
J. Math. Kyoto Univ. (JMKYAZ)
47-4 (2007), 717–734

On entire curves tangent to a foliation

By

Marco Brunella

1. Introduction

Let X be a complex projective manifold, equipped with a holomorphic
foliation by curves F , with a possibly nonempty singular set Sing(F) (analytic
of codimension at least 2). In this paper we are interested in the structure
of the set of (nonconstant) entire curves f : C → X tangent to F . That is,
f ′(z) ∈ Tf(z)F whenever f(z) �∈ Sing(F).

A particular aspect of this problem was already treated in [Br3]. In that
paper we defined the leaf Lp of F through a nonsingular point p ∈ X0 =
X \ Sing(F) (this is not straightforward due to the presence of singularities),
and we proved that the set

P = {p ∈ X0|Lp is parabolic }
is either the full X0 or a complete pluripolar subset of X0, i.e. locally given
by the poles of a plurisubharmonic function. Here “Lp parabolic” means that
its universal covering is C or CP 1, equivalently there exists a nonconstant map
from C to Lp. Because the leaf Lp has a natural map to X, we see that if p
belongs to P then there exists an entire curve in X tangent to F and passing
through p. However, the converse statement is generally speaking false: the
problem is that an entire curve tangent to F may pass through singular points
of F , and these singular points may not belong to the corresponding leaf of
F , which therefore may be hyperbolic (according to the definition of [Br3],
in some special cases a leaf may pass through singular points, but this is a
very exceptional situation, which does not affect substantially the previous
discrepancy). In other words, setting

E = {p ∈ X0| there exists a nonconstant f : C → X, f(0) = p, tangent to F }
then P ⊂ E , but the inclusion may be strict. It can even happen that P = ∅
and E = X0 (example: take the radial foliation of CPn and transform it by a
“generic” birational map of CPn, so that all the leaves become hyperbolic).

Remark that E is F-invariant, so that in order to understand its (local)
structure it is sufficient to look at its trace on F-transverse discs. Let us
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introduce some notation and terminology. Given an embedded (n − 1)-disc
T ⊂ X0 transverse to the foliation, set E(T ) = E ∩ T . Given an embedded
k-disc S ⊂ T , 1 ≤ k ≤ n− 1, set E(S) = E ∩S. Here “embedded” means, more
precisely, “properly embedded in a neighbourhood of it”. Finally, we shall say
that a subset of a disc is thin if it is contained in a countable union of locally
analytic subsets (of positive codimension), where a subset is locally analytic if
it is analytic in a neighbourhood of it.

Theorem 1.1. Let X be a complex projective manifold of dimension
n, equipped with a holomorphic foliation F of dimension 1, with singular set
Sing(F). Let T ⊂ X0 be an embedded (n − 1)-disc transverse to F , and let
S ⊂ T be an embedded k-disc, 1 ≤ k ≤ n − 1. Then there exists a (canonical)
splitting

E(S) = P(S) ∪ Z(S)

where Z(S) is thin in S and P(S) is either complete pluripolar in S or full.
Moreover, in the latter case (P(S) = S) there exists a meromorphic map

F : S × C ��� X

such that for every s ∈ S the restriction F (s, ·) : C → X is (after removal of
indeterminacies) an entire curve tangent to F and sending 0 to s ∈ S ⊂ X.

Warning : P(S) is not the trace on S of parabolic leaves, as defined in
[Br3]. The set P(S) will be defined below, in Section 4, as the set of points
through which the “leaf relative to S” is parabolic. Even for S = T we may
have that P(T ) is different (larger) than P ∩T , because the leaves defined here
are slightly different from the ones defined in [Br3], see remark (a) in Section 3.

The meaning of this Theorem is that E(S) splits into two parts: the “good”
part P(S), corresponding to entire curves which can be lifted to the covering
tube US (Section 3), therefore glueing together in a “holomorphic” family; and
the “bad” part Z(S), corresponding to entire curves which, due to holonomy
or other accidents, cannot be lifted to US . But this bad part is relatively
negligible, because it is thin.

An immediate corollary to Theorem 1.1 is that either E(S) = S or E(S) is
pluripolar in S. However, in the latter case we don’t know if E(S) is actually
complete pluripolar, i.e. equal to the poles of a plurisubharmonic function and
not simply contained in such poles: the problem is that a thin subset is always
pluripolar but it may fail to be complete. In particular, by a connectivity
argument E is either the full X0 or a pluripolar subset of X0, but in the latter
case we don’t know if it is complete pluripolar (we suspect that the answer
could be negative, in general).

