Векторные расслоения 3: алгебра де Рама

3.1. Алгебра де Рама

Определение 3.1. Пусть M – гладкое многообразие. Обозначим за $\Lambda^i M$ расслоение дифференциальных i-форм на M, то есть антисимметричных i-форм на TM.

Задача 3.1. Пусть $\bigotimes_k T^*M \stackrel{\Pi}{\longrightarrow} \Lambda^k M$ — отображение антисимметризации. Определим умножение $\Lambda^i M \times \Lambda^j M \longrightarrow \Lambda^{i+j} M$ как $\alpha \wedge \beta \longrightarrow \Pi(\alpha \otimes \beta)$, где $\alpha \otimes \beta$ — сечение $\Lambda^i M \otimes \Lambda^j M \subset \bigotimes_{i+j} T^*M$, полученное перемножением α и β . Докажите, что это умножение ассоциативно, и удовлетворяет $\alpha \wedge \beta = (-1)^{ij} \beta \wedge \alpha$.

Определение 3.2. Алгебра $\Lambda^*M := \bigoplus_i \Lambda^i M$ с определенной выше алгебраической структурой называется **алгеброй де Рама** многообразия.

Задача 3.2. Докажите, что алгебра Λ^*M мультипликативно порождена $C^{\infty}M = \Lambda^0 M$ и 1-формами вида df, где $f \in C^{\infty}M$.

Задача 3.3. Докажите, что дифференцирование на алгебре однозначно задается своими значениями на любом наборе мультипликативных образующих алгебры.

Определение 3.3. Дифференциал де Рама $d: \Lambda^* M \longrightarrow \Lambda^{*+1} M$ есть \mathbb{R} -линейное отображение, которое удовлетворяет следующим условиям.

- (i) Для любого $f \in \Lambda^0 = C^{\infty}M$, df есть элемент Λ^1M , равный дифференциалу df.
- (ii) (Правило Лейбница) $d(a \wedge b) = da \wedge b + (-1)^j a \wedge db$, для любых $a \in \Lambda^i M, b \in \Lambda^j M$.
- (iii) $d^2 = 0$.

Задача 3.4 (!). Докажите, что дифференциал де Рама единственный, если существует.

Указание. Воспользуйтесь предыдущей задачей.

Задача 3.5. Пусть $t_1,...,t_n$ – координатные функции на \mathbb{R}^n , а $\alpha \in \Lambda^*\mathbb{R}^n$ – какой-то моном, полученный произведением нескольких dt_i . Докажите, что дифференциал де Рама на $C^\infty\mathbb{R}^n$ задается оператором, который переводит $f\alpha$ в $\sum_i \frac{df}{dt_i} dt_i \wedge \alpha$, для любого $f \in C^\infty\mathbb{R}^n$.

Задача 3.6.

- а. Докажите, что дифференциал де Рама $d: \Lambda^* M \longrightarrow \Lambda^{*+1} M$ коммутирует с гомоморфизмом ограничения на открытое подмножество.
- б. Выведите из этого, что дифференциал де Рама задает морфизм пучков.

Указание. Воспользуйтесь единственностью дифференциала де Рама.

Задача 3.7 (!). Докажите, что на любом многообразии существует дифференциал де Рама.

Указание. Локально, дифференциал де Рама построен в задаче 3.5. Чтобы перейти от локального к глобальному, воспользуйтесь предыдущей задачей, и примените аксиомы пучка.

3.2. Производная Ли

Определение 3.4. Пусть $A^* = \bigoplus_{i \in \mathbb{Z}} A^i$ – градуированная алгебра над полем. Она называется **суперкоммутативной**, если $ab = (-1)^{ij}ba$ для любых $a \in A^i, b \in A^j$.

Замечание 3.1. Грассманова алгебра Λ^*V , очевидно, суперкоммутативна

Задача 3.8. Пусть A^*, B^* – градуированные суперкоммутативные алгебры, а $A^* \otimes B^*$ их тензорное произведение, с градуировкой $(A^* \otimes B^*)^p := \bigoplus_{i+j=p} A^i \otimes B^j$, и умножением, определенным формулой $a \otimes b \cdot a' \otimes b' = (-1)^{ij} a a' \otimes b b'$, где $a' \in A^i, b \in B^j$. Докажите, что оно суперкоммутативно.

Задача 3.9. Пусть V,W – векторные пространства, $A^*:=\Lambda^*V,B^*:=\Lambda^*W$ их супералгебры. Докажите, что $\Lambda^*(V\oplus W)$ изоморфно тензорному произведению $A^*\otimes B^*$, определенному, как в прошлой задаче.

