a CSpin(n)-principal bundle Q over M, where CSpin(n)=R* X
Spin(n) denotes the conformal spinorial group.

Then, for any real number k, the spinor bundle of weight k, de-
noted by Z® M, is defined as the complex vector bundle over M de-
termined by @ and the following representation of CSpin(n) on the
algebraic spinor space X: (a,A).u =a*A.u, for any a in R*, any A in
Spin(n), w in X, where A.u denotes the usual Clifford action of
Spin(n) on X.

We observe that the Clifford action of T'* M on weighted spinor
bundles is still defined in the conformal framework, but sends each
section of Z® M into a section of Z* VM.

Now, each conformal manifold (M,g) admits a distinguished fam-
ily of linear connections, acting on sections of T'M, namely the so-
called Weyl connections defined as follows. A linear ¢ ction D on
M is a Weyl connection (or a Weyl structure with respect to ¢ = [g]),
whenever D is torsion-free and preserves c: for any metric g in the
conformal class, Dg = —2a?®g for some 1-form a?. In this subsec-
tion, the Levi-Civita connection of g, a particular example of a Weyl
connection with respect [g], will be denoted by D?. Then, D is relat-
ed to DY by:

(3.8.1) DxY=D4Y + a%Y + a%X — gx y(a9,

where (a9 is the dual vector field with respect to g; in a more ab-
stract way, (3.8.1) can also be written as follows:

(3.8.2) Dy=D%+a?Q@I+a?NX,

where I denotes the identity of TM, and a? A X denotes the skew-
symmetric endomorphism of TM defined by: Y —a$X — g(X, Y)(a9)h;
in particular, for any vector field X, a%l is the scalar part and
a? A\ X the skew-symmetric part of Dy — D%. It follows that, for each
weight k, the connection on the spinor bundle =® M induced by D is
given by:

383) DyE=DYE+ka%é + %(a"/\X)-§=

(k - %) agE - 2 X-ar,

which has to be understood as follows: for any choice of a metric g in
the conformal class, each Z® M is identified with the Riemannian
spinor bundle =M and the r.h.s. of (3.8.3) is the expression of the
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Weyl connection D acting on sections of Z® M with respect to this
{dentification.Then the corresponding Dirac operator PP'®  acting

sections of Z® M with values in Z*~Y M, obtained, as usual, by
gomposing the Weyl connection D with the Clifford action of T'* M,

; ii%’%xpressed as follows, with respect to any metric g in the conformal

dlass:
(n—1+2k) wk

P(D'k)§=P§+ 5

¢ In particular, for k= —(n —1) /2, we have:

(8.8.5) pO.e-1/2) = p

It follows that P®®~1/2 s independant of the chosen Weyl struc-
ture D, i.e. is canonically determined by the conformal structure c;

' in the sequel, the conformally invariant Dirac operator P®®~1/2)
{ will be simply denoted by P!9!. For any choice of a metric g in [g],

the expression of P9} with respect to g coincides with the Riemanni-
an Dirac operator P? =P of g. In other words, the Riemannian Dirac
operator is conformally covariant with respect to the weight —(n —
1)/2, cf.[7], meaning that for any g in [g], the corresponding Rie-
mannian Dirac operator PY is the expression of a conformally well-
defined operator P from (-~ D/2f to Z(-®+V/D P via the
identification of these two Kweighted spinor bundles with the Rie-
mannian spinor bundle ZM. This holds for any Spin-conformal mani-
fold (M,[g]).

Let us consider the particular case that (M,[g]) is oriented, of
even dimension n =2m > 2, and admits a positive, [ g]-orthogonal al-
most-complex structure J. For any metric g in [g], we denote by 67

i the Lee form of the almost-hermitian structure (g,J). The main ob-

servation here, due to I. Vaisman, is that the Weyl connection D de-

; fined by:

1
(n—2)

doesn’t depend upon the choice og g in [¢]. This connection is called
the canonical Weyl structure or canonical Weyl structure of the
conformal almost-hermitian structure ([g],/) and will be henceforth
denoted by D (while, we recall, the Levi-Civita connection of some
metmc g is denoted by DY).

‘The canonical Weyl' connectlon D doesn’t preserve J in general.
More precisely [15]:

(386) DyY=DyY= (0%Y + 6%X — (X, Y)(69)1)
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if n >4, J is preserved by some Weyl connection if and only if J
is integrable and the conformal hermitian structure ([g],J) is locally }
Kshler (equivalently, the Lee form 6 is closed for any metric g in }
[¢gD; in that case, the canonical Weyl connection is the only Weyl

connection preserving J;

if n =4, J is preserved by some Weyl connection if and only if J
is integrable; in that case, the canonical Weyl connection is the
unique Weyl structure preserving J.

Since D is conformally invariant, for any weight k, the corre-
sponding Dirac operator PP, acting on sections of Z®M with
values in X*~VM, is conformally invariant as well, and coincides
with P! for k=—(n—1)/2.

In the same way as the riemannian Dirac operator hag@een said to
be conformally covariant, cf. above, the hermitian Dirac operator P? will
be said conformally invariant for seme weight k, whenever, for any
choice of a metric g in [g], P* coincides with some conformally invariant
Dirac operator acting on sections of ™ M with values into Z*~Y M,
via the identification of XM and X*~Y M with M induced by g.

Then, we have, cf. also [10]

PROPOSITION 9. — (i) The hermitian Dirac operator P/, corre-

sponding to the canonical hermitian connection V'/2, is conformal-
ly covariant with respect to the weight k= —(m + 1) /4.

(i) If the Nijenhuis tensor of J satisfies the Bianchi identity
(this condition is empty for n=4), we have:

(3.8.7) pl/z=

i.e. for cmy metric g in [g], the hermitian Dzmc operator P/2 is the
expression with respect to g of the confo'r'mally invariant Dirac op-
erator PP ~m+D/4Y gssociated with the canonical Weyl connection
D, acting on sections of =~ ™*V/4 M with values into =~ ™+D/4 M,

P D, —(m+ 1)/4)

PrOOF. — Recall that the Nijenhuis tensor of J satisfies the
Bianchi identity if and only if the 3-form (d°F)~ vanishes identical-
ly, cf. Proposition 1.

From (3.4.1), for any metric g in [g], we have:

(388) Pl2E=pIg— -2— 00.&+ £ (A°F)" &,
for any section & of the riemannian spinor bundle M.

For any other metric g’ =¢ "%2g in [g], we have: (d°F')” =

HERMITIAN CONNECTIONS AND DIRAG

8(d°F)~, so that (1/4)(d°F)" £ is the express jﬁ ﬁiﬁ%ﬁ ‘Yespect to
f a conformally invariant zero-order operator from X®M into
“DM for any k. On the other hand, by (3.8.4) PY& — (8/8)69.£ is
xpression with respect to g of P®® for the value of x deter-
d by: 3/8=(m—-1+2k)/@2(n—2)), ie for k=—-(m+
n
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