Anyway, given a transverse disc T we have the splitting E(T ) = P(T ) ∪
Z(T ), and we can apply again Theorem 1.1 to a countable collection of subdiscs
of T , of positive codimensions, whose union covers Z(T ). By iterating this
process we finally obtain

E(T ) =
[ ∪∞

j=0 P(Sj)
] ∪R
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where R is countable, each Sj is an embedded subdisc of T (with S0 = T ), and
each P(Sj) ⊂ Sj is either complete pluripolar in Sj or the full Sj (we could
include R inside [. . . ], by allowing 0-dimensional subdiscs). This is perhaps
rather noncanonical, but we shall see in the Appendix a potential application.

Theorem 1.1 will be proved in the next three sections, using some ideas
from [Br3] and [Br4] developed in a new “relative” context in order to take
into account the restriction to S. The first section contains a Levi-type Ex-
tension Lemma, independent on foliations but indispensable for further con-
structions. In fact, such a Lemma was already implicitely used in [Br2, page
124] and consequently in [Br3, page 146]: the direct use of Ivashkovich’s the-
orem [Iv1] was slightly unjustified there [C-I], and should be replaced by our
“unparametrized” Levi-type Extension Lemma. The second section introduces
holonomy and covering tubes, in the relative context, and states their basic
properties, in particular concerning their parabolic fibres. We shall refer to
[Br5] for some properties related to the holomorphic convexity of these tubes.
The third section is the key one: we prove that most entire curves (i.e. outside
a thin subset) tangent to the foliation can be lifted to holonomy and covering
tubes, giving the proof of Theorem 1.1. The motivation of Theorem 1.1, includ-
ing its cumbersome relative statement, comes from a still virtual application
to Lang’s conjecture for entire curves on surfaces of general type. This will be
explained in the Appendix.

This paper has been realized during a stay at IMPA. I thank this Institute
for its hospitality, and especially Paulo Sad for his constant listening.

2. An Extension Lemma

Let X be a compact connected Kähler manifold and let Ar be the semi-
closed annulus {r < |w| ≤ 1}, r ∈ (0, 1), with boundary ∂Ar = {|w| = 1}.

Given a holomorphic immersion f : Ar → X, we shall say that f(Ar)
extends to a disc if there exists a holomorphic map g : D → X (not necessarily
immersive) such that f factorizes as g ◦ j for some embedding j : Ar → D

sending ∂Ar to ∂D. That is, f itself does not need to extend to {|w| ≤ 1}, but
it extends “after a reparametrization”.

Remark that if f is generically injective, i.e. injective outside a discrete
subset, and f(Ar) extends to a disc, then we can find an extending map g :
D → X which is also generically injective. Indeed, given any extension g, its
image g(D) is either a (singular) disc in X with boundary f(∂Ar), so that g
is already generically injective, or a (singular) rational curve in X, over which
f(∂Ar) bounds a (singular) disc. Such a generically injective extension g is
then uniquely defined up to a Moëbius reparametrization of D. We shall say
that g, or g(D), is a simple extension of f(Ar).

Given a holomorphic immersion f : Dk × Ar → X, we shall say that
f(Dk × Ar) extends to a meromorphic family of discs if there exists a
complex (k + 1)-manifold with boundary W , a holomorphic submersion W →
Dk all of whose fibres are isomorphic to D, a meromorphic map g : W ��� X,
such that f factorizes as g ◦ j for some embedding j : Dk × Ar → W sending
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Dk × ∂Ar to ∂W and {z} × Ar to the fibre of W over z, for every z. In
particular, for every z ∈ Dk the restriction of g to the fibre of W over z gives,
after removal of indeterminacies, a disc which extends f(z, Ar). The manifold
W is differentiably the product of Dk with D, but in general this does not hold
holomorphically. However, it is a standard fact that for any z ∈ Dk and any
compact K ⊂ W \ ∂W in the fibre over z, there exists a neighbourhood V of
K, projecting to a neighbourhood U of z, such that the restriction V → U is a
holomorphically trivial disc-bundle, i.e. V 
 U × D.

The following result is a sort of “unparametrized” Levi continuity principle
[Siu], [Iv2], and its proof is largely inspired by Ivashkovich’s approach to the
classical “parametrized” Levi continuity principle [Iv1], [Iv2]. The new diffi-
culty is that we have to construct not only a map but also the space where it
is defined.

Proposition 2.1. Let X be a compact connected Kähler manifold and
let f : Dk × Ar → X be a holomorphic immersion, such that f(z, ·) is an
embedding for every z outside a proper analytic subset I ⊂ Dk. Suppose that
there exists a subset N ⊂ Dk such that:

(i) for every z ∈ N , f(z, Ar) extends to a disc;
(ii) N is not thin in Dk.

Then f(Dk × Ar) extends to a meromorphic family of discs.