Определение 3.5. Пусть A^* – суперкоммутативная алгебра, а $D: A^* \longrightarrow A^{*+i}$ – отображение, сдвигающее градуировку на i. Оно называется **супердифференцированием**, если $D(ab) = D(a)b + (-1)^{ij}aD(b)$, для любого $a \in A^j$.

Замечание 3.2. Если i четно, супердифференцирование это просто дифференцирование. Если нечетно, оно называется **нечетным дифференцированием**.

Замечание 3.3. Дифференциал де Рама является нечетным дифференцированием (по определению).

Определение 3.6. Пусть M – гладкое многообразие, а $X \in TM$ – векторное поле. Рассмотрим операцию **подстановки векторного поля** $i_X: \Lambda^i M \longrightarrow \Lambda^{i-1} M$, переводящую i-форму α в (i-1)-форму $v_1,...,v_{i-1} \longrightarrow \alpha(X,v_1,...,v_{i-1})$

Задача 3.10. Докажите, что i_X есть нечетное дифференцирование.

Задача 3.11 (*). Докажите, что любое нечетное дифференцирование $\delta: \Lambda^i M \longrightarrow \Lambda^{i-1} M$ равно i_X , для какого-то векторного поля X.

Задача 3.12 (*). Пусть $D:A^*\longrightarrow A^{*+i}$ — линейный оператор, причем $i\neq 0$ и четно, а A конечномерно. Докажите, что $e^D:=1+D+\frac{D^2}{2}+\ldots+\frac{D^i}{i!}+\ldots$ это автоморфизм A^* тогда и только тогда, когда D это дифференцирование.

Определение 3.7. Пусть A^* – градуированное векторное пространство, а

$$E: A^* \longrightarrow A^{*+i}, F: A^* \longrightarrow A^{*+j}$$

операторы, сдвигающие градуировку на i, j. Определим **суперкоммутатор**

$${E, F} := EF - (-1)^{ij}FE$$

Замечание 3.4. Эндоморфизм, сдвигающий градуировку на i, называется **четным**, если i четно, и **нечетным** в противном случае.

Задача 3.13. Докажите, что суперкоммутатор удовлетворяет супертождеству Якоби,

$$\{E, \{F, G\}\} = \{\{E, F\}, G\} + (-1)^{\tilde{E}\tilde{F}} \{F, \{E, G\}\}$$

где \tilde{E} и \tilde{F} четные, если E,F четные, и нечетные в противном случае.

Замечание 3.5. Есть простое мнемоническое правило, позволяющее запоминать супертождества, если известен коммутативный аналог. Всякий раз, когда в коммутативном случае меняются местами две буквы, в суперкоммутативном надо домножить на -1, если эти две буквы соответствуют нечетным операторам.

Задача 3.14. Пусть A^* — суперкоммутативная алгебра, $a \in A$. Обозначим за $L_a : A \longrightarrow A$ эндоморфизм, переводящий b в ab. Докажите, что D является супердифференцированием тогда и только тогда, D(1) = 0 и для каждого $a \in A^i$, суперкоммутатор $\{D, L_a\}$ равен L_b для какого-то $b \in A^*$.

Задача 3.15 (!). Докажите, что суперкоммутатор супердифференцирований – снова супердифференцирование.

Указание. Воспользуйтесь супертождеством Якоби, и примените предыдущую задачу.

Определение 3.8. Пусть M – гладкое многообразие, а $v \in TM$ – векторное поле. Эндоморфизм $\mathrm{Lie}_v: \Lambda^*M \longrightarrow \Lambda^*M$, сохраняющий градуировку, называется производной Ли вдоль v, если он обладает следующими свойствами

- (i) На функциях, Lie $_v$ равно производной вдоль v.
- (ii) $[\text{Lie}_v, d] = 0$
- (iii) Lie_v дифференцирование.

Задача 3.16. Докажите, что производная Ли вдоль v однозначно задана свойствами (i)-(iii).

Указание. Воспользуйтесь тем же аргументом, который использовался для доказательства единственности дифференциала де Рама.

Задача 3.17. Докажите, что $\{d, \{d, E\}\} = 0$, для любого $E \in \text{End}(\Lambda^*M)$.

Указание. Воспользуйтесь супер-тождеством Якоби.

Задача 3.18. Докажите, что $\{d, i_v\}$ коммутирует с d, где $i_v: \Lambda^*M \longrightarrow \Lambda^{*-1}M$ – подстановка v в форму.

