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1. Introduction

Let F be a holomorphic (possibly singular) foliation by curves on a compact con-
nected Kähler manifold X . Following the uniformization results of [4], we may
distinguish three possible situations:

(i) F is a hyperbolic foliation: most leaves, i.e. all the leaves outside a pluripolar
subset, are uniformized by the disc D.

(ii) F is a strictly parabolic foliation: all the leaves are uniformized by the affine
line C.

(iii) F is a rational quasi-fibration: all the leaves are uniformized by the projective
line P.

This trichotomy is related to positivity properties of the canonical bundle KF of
the foliation F . For a hyperbolic foliation, its canonical bundle is pseudoeffective, in
the sense that it admits a (singular) hermitian metric whose curvature is a closed
positive current: this is the main result of [4], asserting that such a metric is provided
by the leafwise Poincaré metric. On the opposite side, for a rational quasi-fibration
the canonical bundle is certainly not pseudoeffective: a generic leaf is a smooth
rational curve free of singularities, over which the canonical bundle has degree −2,
and this prevents pseudoeffectivity. We refer to [3] and references therein for the
basic notions related to pseudoeffective line bundles.

In this paper, we will be concerned with the intermediate case, the case of strictly
parabolic foliations. Here it is easy to produce examples in which the canonical
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bundle is pseudoeffective, or even ample, see, for instance, [5]. But also there are
examples in which this pseudoeffectivity fails, for instance, the radial foliation on
the projective space.

Recall that a foliation F on X is said to be a foliation by rational curves if for
every x ∈ X there exists a rational curve through x and tangent to F . Because
these rational curves may pass through Sing(F), such a class of foliations is larger
than the class of rational quasi-fibrations, see [4, p. 146]. It can even happen that
a foliation by rational curves is of hyperbolic type. Anyway, positivity properties
of the canonical bundle of a foliation by rational curves are quite easy to estab-
lish, and moreover such a foliation can be reduced, by blowing-up, to a rational
quasi-fibration, for which pseudoeffectivity of the canonical bundle is definitely
lost. Therefore, we shall concentrate on the complementary class.

Theorem 1.1. Let F be a holomorphic foliation by curves on a compact connected
Kähler manifold X. Suppose that F is not a foliation by rational curves. Then its
canonical bundle KF is pseudoeffective.

When X is projective, this result is not new. Basically, it is a theorem by Miyaoka
[9], as reworked by Shepherd–Barron [11]. Their proof is based on positive char-
acteristic techniques. A purely characteristic zero proof, but still demanding the
projectivity of X , has been given by Bogomolov and McQuillan [2]. Strictly speak-
ing, in these papers the result is slightly weaker, because there the conclusion is
only that KF is a so called “almost nef” line bundle, a property possibly weaker
than pseudoeffectivity. However, it is a result of [3] that, on projective manifolds,
almost nefness and pseudoeffectivity are in fact the same thing.

Our proof is in part inspired by [2], but since the beginning we need to replace
almost nefness (which is almost meaningless on nonprojective manifolds) by pseu-
doeffectivity. In this way, even in the projective case we hope that our proof is
more natural and direct than the already existing ones, because we avoid the deep
contribution of [3]. Besides results from [4, 5], we shall need an extension theorem
for meromorphic maps into Kähler manifolds which is largely based on a work by
Dingoyan [7]. In some sense, this extension theorem replaces Andreotti’s theorem
used (implicitely) in [2].

As already observed, when F is hyperbolic then the theorem above is contained
in [4], in an effective form: we have an explicit metric on KF (the leafwise Poincaré
metric) giving the pseudoeffectivity. Unfortunately, such an effectiveness is lost
when F is strictly parabolic: our result above is only existential. One could naively
hope for a plurisubharmonic metric on KF which is flat and complete along the
leaves, but examples of strictly parabolic foliations with ample canonical bundle
destroy this sought. We refer to [5] for some partial results in this direction.

