Векторные расслоения, лекция 1: многообразия и пучки

Миша Вербицкий 9 сентября, 2013 матфак ВШЭ и НМУ

Пучки

ОПРЕДЕЛЕНИЕ: Пучок \mathcal{F} на топологическом пространстве M — это набор векторных пространств $\mathcal{F}(U)$, заданных для каждого открытого подмножества $U\subset M$, с **отображениями ограничения** $\mathcal{F}(U)\overset{\varphi_{U,U'}}{\to}\mathcal{F}(U')$ для каждого $U'\subset U$, и следующими свойствами

- (1) Композиция ограничений снова ограничение: если $U_1\subset U_2\subset U_3$ вложенные открытые множества, а φ_{U_1,U_2} , φ_{U_2,U_3} соответствующие отображения ограничений, то $\varphi_{U_1,U_2}\circ\varphi_{U_2,U_3}=\varphi_{U_1,U_3}$.
- (2) Если $U = \bigcup U_i$, а ограничение $f \in \mathcal{F}(U)$ на все U_i равно нулю, то f = 0.
- (3) Пусть $\{U_i\}$ покрытие множества $U\subset M$, а $f_i\in \mathcal{F}(U_i)$ набор сечений, заданных для каждого элемента покрытия, и удовлетворяющих условию $f_i\Big|_{U_i\cap U_j}=f_j\Big|_{U_i\cap U_j}$, для любой пары элементов покрытия. Тогда существует $f\in \mathcal{F}(U)$ такой, что ограничения f на U_i дает f_i .

Пространство $\mathcal{F}(U)$ называется пространство сечений пучка \mathcal{F} над U.

ОПРЕДЕЛЕНИЕ: Пучок функций есть пучок, сечения которого над U суть функции на U, а ограничения суть ограничения функций.

Henri Cartan (1904 - 2008); Jean-Pierre Serre (born 15 September 1926)

Многообразия

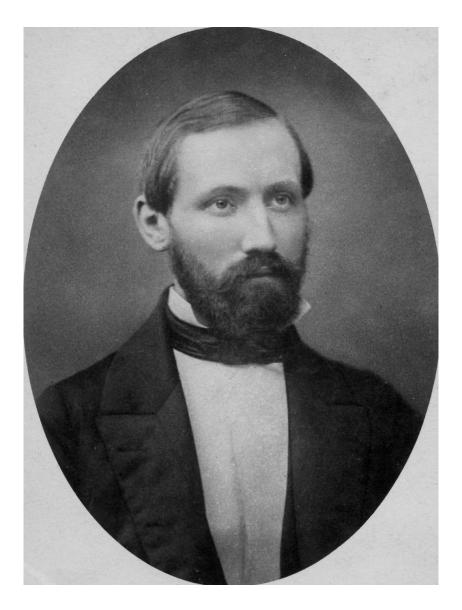
ОПРЕДЕЛЕНИЕ: (Топологическое) многообразие есть топологическое пространство, локально гомеоморфное \mathbb{R}^n .

ЗАМЕЧАНИЕ: Гладкое многообразие есть топологическое многообразие с заданной на нем "гладкой структурой". "Гладкую структуру" проще всего задать, используя пучки (которые для того и были придуманы в общем-то).

ОПРЕДЕЛЕНИЕ: Окольцованное пространство есть пространство с заданным на нем пучком функций, который замкнут относительно умножения, то есть образует кольцо.

ЗАМЕЧАНИЕ: Окольцованные пространства образуют категорию. Морфизмы окольцованных пространств определяются так. Пусть A, \mathcal{F} и B, \mathcal{G} — окольцованные пространства, а $\varphi: A \to B$ непрерывное отображение, такое, что $\varphi^*(\mathcal{G}) \subset \mathcal{A}$; тогда φ называется морфизмом.

ОПРЕДЕЛЕНИЕ: Гладкое многообразие $(M, C^{\infty}M)$ есть окольцованное пространство, которое локально изоморфно (как окольцованное пространство) \mathbb{R}^n с кольцом гладких функций.



Bernhard Riemann (1826-1866), deutscher Mathematiker date: c. 1850

Карты и атласы

ОПРЕДЕЛЕНИЕ: Изоморфизм гладких многообразий называется диффеоморфизмом. Это гомеоморфизм, который переводит гладкие функции в гладкие.

ЗАМЕЧАНИЕ: Обыкновенно многообразия определяют в терминах карт, атласов и отображений переклейки. Это очень явное определение, и оно удобнее для решения задач, когда надо что-то посчитать.

