Векторные расслоения, лекция 3: кручение

Миша Вербицкий 23 сентября, 2013 матфак ВШЭ и НМУ

30 сентября лекции не будет! Будет прием задач.

Векторные расслоения (повторение)

ОПРЕДЕЛЕНИЕ: Векторное расслоение на гладком многообразии M есть локально тривиальный пучок $C^{\infty}M$ -модулей.

ЗАМЕЧАНИЕ: Как и многообразие, векторное расслоение можно задать в терминах карт, атласов и функций перехода.

ОПРЕДЕЛЕНИЕ: Пусть G — группа, M — многообразие, а $\{U_i\}$ его покрытие. **1**-коцикл со значениями в G есть набор функций $U_i \cap U_j \stackrel{\varphi_{ij}}{\to} G$, удовлетворяющих следующим условиям: 1. $\varphi_{ij} = \varphi_{ji}^{-1}$ 2. $\varphi_{ij}\varphi_{jk} = \varphi_{ik}$.

УТВЕРЖДЕНИЕ: Пусть B-n-мерное векторное расслоение над M, а $\{U_i\}$ — покрытие M, такое, что $B\Big|_{U_i}$ — тривиальный C^{∞} -модуль. Зафиксируем тривиализации $B\Big|_{U_i}$ и рассмотрим базисы в $B\Big|_{U_i}$ и $B\Big|_{U_j}$, определенные этими тривиализациями. Пусть $U_i \cap U_j \stackrel{\varphi_{ij}}{\to} GL(n)$ — функции перехода от одного базиса к другому. **Тогда** φ_{ij} **задают 1-коцикл** со значениями в GL(n).

Векторные расслоения, коциклы и кограницы (повторение)

ЗАМЕЧАНИЕ: Пусть G — группа, M — многообразие, $\{U_i\}$ его покрытие, а $U_i \cap U_j \stackrel{\varphi_{ij}}{\to} G$ — 1-коцикл. Рассмотрим набор отображений $\psi_i: U_i \to G$, и пусть $\varphi'_{ij}: U_i \cap U_j \to G$ — отображение, заданное формулой $\varphi'_{ij} = \psi_i^{-1} \varphi_{ij} \psi_j$. **Легко видеть, что** $\{\varphi'_{ij}\}$ — **тоже коцикл.** Коциклы $\{\varphi_{ij}\}$ и $\{\varphi'_{ij}\}$ называются **кограничными**.

ОПРЕДЕЛЕНИЕ: Пусть G — группа, M — многообразие, $\{U_i\}$ его покрытие, а $\mathfrak G$ — группа всех отображений $\coprod U_i \to G$. Группа $\mathfrak G$ действует на множестве 1-коциклов по формуле $\varphi'_{ij} = \psi_i^{-1} \varphi_{ij} \psi_j$; соответствующее фактормножество есть множество коциклов с точностью до кограниц. Оно называется группа когомологий Чеха с коэффициентами в G, связанными с покрытием $\{U_i\}$, и обозначается $H^1(M, \{U_i\}, G)$

УТВЕРЖДЕНИЕ: Пусть M — многообразие, $\{U_i\}$ — его покрытие, а $\mathfrak S$ — множество классов изоморфизма n-мерных расслоений, которые тривиальны на всех U_i . Множество $\mathfrak S$ естественно отождествляется с $H^1(M,\{U_i\},GL(n))$.

TEOPEMA: Все векторные расслоения на $\mathbb R$ тривиальны.

Тотальное пространство расслоения (повторение)

УТВЕРЖДЕНИЕ: Определим топологию на множестве всех точек всех слоев многообразия $\mathcal B$ таким образом, что в каждой карте U, где $\mathcal B$ тривиально, биекция из множества $\{(x\in U,b\in \mathcal B\big|_x\}$ всех слоев в $U\times \mathbb R^n$ – гомеоморфизм. Полученное топологическое пространство $\mathsf{Tot}(\mathcal B)$ является многообразием, локально тривиально расслоенным над M со слоем $\mathbb R^n$.

ОПРЕДЕЛЕНИЕ: $Tot(\mathcal{B})$ называется **тотальным пространством расслоения**.

ОПРЕДЕЛЕНИЕ: Пусть $M \stackrel{\varphi}{\to} N$ — локально тривиальное расслоение. Сечение φ есть подмногообразие $S \subset M$ такое, что ограничение $\varphi\big|_S$ задает диффеоморфизм S на N.