We shall not pursue this theme here, but let us notice that simple variations
on the theorem above give also some informations on the discrepancy between
pseudoeffectivity and nefness of KF . Indeed, suppose that KF is pseudoeffective but
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not nef. Then [3] there exists a maximal countable collection of proper irreducible
analytic subsets Yj ⊂ X such that the restriction KF |Yj is not pseudoeffective,
for every j. If we further assume that Yj is not entirely contained in the singular
set of the foliation, then we obtain that all the leaves of F through points of Yj

compactify to rational curves (probably these leaves are contained in Yj , i.e. each
Yj is F -invariant, but we did not found a formal proof of this fact).

Let us finally observe the following application of our theorem to the classifica-
tion of Kähler threefolds.

Corollary 1.2. Let X be a compact connected nonprojective Kähler threefold. Sup-
pose that its canonical bundle KX is not pseudoeffective. Then X is covered by
rational curves.

The proof is the same as for [4, Corollary 1.2], exploiting the fact that (by
Kodaira nonembedding theorem) on any compact connected nonprojective Kähler
threefold we have by free a foliation F with

KX = KF ⊗OX(D), D ≥ 0.

The result is in fact true also for projective threefolds, basically by Miyaoka and
Mori [10, 3]. Remark that, in the nonprojective case, if X is covered by rational
curves then up to a bimeromorphism X is a P-bundle over a surface (Kähler and
nonprojective). On the other hand, when KX is pseudoeffective then, according
to the abundance conjecture [3], one expects that the Kodaira dimension of X

is nonnegative, and this should complete the canonical classification of compact
Kähler nonprojective threefods.

2. Compactification of Meromorphic Maps from Line Bundles

In this section, we shall prove an extension theorem for meromorphic maps. The
proof will follow arguments extracted from [7], plus a suitable interpretation of the
(non-)pseudoeffectivity property of a line bundle.

Let us firstly recall the Monge–Ampère estimate from [7] that we shall need, in
a simplified form.

Let V be a connected complex manifold, of dimension n, and let ω be a closed
positive (1, 1)-current on V which locally admits continuous potentials (for instance,
ω may be any smooth closed semipositive (1, 1)-form). Let U be an open relatively
compact subset of V . Define

Pω(V ) = {φ : V → [−∞, +∞) u.s.c. | ddcφ + ω ≥ 0}
and

Pω(V, U) = {φ ∈ Pω(V ) | φ|U ≤ 0}.
Consider the subset W ⊂ V where the family of functions Pω(V, U) is locally
bounded from above. By definition, it is an open subset which contains U .



February 6, 2006 14:40 WSPC/133-IJM 00333

38 M. Brunella

Hypothesis 2.1. W = V .

Under this assumption, we may introduce the real function on V

φ∗ = upper regularization of sup
φ∈Pω(V,U)

φ

which obviously is everywhere nonnegative, and identically zero on U .

Hypothesis 2.2. φ∗ : V → R+ is exhaustive, i.e. {φ∗ < λ} is relatively compact
in V for every λ ∈ R+.

Under these two assumptions, we have [7, Main theorem]:∫
V

ωn < +∞.

For sake of completeness and reader’s convenience, let us recall the scheme of the
proof. The above extremal function φ∗ still belongs to Pω(V, U), and moreover
outside the closure of U it satifies the Monge-Ampère equation (ddcφ∗ + ω)n ≡ 0,
basically by [1] (“balayage”). Because the closure of U is compact, we therefore
have ∫

V

(ddcφ∗ + ω)n < +∞.

On the other hand, using the fact that φ∗ is exhaustive, a Stokes type argument
shows [7, Lemma 4] ∫

V

ωn ≤
∫

V

(ddcφ∗ + ω)n,

whence the finiteness of the first integral.
In our context, in order to check Hypothesis 2.1, we shall need the following

lemma on pseudoeffective line bundles. Let X be a compact connected complex
manifold and let L be a line bundle over X . We shall denote by E the total space
of L, and by Σ ⊂ E the graph of its zero section. Recall that a line bundle is
pseudoeffective if it admits a (singular) hermitian metric whose curvature is a closed
positive current, that is, whose local weights are plurisubharmonic functions. Recall
also that an open subset W of a complex manifold V is locally pseudoconvex if there
exists a Stein open covering of V whose trace on W is still Stein.