ОПРЕДЕЛЕНИЕ: Покрытие $\{U_i\}$ многообразия называется **атласом**, если для каждого U_i задано отображение $\varphi_i: U_i \to \mathbb{R}^n$, которое задает гомеоморфизм из U_i на открытое подмножество в \mathbb{R}^n . **Отображения перехода** суть отображения

$$\Phi_{ij}: \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)$$

индуцированные этими гомеоморфизмами. Атлас называется гладким, если все отображения перехода гладкие. Множества U_i называются картами, гомеоморфизмы $\varphi_i: U_i \to \mathbb{R}^n$ – координатами.

Карты, атласы и пучки

УТВЕРЖДЕНИЕ: Пусть U, V — открытые подмножества в \mathbb{R}^n , а φ : $U \to V$ — гомеоморфизм, переводящий гладкие функции в гладкие. **Тогда это диффеоморфизм.**

СЛЕДСТВИЕ: Пусть $\{U_i\}$ – покрытие гладкого многообразия M такое, что каждое U_i изоморфно $(\mathbb{R}^n, C^{\infty}\mathbb{R}^n)$. Тогда $\{U_i\}$ – гладкий атлас.

ДОКАЗАТЕЛЬСТВО: Функции перехода переводят гладкие функции в гладкие, значит, являются диффеоморфизмами. ■

ОПРЕДЕЛЕНИЕ: Пусть M — топологическое многообразие, снабженное гладким атласом. Гладкая функция на $U \subset M$ есть функция, которая гладка на каждой из карт.

ЗАМЕЧАНИЕ: Легко видеть, что **гладкие функции, заданные таким образом, образуют пучок.** Это задает структуру гладкого многообразия на M.

ОПРЕДЕЛЕНИЕ: Два гладких атласа называются **эквивалентными**, если соответствующие пучки гладких функций совпадают. **Гладкая структура** на многообразии есть класс эквивалентности гладких атласов.

Пучки модулей

ЗАМЕЧАНИЕ: Пусть $A: \varphi \to B$ – гомоморфизм колец, а V-B-модуль. Тогда на V есть естественная структура A-модуля, $av := \varphi(a)v$.

ОПРЕДЕЛЕНИЕ: Пусть \mathcal{F} есть пучок функций, замкнутый относительно умножения, а \mathcal{B} - пучок на топологическом пространстве M. Он называется пучком \mathcal{F} -модулей, если для каждого U, пространство сечений $\mathcal{B}(U)$ наделено структурой $\mathcal{F}(U)$ -модуля, причем для каждого $U' \subset U$, отображение ограничения $\mathcal{B}(U) \stackrel{\varphi_{U,U'}}{\to} \mathcal{B}(U')$, задают гомоморфизм $\mathcal{F}(U)$ -модулей (чтобы получить структуру $\mathcal{F}(U)$ -модуля на $\mathcal{B}(U')$, воспользуйтесь предыдущим замечанием).

ОПРЕДЕЛЕНИЕ: Тривиальный пучок модулей \mathcal{F}^n над пучком функций \mathcal{F} сопоставляет каждому U пучок $\mathcal{F}^n(U)$.

ОПРЕДЕЛЕНИЕ: Локально тривиальный пучок модулей над пуч-ком функций $\mathcal F$ это такой пучок $\mathcal B$, что у каждой точки $x\in M$ найдется окрестность U такая, что ограничение $\mathcal B\Big|_U$ тривиально.

Векторные расслоения и 1-коциклы

ОПРЕДЕЛЕНИЕ: Векторное расслоение на гладком многообразии M есть локально тривиальный пучок $C^{\infty}M$ -модулей.

ЗАМЕЧАНИЕ: Как и многообразие, векторное расслоение можно задать в терминах карт, атласов и функций перехода.

ОПРЕДЕЛЕНИЕ: Пусть G — группа, M — многообразие, а $\{U_i\}$ его покрытие. **1**-коцикл со значениями в G есть набор функций $U_i \cap U_j \stackrel{\varphi_{ij}}{\to} G$, удовлетворяющих следующим условиям: 1. $\varphi_{ij} = \varphi_{ji}^{-1}$ 2. $\varphi_{ij}\varphi_{jk} = \varphi_{ik}$.

ЗАМЕЧАНИЕ: Пусть B-n-мерное векторное расслоение над M, а $\{U_i\}$ - покрытие M, такое, что $B\Big|_{U_i}$ - тривиальный C^{∞} -модуль. Зафиксируем тривиализации $B\Big|_{U_i}$ и рассмотрим базисы в $B\Big|_{U_i}$ и $B\Big|_{U_j}$, определенные этими тривиализациями. Пусть $U_i \cap U_j \stackrel{\varphi_{ij}}{\to} GL(n)$ - функции перехода от одного базиса к другому. **Тогда** φ_{ij} **задают 1-коцикл**.