УТВЕРЖДЕНИЕ: Для каждого открытого множества $U \subset M$, рассмотрим пространство сечений расслоения $\operatorname{Tot}(\mathcal{B}_U)$. Легко видеть, что это пространство естественно отождествляется с $\mathcal{B}(U)$. **Это позволяет восстановить векторное расслоение (т. е. соответствующий пучок** $C^{\infty}M$ -модулей) из пространства $\operatorname{Tot}(\mathcal{B})$, снабженного дополнительной структурой сложения сечений и умножения сечения на функцию.

Связность на расслоении (повторение)

ЗАМЕЧАНИЕ: Пространство сечений расслоения B на гладком многообразии обозначается B.

ОПРЕДЕЛЕНИЕ: Связность на векторном расслоении B есть отображение $B \stackrel{\nabla}{\to} \Lambda^1 M \otimes B$, удовлетворяющее $\nabla (fb) = df \otimes b + f \nabla b$ для любых $b \in B, \ f \in C^{\infty}M$.

ЗАМЕЧАНИЕ: Если $X \in TM$ — векторное поле, $b \in B$, обозначим за $\nabla_X b$ сечение B, полученное как $\langle \nabla b, X \rangle$. Оператор ∇_X удовлетворяет правилу Лейбница: $\nabla_X (fb) = f \nabla_X b + \text{Lie}_X fb$, где Lie_X — производная вдоль X. Оператор ∇_X называется оператором ковариантной производной по X.

ЗАМЕЧАНИЕ: Производная Ли Lie $_X$: $\Omega^i M \to \Omega^i M$ тоже удовлетворяет правилу Лейбница, но не задает связности, ибо не линейна по X:

$$\operatorname{Lie}_{fX} \eta = (d\eta) \operatorname{If} X + d(\eta \operatorname{If} X) = f \operatorname{Lie}_X \eta + (-1)^{\tilde{\eta}} (\eta \wedge df) \operatorname{If} X.$$

Связность на тривиальном расслоении (повторение)

ОПРЕДЕЛЕНИЕ: Пусть B — тривиальное расслоение на M, свободно порожденное $a_1,...,a_n$: $B = \bigoplus C^{\infty} M \cdot a_i$. Тогда $a_1,...,a_n$ — называется базис сечений или тривиализация B. Каждое сечение B однозначно задается в виде $b = \sum_{i=1}^n f_i a_i$, где $f_i \in C^{\infty} M$.

ЗАМЕЧАНИЕ: На тривиальном расслоении над M связность записывается в виде $\nabla(\sum_i f_i a_i) = \sum_i (f_i \nabla a_i + a_i \otimes df_i)$. Пусть $\nabla a_i = \sum_j g_{ij} a_j$. Если $M = \mathbb{R}$, t – координата на \mathbb{R} , это дает $\nabla(\sum_i f_i a_i) = \sum_i (f_i \sum_j g_{ij} a_j + \frac{df_i}{dt} a_i)$.

ЗАМЕЧАНИЕ: На тривиальном расслоении B связность записывается так: $\nabla(x) = A(x) + dx$, где d — дифференциал (примененный почленно к каждому коэффициенту x), а A — 1-форма с коэффициентами в End B.

ЗАМЕЧАНИЕ: В этих обозначениях $\nabla(\sum_i f_i a_i) = 0$ равносильно

$$\frac{df_i}{dt} = -\sum_{j} f_j g_{ji}, i = 1, ..., n.$$

Это обыкновенное дифференциальное уравнение первого порядка!

Параллельный перенос вдоль связности (повторение)

ОПРЕДЕЛЕНИЕ: Пусть B — расслоение со связностью. Сечение B, которое удовлетворяет $\nabla b = 0$, называется параллельным.

УТВЕРЖДЕНИЕ: Пусть B — расслоение со связностью над \mathbb{R} . Тогда для каждой $x \in \mathbb{R}$, $b_x \in B \Big|_x$, существует и единственно сечение $b \in B$ такое, что $\nabla b = 0$, $b \Big|_x = b_x$.

Доказательство. Шаг 1: Расслоение B тривиально (все расслоения на \mathbb{R} тривиальны).

Шаг 2: Решение уравнения $\sum_i (f_i \nabla a_i + \frac{df_i}{dt} a_i) = 0$ всегда существует и однозначно задается начальным условием $b\Big|_x = b_x$ (теорема о существовании и единственности решений ОДЕ).