Lemma 2.3. Suppose that there exists a neighbourhood W of Σ in E, W 	= E,

which is locally pseudoconvex in E. Then the dual line bundle L∗ is pseudoeffective.

Proof. This is an easy application of Yamaguchi’s variation formula [13] (see
also [8]).

Take a point x ∈ X and a vector ξ ∈ L∗
x. We may identify ξ with a cotangent

vector to Wx = W ∩ Ex at the point 0x = Σ ∩ Ex. Then we may set
‖ξ‖ = the Poincaré norm of ξ in the Riemann surface Wx.

Remark that ‖ξ‖ = +∞ if Wx = Ex � C or Wx = Ex\{1 point} � C∗, and
‖ξ‖ ∈ (0, +∞) otherwise.
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If B ⊂ X is a small Stein neighborhood of x then ∪y∈BWy is Stein, by its local
pseudoconvexity inside ∪y∈BEy � B × C. Therefore, by [13, 8], the metric ‖ · ‖ so
defined on L∗ has positive curvature, in the sense of currents, provided it is not
identically +∞.

If ‖ · ‖ ≡ +∞ then, for every x ∈ X , either Wx = Ex or Wx = Ex\{px}. Using
the local pseudoconvexity of W , we see that the second possibility occurs over some
open subset Ω ⊂ X , in such a way that the map Ω � x �→ px is holomorphic and its
graph is closed in E. By assumption, Ω is not empty. By Radó theorem [6], X\Ω is
an hypersurface in X and the above map extends meromorphically to the full X ,
with that hypersurface as set of poles. Thus we obtain a meromorphic section of L,
without zeroes because W ⊃ Σ, and hence a holomorphic section of L∗. Therefore
L∗ is (pseudo)effective.

Note that the converse to this lemma is also true (and easy): L∗ pseudoeffective
implies the existence of a nonfull locally pseudoconvex (disqued) neighbourhood
of Σ, given by the open unit ball of the dual metric. In fact, the lemma above
admits a simpler proof: setting Wθ = rotation of W by the angle θ and W ′ = the
connected component of ∩θWθ which contains Σ, then W ′ is still a nonfull locally
pseudoconvex neighborhood of Σ, and moreover it is disqued; hence, by considering
it as the open unit ball of a metric on L, we obtain by duality a metric on L∗ with
positive curvature (recall that a subset of B ×C of the type {(z, w) | |w| ≤ e−f(z)}
is open and locally pseudoconvex if and only if f is plurisubharmonic). However, we
think that the proof above is less tricky and more apted to eventual generalizations,
as evoked in the remark at the end of this section.

Consider now the following data:

• X a compact connected Kähler manifold;
• L a line bundle over X , with total space E and zero section Σ ⊂ E;
• F = E ∪ H the compact manifold, ruled over X , obtained by glueing to E the

section at infinity H ;
• f : E ��� M a meromorphic map into some compact Kähler manifold M .

It may be worth noting that the normal bundle of H in F is isomorphic to L∗.

Proposition 2.4. Suppose that L∗ is not pseudoeffective. Then f extends through
H to a meromorphic map f ′ : F ��� M .

Proof. Fix a Kähler form ω2 on M . The manifold F also admits a Kähler form,
denoted by ω1. On the product F × M we put the Kähler form ω = π∗

F (ω1) +
π∗

M (ω2), where πF and πM are the projections to F and M .
Let

Γf ⊂ F × M
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be the graph of f : E ��� M , which is an analytic subset of E × M . Our aim is to
prove that its volume

Vol(Γf ) =
∫

Γf

ωn

(where n is the dimension of E) is finite, so that by Bishop’s theorem [6], its closure
in F ×M is still an analytic subset, of the same dimension. This gives the required
extension of the map f [12].