Векторные расслоения, коциклы и кограницы

ЗАМЕЧАНИЕ: Пусть G — группа, M — многообразие, $\{U_i\}$ его покрытие, а $U_i \cap U_j \stackrel{\varphi_{ij}}{\to} G$ — 1-коцикл. Рассмотрим набор отображений $\psi_i : U_i \to G$, и пусть $\varphi'_{ij} : U_i \cap U_j \to G$ — отображение, заданное формулой $\varphi'_{ij} = \psi_i^{-1} \varphi_{ij} \psi_j$. **Легко видеть, что** $\{\varphi'_{ij}\}$ — **тоже коцикл.** Коциклы $\{\varphi_{ij}\}$ и $\{\varphi'_{ij}\}$ называются **кограничными**.

ОПРЕДЕЛЕНИЕ: Пусть G — группа, M — многообразие, $\{U_i\}$ его покрытие, а $\mathfrak G$ — группа всех отображений $\coprod U_i \to G$. Группа $\mathfrak G$ действует на множестве 1-коциклов по формуле $\varphi'_{ij} = \psi_i^{-1} \varphi_{ij} \psi_j$; соответствующее фактормножество есть множество коциклов с точностью до кограниц. Оно называется группа когомологий Чеха с коэффициентами в G, связанными с покрытием $\{U_i\}$, и обозначается $H^1(M,\{U_i\},G)$

УТВЕРЖДЕНИЕ: Пусть M — многообразие, $\{U_i\}$ — его покрытие, а $\mathfrak S$ — множество классов изоморфизма n-мерных расслоений, которые тривиальны на всех U_i . Множество $\mathfrak S$ естественно отождествляется с $H^1(M,\{U_i\},GL(n))$.

Алгебра де Рама

ОПРЕДЕЛЕНИЕ: Пусть M — гладкое многообразие. Обозначим за $\Lambda^i M$ пространство дифференциальных i-форм на M, то есть антисимметричных i-форм на касательном расслоении TM. Определим умножение $\Lambda^i M \times \Lambda^j M \to \Lambda^{i+j} M$ как $\alpha \wedge \beta \to \Pi(\alpha \otimes \beta)$, где $\alpha \otimes \beta$ — сечение $\Lambda^i M \otimes \Lambda^j M \subset \bigotimes_{i+j} T^* M$, полученное перемножением α и β , а Π — кососимметризация тензора.

УТВЕРЖДЕНИЕ: Это умножение ассоциативно, и удовлетворяет $\alpha \wedge \beta = (-1)^{ij}\beta \wedge \alpha$.

ОПРЕДЕЛЕНИЕ: Алгебра $\Lambda^*M := \oplus_i \Lambda^i M$ с определенной выше алгебраической структурой называется **алгеброй де Рама** многообразия.

ЗАМЕЧАНИЕ: Пусть $\varphi: M_1 \to M_2$ — гладкое отображение многообразий. Тогда задано отображение $\varphi^*: \Lambda^*M_2 \to \Lambda^*M_1$, переводящее дифференциальную форму $\eta \in \Lambda^k M_2$ в форму $(v_1,...,v_k) \in TM_1 \to \eta(D_\varphi v_1,...,D_\varphi(v_k))$.

Дифференциал де Рама

ОПРЕДЕЛЕНИЕ: Дифференциал де Рама $d: \Lambda^*M \to \Lambda^{*+1}M$ есть \mathbb{R} -линейное отображение, которое удовлетворяет следующим условиям.

- (i) Для любого $f \in \Lambda^0 = C^\infty M$, df есть элемент $\Lambda^1 M$, который равен дифференциалу $df \in \Omega^1 M$.
- (ii) (Правило Лейбница) $d(a \wedge b) = da \wedge b + (-1)^j a \wedge db$, для любых $a \in \Lambda^i M, b \in \Lambda^j M$.
 - (iii) $d^2 = 0$.

УТВЕРЖДЕНИЕ:

Дифференциал де Рама однозначно задается этими условиями.

Однозначность определения: Алгебра де Рама порождена $C^{\infty}M$ и 1-формами вида df, а на таких формах дифференциал де Рама уже задан.

Существование, для $M=\mathbb{R}^n$: Пусть $t_1,...,t_n$ – координатные функции на \mathbb{R}^n , а $\alpha\in \Lambda^*\mathbb{R}^n$ – какой-то моном, полученный произведением нескольких dt_i . Дифференциал де Рама переводит $f\alpha$ в $\sum_i \frac{df}{dt_i} dt_i \wedge \alpha$, для любой функции $f\in C^\infty\mathbb{R}^n$.