Группа голономии (повторение)

ОПРЕДЕЛЕНИЕ: Пусть $\gamma: [0,1] \to M$ — гладкий путь на многообразии M, соединяющий x и y а (B,∇) — расслоение со связностью. Рассмотрим $b_x \in B_x$, ограничим (B,∇) на $\gamma([0,1])$, и решим уравнение $\nabla(b)=0$, где $b \in B\Big|_{\gamma([0,1])}$ с начальным условием $b\Big|_x=b_x$. Этот процесс называется

параллельным переносом вектора b_x вдоль связности, а $b_y := b\Big|_y$ называется вектором, полученным в результате параллельного переноса b_x вдоль связности по пути $\gamma: [0,1] \to M$.

ОПРЕДЕЛЕНИЕ: Группа голономии связности есть группа эндоморфизмов слоя B_x , порожденная всеми параллельными переносами вдоль путей из x в x, где $x \in M$.

УПРАЖНЕНИЕ: Докажите, что группа голономии не зависит от выбора $x \in M$.

Алгебра де Рама (повторение)

ОПРЕДЕЛЕНИЕ: Пусть M — гладкое многообразие. Обозначим за $\Lambda^i M$ пространство дифференциальных i-форм на M, то есть антисимметричных i-форм на касательном расслоении TM. Определим умножение $\Lambda^i M \times \Lambda^j M \to \Lambda^{i+j} M$ как $\alpha \wedge \beta \to \Pi(\alpha \otimes \beta)$, где $\alpha \otimes \beta$ — сечение $\Lambda^i M \otimes \Lambda^j M \subset \bigotimes_{i+j} T^* M$, полученное перемножением α и β , а Π — кососимметризация тензора.

УТВЕРЖДЕНИЕ: Это умножение ассоциативно, и удовлетворяет $\alpha \wedge \beta = (-1)^{ij}\beta \wedge \alpha$.

ОПРЕДЕЛЕНИЕ: Алгебра $\Lambda^*M := \oplus_i \Lambda^i M$ с определенной выше алгебраической структурой называется алгеброй де Рама многообразия.

ЗАМЕЧАНИЕ: Пусть $\varphi: M_1 \to M_2$ — гладкое отображение многообразий. Тогда задано отображение $\varphi^*: \Lambda^*M_2 \to \Lambda^*M_1$, переводящее дифференциальную форму $\eta \in \Lambda^k M_2$ в форму $(v_1,...,v_k) \in TM_1 \to \eta(D_\varphi v_1,...,D_\varphi(v_k))$.

Дифференциал де Рама (повторение)

ОПРЕДЕЛЕНИЕ: Дифференциал де Рама $d: \Lambda^*M \to \Lambda^{*+1}M$ есть \mathbb{R} -линейное отображение, которое удовлетворяет следующим условиям.

- (i) Для любого $f\in \Lambda^0=C^\infty M$, df есть элемент $\Lambda^1 M$, который равен дифференциалу $df\in \Omega^1 M$.
- (ii) (Правило Лейбница) $d(a \wedge b) = da \wedge b + (-1)^j a \wedge db$, для любых $a \in \Lambda^i M, b \in \Lambda^j M$.
 - (iii) $d^2 = 0$.

УТВЕРЖДЕНИЕ:

Дифференциал де Рама однозначно задается этими условиями.

ОПРЕДЕЛЕНИЕ: Дифференциальная форма называется замкнутой, если она лежит в ядре d, и точной, если она лежит в образе d. Пространство $H^i(M):=\frac{\ker d}{imd}\Big|_{\Lambda^i M}$ называется i-й группой когомологий де Рама многообразия M.

30 сентября лекции не будет! Будет прием задач.

Производная Ли

ОПРЕДЕЛЕНИЕ: Поток диффеоморфизмов многообразия есть гладкое отображение $\varphi_t: M \times \mathbb{R} \to M$, которое является диффеоморфизмом для любого $t \in \mathbb{R}$. Аналогично определяется поток симплектоморфизмов.

ОПРЕДЕЛЕНИЕ: Предположим, что $\varphi_0 = \operatorname{Id}_M$. Тогда производная $\frac{d\varphi_t}{dt}\Big|_{t=0}$ есть векторное поле, которое называется производной потока диф-феоморфизмов.