The graph Γf could be singular, so, to be safe, let us replace it by a resolution

π : Γ̃f → Γf .

We shall work with the projection

π̃F = πF ◦ π : Γ̃f → E,

which realizes an analytic isomorphism between Γ̃f\Z and E\B, for suitable ana-
lytic subsets Z ⊂ Γ̃f and B ⊂ E. Set

ω̃ = π∗(ω|Γf
),

a smooth closed semipositive (1, 1)-form on Γ̃f . Note that its direct image ω̄ =
(π̃F )∗(ω̃) (= ω1 + f∗(ω2)) is a closed positive current on E, smooth on E\B.

Take a relatively compact neighborhood U of Σ in E, and set Ũ = π̃−1
F (U).

Consider the space

Pω̃(Γ̃f , Ũ)

as defined at the beginning of this section. Let Û ⊂ Γ̃f be the open subset where
this family of functions is locally bounded from above.

Claim 2.5. Û = Γ̃f .

Indeed, consider the isomorphism j : Γ̃f\Z → E\B induced by restricting
π̃F . Let P be the set of functions on E\B of the form φ ◦ j−1, φ ∈ Pω̃(Γ̃f , Ũ).
Then, obviously, j(Û\Z) is equal to the open subset of E\B where the family P is
locally bounded from above. Clearly P ⊂ Pω̄(E\B), and so, by [7, Lemmata 6–7],
j(Û\Z) is locally pseudoconvex in E\B and the interior of j(Û\Z) ∪ B is locally
pseudoconvex in E. This interior contains U and hence Σ, therefore by Lemma 2.3
it must coincide with the full E. It follows that Û contains the full Γ̃f\Z. From this
last fact we deduce that Û = Γ̃f , because a family of psh functions which is locally
bounded from above outside an analytic subset is locally bounded from above also
on the same analytic subset, by the submean inequality (our functions are not psh,
but locally they are of the type (psh)-(a fixed local potential of ω̃), so the same
criterion applies).

Consider now the extremal function φ∗ : Γ̃f → R+, upper regularization of
supPω̃(Γ̃f ,Ũ) φ.

Claim 2.6. φ∗ is exhaustive.
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Indeed (see also [7, p. 233]), take on E (as a subset of F ) the function ψ0 =
− log distH , where distH is the distance from H with respect to the Kähler metric
ω1. Because H is an hypersurface in F , standard estimates give a positive constant
C such that ddcψ0 ≥ −Cω1. Thus, the function ψ = 1

C ψ0 ◦ π̃F on Γ̃f belongs
to Pω̃(Γ̃f ):

ddcψ ≥ −π̃∗
F (ω1) ≥ −ω̃.

By adding a (negative) constant, we may also achieve ψ ≤ 0 on Ũ , that is ψ ∈
Pω̃(Γ̃f , Ũ). By definition, φ∗ is not smaller than ψ, and the exhaustivity of the
former follows from the one of the latter.

By Claims 2.5 and 2.6, we may now apply Dingoyan’s estimate:∫
Γ̃f

ω̃n < +∞.

Hence Vol(Γf ) is finite, and the proof is complete.

Remark 2.7. It is not difficult to obtain a local version of this result, in which
the map f is initially defined only on a neighborhood of H minus H , instead of the
full E. Also, it is conceivable a “nonlinear” generalization, for a meromorphic map
f : Y \H ��� M where Y is any Kähler manifold and H is any compact connected
hypersurface with nonpseudoeffective normal bundle. When H is projective, this
can be proved with the help of [3], which guarantees the existence of a covering
family of curves in H over which the normal bundle of H has strictly negative
degree (so that we are reduced to extending maps defined outside a normal surface
singularity).