Указание. Воспользуйтесь предыдущей задачей.

Задача 3.19 (!). (Формула Картана) Докажите, что $\{d, i_v\}$ – производная Ли вдоль v.

Задача 3.20 (*). Пусть $v, v' \in TM$ – два векторных поля, а $i_{v \otimes v'}: \Lambda^*M \longrightarrow \Lambda^{*-2}M$ – подстановка v, v' в 2-форму, $i_{v \otimes v'}=i_v i_{v'}$. Рассмотрим i-форму $\alpha \in \Lambda^*M$, и пусть L_α – оператор умножения на α . Докажите, что оператор

$$x \longrightarrow [i_{v \otimes v'}, L_{\alpha}](x) - i_{v \otimes v'}(\alpha) \wedge x$$

является дифференцированием.

3.3. Лемма Пуанкаре

Задача 3.21. Пусть t – координатная функция на прямой, $f(t) \in C^{\infty}\mathbb{R}$ – функция, f(0) = 0, а $v := t \frac{d}{dt}$ – векторное поле. Докажите, что интеграл

$$R(f)(t) := \int_{1}^{0} \frac{f(\lambda t)}{\lambda} d\lambda$$

сходится, и удовлетворяет $\text{Lie}_v R(f) = f$.

Задача 3.22. Пусть $t_1,...,t_n$ – координаты в \mathbb{R}^n . Рассмотрим радиальное поле $v:=\sum_i t_i \frac{d}{dt_i}$. Пусть $f\in C^\infty\mathbb{R}^n$ – функция, которая удовлетворяет f(0)=0, а $x=(x_1,...,x_n)$ – точка в \mathbb{R}^n . Докажите, что интеграл

$$R(f)(x) := \int_{1}^{0} \frac{f(\lambda x)}{\lambda} d\lambda$$

сходится, и удовлетворяет Lie, R(f) = f.

Указание. Воспользуйтесь предыдущей задачей

Определение 3.9. Открытое подмножество $U \subset \mathbb{R}^n$ называется **звездчатым**, если для любой точки $x \in U$, отрезок [0,x] лежит в U.

Задача 3.23. Докажите, что любая форма $\alpha \in \Lambda^i U$ на звездчатом множестве U, удовлетворяющая $\mathrm{Lie}_v \ \alpha = 0$, зануляется, если i > 0.

Указание. Воспользуйтесь предыдущей задачей. Проверьте сходимость интеграла.

Задача 3.24 (!). Пусть U – звездчатое подмножество в \mathbb{R}^n . Постройте оператор

$$R: \Lambda^i U \longrightarrow \Lambda^i U$$

такой, что Lie, $R\alpha = R \operatorname{Lie}_v \alpha = \alpha$ для всех $\alpha \in \Lambda^i U$, i > 0.

Задача 3.25 (!). Докажите, что $\{R, d\} = 0$

Указание. Проверьте, что $\{R,d\}$ Lie $_v$ $\alpha=Rd$ Lie $_v$ $\alpha+dR$ Lie $_v$ $\alpha=-R$ Lie $_v$ $d\alpha+d\alpha=0$. Воспользуйтесь обратимостью Lie $_v$.

Задача 3.26. Докажите, что $\{d,i_v\}R(\alpha)=\alpha$, для любой i-формы α на звездчатом множестве, i>0.

Определение 3.10. Форма вида $d\alpha$ называется точной, форма, на которой зануляется дифференциал – замкнутой. Поскольку $d^2=0$, любая точная форма замкнута. i-е когомологии де Рама многообразия M – фактор замкнутых i-форм по точным, обозначается $H^i(M)$.

Задача 3.27. Вычислите нулевые когомологии де Рама связного многообразия.

Задача 3.28 (!). Пусть $\alpha \in \Lambda^i U$ – замкнутая форма на звездчатом множестве U, где i>0. Докажите, что $\alpha=di_vR(\alpha)$.

Указание. Воспользуйтесь предыдущей задачей.

Задача 3.29 (!). (лемма Пуанкаре) Пусть U – звездчатое множество, Докажите, что $H^i(U)=0$ для всех i>0.

Задача 3.30 (*). Пусть на \mathbb{R}^n задано векторное поле v, с единственным нулем в точке x. Предположим, что производная $Dv|_x$ в невырождена как отображение из \mathbb{R}^n в \mathbb{R}^n , причем любая интегральная траектория v проходит через x. Докажите, что производная Ли Lie $_v$ обратима на $\Lambda^i\mathbb{R}^n$ для любого i>0.