ОПРЕДЕЛЕНИЕ: Пусть $\varphi_t: M \times \mathbb{R} \to M$ — поток диффеоморфизмов, а $v:=\frac{d\varphi_t}{dt}\Big|_{t=0}$ соответствующее векторное поле. Производная Ли вдоль v, есть отображение $\mathrm{Lie}_v: \Lambda^i M \to \Lambda^i M$, полученное как $\mathrm{Lie}_v(\eta):=\frac{\varphi_t^*\eta}{dt}\Big|_{t=0}$.

ТЕОРЕМА: (Формула Картана)

$$Lie_v(\eta) = \{d, i_v\}\eta,$$

где $\{\cdot,\cdot\}$ обозначает антикоммутатор, а i_v – операцию подстановки v в форму.

Доказательство см. ниже.

Нечетные дифференцирования

ОПРЕДЕЛЕНИЕ: Нечетное дифференцирование алгебры де Рама есть нечетный (меняющий градуировку на нечетное число) оператор $q: \Lambda^*(M) \to \Lambda^*(M)$, который удовлетворяет (супер-)правилу Лейбница: $q(a \wedge b) = q(a) \wedge b + (-1)^{\tilde{a}} a \wedge q(b)$.

ПРИМЕР: Дифференциал де Рама является нечетным дифференцированием.

ПРИМЕР: Оператор подстановки векторного поля является нечетным дифференцированием.

УТВЕРЖДЕНИЕ: Антикоммутатор двух нечетных дифференцирований есть дифференцирование (проверьте это).

УТВЕРЖДЕНИЕ: Пусть $d \in \text{End}(\Lambda^*M)$ — нечетный оператор, который удовлетворяет $d^2 = 0$, а $L \in \text{End}(\Lambda^*M)$ другой нечетный оператор. Тогда d коммутирует с [d, L] (проверьте это).

Формула Картана (доказательство)

ТЕОРЕМА: (Формула Картана)

$$Lie_v(\eta) = \{d, i_v\}\eta,$$

где $\{\cdot,\cdot\}$ обозначает антикоммутатор $\{a,b\}=ab+ba$, а i_v – операцию подстановки v в форму.

Доказательство. Шаг 1: Проверяем, что Lie $_v$ и $\{d,i_v\}$ – дифференцирования алгебры де Рама, коммутирующие с d.

Шаг 2: Проверяем, что они совпадают на функциях.

Шаг 3: Проверяем, что дифференцирования Λ^*M , которые совпадают на функциях и коммутируют с d, равны.

Дифференциал де Рама и коммутаторы

ЗАМЕЧАНИЕ: Из формулы Картана выводится такое утверждение (оно тоже называется формула Картана).

ТЕОРЕМА: Пусть $\eta \in \Lambda^1 M$. Тогда

$$d\eta(X,Y) = \operatorname{Lie}_X(\eta(Y)) - \operatorname{Lie}_Y(\eta(X)) - \eta([X,Y]) \quad (*)$$

для любых векторных полей $X,Y\in TM$.

Доказательство. Шаг 1: Тождество Лейбница дает $\text{Lie}_X(\eta(Y)) = \text{Lie}_X(\eta)(Y) + \eta(\text{Lie}_XY).$

Шаг 2: По формуле Картана, $\operatorname{Lie}_X(\eta)(Y) = d\eta(X,Y) + d(\eta \lrcorner Y)(X)$; производная Ли векторного поля - это коммутатор, $\operatorname{Lie}_XY = [X,Y]$. Поэтому шаг 1 дает $\operatorname{Lie}_X(\eta(Y)) = d\eta(X,Y) + \eta([X,Y]) + d(\eta \lrcorner Y)(X)$, или

$$d\eta(X,Y) = \operatorname{Lie}_X(\eta(Y)) - \eta([X,Y]) - d(\eta \cup Y)(X) \quad (**)$$

Шаг 3: Наконец, $d(\eta J Y)(X) = \text{Lie}_X(\eta(Y))$ (производная Ли от функции есть ее дифференциал). Подставляя в (**), получаем (*).

СЛЕДСТВИЕ 1: Пусть $X,Y\in TM$ коммутируют. Тогда $d\eta(X,Y)=d\langle\eta,Y\rangle \lrcorner X-d\langle\eta,X\rangle \lrcorner Y$.