3. Compactification of Parabolic Foliations

Let X be a compact connected Kähler manifold and F a holomorphic foliation by
curves on X . Set X0 = X\Sing(F). According to [4, Lemma 2.1], there exists a
complex manifold UF , called covering tube, with the following properties:

(i) there exists a holomorphic submersion

P : UF → X0

and a holomorphic section

p : X0 → UF

such that, for every x ∈ X0, (P−1(x), p(x)) is the universal covering of the leaf
Lx through x with basepoint x;

(ii) there exists a meromorphic map

π : UF ��� X

sending (P−1(x), p(x)) onto (Lx, x).
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In fact, this is done in [4] in a local terminology, using a local transversal T to
F instead of the full X0. The formulation above can be immediately obtained
either by repeating the arguments, mutatis mutandis, or by a patching procedure.
Remark that the local product structure of F over X0 induces a partial local
product structure of UF : if T ⊂ X0 is a local transversal to the foliation and
B � T ×D ⊂ X0 is an open subset over which F is a product, then the restriction
of UF over B is isomorphic to UT × D, where UT is the restriction of UF over
T × {0} ⊂ B (i.e. UT is the covering tube of [4]). This is because fibres of UF over
points in the same leaf differ only by their basepoints.

The tube UF is a sort of “integrated” tangent bundle to F (over X0) with zero
section given by p. The meromorphic map π : UF ��� X is the integrated form of
the morphism TF → TX , which is the differential equation defining the foliation. In
fact, this last morphism is the linearization of π along the hypersurface p(X0) ⊂ UF
(by construction, π is holomorphic around such a hypersurface).

Suppose now that F is a strictly parabolic foliation in the sense of [5]: the
universal covering of every leaf is isomorphic to C. Denote by EF the total space
of the tangent bundle TF , and by ΣF ⊂ EF its zero section.

Proposition 3.1. If F is strictly parabolic, then there exists a (natural)
biholomorphism

ϕ : EF |X0 → UF

sending fibres to fibres and ΣF |X0 to p(X0).

Proof. Take x ∈ X0 and let Ex be the fibre of EF over x. By definition, this is the
tangent space to Lx at the point x, and it can also be identified with the tangent
space to P−1(x) at the point p(x). Because P−1(x) is isomorphic to C, there exists
a unique isomorphism

ϕx : Ex → P−1(x)

with ϕx(0) = p(x) and ϕ′
x(0) = id, via the identifications above. By glueing together

these various ϕx, x ∈ X0, we obtain the desired map ϕ : EF |X0 → UF .
Of course, and this is the main point, we need to check that the map ϕ so

defined is holomorphic, that is, that the affine structure on the leaves of F (used to
construct ϕ) varies in a holomorphic way with respect to the leaf. But this is just
[5, Theorem 1], which affirms that over a (small) polydisc B ⊂ X0 the covering
tube UF has a product structure:

UF |B � B × C.

By composing ϕ with π we obtain a meromorphic map from EF |X0 into X ,
sending fibres into leaves. The analytic subset EF\EF |X0 (= EF |Sing(F)) has codi-
mension at least 2 in EF , and so a standard extension result [12] allows to extend
this map to the fibres over Sing(F). Hence, we finally obtain a meromorphic map

Φ : EF ��� X
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sending fibres to leaves. This map can be thought as a “skew flow” generating the
foliation, defined on EF , the skew product of X and the “time” C.

We are now ready to prove the theorem stated in the introduction. As explained
there, it is sufficient to consider only the case of strictly parabolic foliations.

Theorem 3.2. Let X be a compact connected Kähler manifold and let F be a
strictly parabolic foliation on X. Suppose that the canonical bundle is not pseudo-
effective. Then F is a foliation by rational curves.

Proof. Consider the map Φ : EF ��� X constructed above. By Proposition 2.4, if
KF = T ∗

F is not pseudoeffective then Φ can be meromorphically extended to the
section at infinity of EF . Because Φ sends fibres to leaves, the conclusion follows.
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