Дифференциал де Рама (продолжение)

УТВЕРЖДЕНИЕ:

Дифференциал де Рама однозначно задается этими условиями.

Однозначность определения: Алгебра де Рама порождена $C^{\infty}M$ и 1-формами вида df, а на таких формах дифференциал де Рама уже задан.

Существование, для $M=\mathbb{R}^n$: Пусть $t_1,...,t_n$ – координатные функции на \mathbb{R}^n , а $\alpha\in \Lambda^*\mathbb{R}^n$ – какой-то моном, полученный произведением нескольких dt_i . Дифференциал де Рама переводит $f\alpha$ в $\sum_i \frac{df}{dt_i} dt_i \wedge \alpha$, для любой функции $f\in C^\infty\mathbb{R}^n$.

Существование, для любого многообразия: Зададим d локально по формуле, указанной выше. Это определение согласовано с заменой координат в силу единственности d, значит, d согласован с переклейкой карт. \blacksquare

ОПРЕДЕЛЕНИЕ: Дифференциальная форма называется замкнутой, если она лежит в ядре d, и точной, если она лежит в образе d. Пространство $H^i(M) := \frac{\ker d}{imd}\Big|_{\Lambda^i M}$ называется i-й группой когомологий де Рама многообразия M.

Производная Ли

ОПРЕДЕЛЕНИЕ: Поток диффеоморфизмов многообразия есть гладкое отображение $\varphi_t: M \times \mathbb{R} \to M$, которое является диффеоморфизмом для любого $t \in \mathbb{R}$. Аналогично определяется поток симплектоморфизмов.

ОПРЕДЕЛЕНИЕ: Предположим, что $\varphi_0 = \operatorname{Id}_M$. Тогда производная $\frac{d\varphi_t}{dt}\Big|_{t=0}$ есть векторное поле, которое называется производной потока диф-феоморфизмов.

ОПРЕДЕЛЕНИЕ: Пусть $\varphi_t: M \times \mathbb{R} \to M$ — поток диффеоморфизмов, а $v:=\frac{d\varphi_t}{dt}\Big|_{t=0}$ соответствующее векторное поле. Производная Ли вдоль v, есть отображение $\mathrm{Lie}_v: \Lambda^i M \to \Lambda^i M$, полученное как $\mathrm{Lie}_v(\eta):=\frac{\varphi_t^*\eta}{dt}\Big|_{t=0}$.

ТЕОРЕМА: (Формула Картана)

$$Lie_v(\eta) = \{d, i_v\}\eta,$$

где $\{\cdot,\cdot\}$ обозначает антикоммутатор, а i_v – операцию подстановки v в форму.

Доказательство см. ниже.

Нечетные дифференцирования

ОПРЕДЕЛЕНИЕ: Нечетное дифференцирование алгебры де Рама есть нечетный (меняющий градуировку на нечетное число) оператор $q: \Lambda^*(M) \to \Lambda^*(M)$, который удовлетворяет (супер-)правилу Лейбница: $q(a \land b) = q(a) \land b + (-1)^{\tilde{a}} a \land q(b)$.

ПРИМЕР: Дифференциал де Рама является нечетным дифференцированием.

ПРИМЕР: Оператор подстановки векторного поля является нечетным дифференцированием.

УТВЕРЖДЕНИЕ: Антикоммутатор двух нечетных дифференцирований есть дифференцирование (проверьте это).

УТВЕРЖДЕНИЕ: Пусть $d \in \text{End}(\Lambda^*M)$ — нечетный оператор, который удовлетворяет $d^2 = 0$, а $L \in \text{End}(\Lambda^*M)$ другой нечетный оператор. Тогда d коммутирует с [d, L] (проверьте это).

Формула Картана (доказательство)

ТЕОРЕМА: (Формула Картана)

$$Lie_v(\eta) = \{d, i_v\}\eta,$$

где $\{\cdot,\cdot\}$ обозначает антикоммутатор $\{a,b\}=ab+ba$, а i_v – операцию подстановки v в форму.

Доказательство. Шаг 1: Проверяем, что Lie $_v$ и $\{d,i_v\}$ – дифференцирования алгебры де Рама, коммутирующие с d.

Шаг 2: Проверяем, что они совпадают на функциях.

Шаг 3: Проверяем, что дифференцирования Λ^*M , которые совпадают на функциях и коммутируют с d, равны.

Развитие курса

- 1. Если все всем понятно (расслоения, алгебра де Рама, связности) займемся кривизной, кручением, кэлеровыми структурами, основами римановой геометрии.
- 2. Если непонятно, надо сделать пару занятий про расслоения, дифференциальные операторы, дифференцирования алгебры функций, символы дифференциальных операторов и так далее.

Листки по символам и дифференцированиям уже есть.