Кручение

ОПРЕДЕЛЕНИЕ: Пусть ∇ – связность на $\Lambda^1 M$,

$$\Lambda^1 \stackrel{\nabla}{\to} \Lambda^1 M \otimes \Lambda^1 M$$

Кручение ∇ задается формулой $T_{\nabla}(\eta) = d(\eta) - \mathsf{Alt} \circ \nabla(\eta)$, где $\mathsf{Alt} : \Lambda^1 M \otimes \Lambda^1 M \to \Lambda^2 M$ - внешнее умножение. Кручение есть отображение $T_{\nabla} : \Lambda^1 M \to \Lambda^2 M$.

ЗАМЕЧАНИЕ:

$$T_{\nabla}(f\eta) = d(f\eta) - \mathsf{Alt}(f\nabla\eta + df \otimes \eta)$$
$$= f \left[d\eta - \mathsf{Alt}(\nabla\eta) \right] + df \wedge \eta - df \wedge \eta = fT_{\nabla}(\eta).$$

Значит, T_{∇} линейно.

Кручение и коммутаторы

ЗАМЕЧАНИЕ: Каждая связность на $\Lambda^1 M$ дает связность на $TM = \Lambda^1 M^*$ и наоборот: $d\langle x,\eta\rangle = \langle \nabla(x),\eta\rangle + \langle x,\nabla(\eta)\rangle$. Эти связности обозначаются одной и той же буквой и про них говорят, как про одну и ту же сущность.

ТЕОРЕМА 1: Пусть $X,Y \in TM$ — векторные поля, $\eta \in \Lambda^1M$ — 1-форма, а ∇ — связность на Λ^1M . **Тогда**

$$T_{\nabla}(X,Y)(\eta) = \langle T_{\nabla}^*(X,Y), \eta \rangle,$$

где $T^*_{\nabla}(X,Y)$ — векторное поле, которое определяется по формуле $T^*_{\nabla}(X,Y) := \nabla_X Y - \nabla_Y X - [X,Y].$

ЗАМЕЧАНИЕ: $T^*_{\nabla}(X, fY) = \nabla_X(fY) - f\nabla_Y X - [X, fY] = fT^*_{\nabla}(X, Y) + \text{Lie}_X(f)Y - [X, fY] + f[X, Y] = fT^*_{\nabla}(X, Y)$. Поэтому T^*_{∇} — тоже линейная операция.

ЗАМЕЧАНИЕ: Тензор T^*_{∇} лежит в $\Lambda^2 M \otimes TM$, а T_{∇} в Hom $(\Lambda^1 M, \Lambda^2 M) = \Lambda^2 M \otimes TM$; Теорема 1 утверждает, что эти тензоры равны.

Кручение и коммутаторы (продолжение)

ТЕОРЕМА 1: Пусть $X,Y \in TM$ — векторные поля, $\eta \in \Lambda^1M$ — 1-форма, а ∇ — связность на Λ^1M . **Тогда**

$$T_{\nabla}(X,Y)(\eta) = \langle T_{\nabla}^*(X,Y), \eta \rangle, \quad (***)$$

где $T^*_{\nabla}(X,Y)$ — векторное поле, которое определяется по формуле $T^*_{\nabla}(X,Y):=\nabla_X Y - \nabla_Y X - [X,Y].$

Доказательство. Шаг 1: Поскольку T_{∇} и T_{∇}^* – тензоры, достаточно проверять (***) для какого-то набора векторных полей X_i, Y_i , порождающих TM. Поэтому можно считать, что X, Y коммутируют, и $T_{\nabla}^*(X,Y) = \nabla_X Y - \nabla_Y X$.

Шаг 2: По определению, $T_{\nabla}(X,Y)(\eta) = d\eta(X,Y) - \langle \nabla_X \eta, Y \rangle + \langle \nabla_Y \eta, X \rangle$.

Шаг 3: $\langle \nabla_X \eta, Y \rangle = d \langle \eta, Y \rangle \bot X - \langle \eta, \nabla_X Y \rangle$, то есть

$$T_{\nabla}(X,Y)(\eta) =$$

$$= -d\langle \eta, Y \rangle \exists X + d\langle \eta, X \rangle \exists Y + d\eta(X,Y)$$

$$-\langle \eta, \nabla_X Y \rangle + \langle \eta, \nabla_Y X \rangle$$

Вторая строчка равна нулю в силу формулы Картана (Замечание 1), что дает $T_{\nabla}(X,Y)(\eta) = -\langle \eta, \nabla_X Y \rangle + \langle \eta, \nabla_Y X \rangle = \langle \eta, T_{\nabla}^*(X,Y) \rangle$.