Proof. The proof will be done in two steps. Firstly, we shall extend f
to a holomorphic family of discs over some open subset V ⊂ Dk with thin
complement. Secondly, we shall meromorphically extend over Dk \ V by a
Riemann type argument and the Thullen type extension theorem of Siu [Siu],
[Iv1].

As a preliminary remark, let us observe that we may assume that the
annuli f(z, Ar), z ∈ Dk, are pairwise disjoint, up to replacing f : Dk ×Ar → X
with (f, ) : Dk×Ar → X×CP k where  is the composition of the projection to
Dk and any embedding Dk ↪→ CP k. Such a replacement allows also to assume
that f is an embedding on the full (Dk \ I) × Ar.

Set

Z = {z ∈ Dk \ I | f(z, Ar) extends to a disc}.
We give to Z the following metrizable topology: if z, z′ ∈ Z then their

distance is the Hausdorff distance in X between g(D) and g′(D), where g, g′ :
D → X are simple extensions of f(z, Ar), f(z′, Ar). Remark that this topology
may be finer than the topology induced by the inclusion Z ⊂ Dk: two maps g
and g′ may be very close on ∂D but very distant inside D (think to blowing-up).

Next, we give to Z a natural structure of an analytic space. This is
“well known”, but let us give anyway some details for reader’s convenience and
for lack of an appropriate precise reference (see, however, [Iv2] and references
therein).

Take z ∈ Z and g : D → X a simple extension of f(z, Ar). Recall that
f(z, ·) is an embedding but g is only a generically injective map which may
have singular points and selfintersections (if g also is an embedding everything
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below becomes much more simpler). Take a Stein neighbourhood U of g(D) in
X. Then we properly embed U in some Euclidean space CN . In this way, the
annuli f(z′, Ar), z′ ∈ Dk close to z, are transferred to embedded semiclosed
annuli Az′ ⊂ CN . If Az′ extends to a disc in CN , then such a disc is necessarily
in U , and it is as close to g(D) as z′ is close to z, by the maximum principle.
Therefore, a neighbourhood of z in Z, in the Z-topology, can be identified with
a standard neighbourhood of z in the set D = {z′ | Az′ extends to a disc in
CN}. We need to prove that D is an analytic subset.

Consider the possibly larger set R = {z′ | Az′ extends to a compact com-
plex curve with boundary in CN}. This is an analytic subset. Indeed, given
an embedded circle γ ⊂ CN , the condition “γ bounds a compact curve Γ” is
equivalent, by a theorem of Wermer (or Harvey–Lawson) [A-W, Ch. 19], to
the moment condition:

∫
γ

η = 0 for every polynomial 1-form η. If γ depends
holomorphically on a parameter z′ (like our ∂Az′), then

∫
γ

η is a holomorphic
function of z′. By Noetherianity, we obtain the analyticity of R.

Over R we have a tautological analytic space (with boundary) M π→ R,
equipped with a holomorphic map to CN which sends π−1(z′) to a curve
bounded by ∂Az′ . More explicitely, M is the subset of R × CN which cuts
{z′} × CN along the curve bounded by ∂Az′ . The fact that M is an analytic
space follows from inspection of the proof of Wermer theorem recalled above
(basically, the holomorphic dependence on parameters of the Cauchy trans-
form, see [A-W, Ch. 19]). The subset D ⊂ R coincides with those z′ such that
the fibre π−1(z′) has (geometric) genus zero. It is not difficult to see that this
is a closed analytic subset of R; more generally, {z′ | genus(π−1(z′)) ≤ k} is
a closed analytic subset of R. To see this, we replace M by its normalisation,
so that the fibration over R becomes smooth over a Zariski open dense subset
R0. Thus the genus is constant on R0, and by an easy topological argument
it can only decrease on R \R0. Then we restrict over this last subset, and we
repeat the argument, obtaining in this way the Zariski lower continuity of the
geometric genus. In particular, D is an analytic subset of R.

Thus, Z is an analytic space, and by construction the inclusion Z ⊂ Dk is
a holomorphic injection. Moreover, over Z we have the tautological fibration
π : Y → Z, equipped with a holomorphic map h : Y → X, such that for every
z ∈ Z the fiber π−1(z) is a closed disc (after normalisation) and h|π−1(z) :
π−1(z) → X extends f(z, Ar).

We want now to prove that Z has a countable number of irreducible com-
ponents. To this end, let us firstly recall the following standard fact: there
exists a constant c > 0 (which we may and will assume equal to 2) such that
every rational curve in X has area at least c.

Consider the area function

a : Z −→ R+

a(z) = area of the disc extending f(z, Ar). It is obviously continuous (in the
Z-topology). We can cover Z with the open subsets Zn = {n−1 < a < n+1},
n ∈ N. In each Zn we may choose a countable subset Ln ⊂ Zn which is
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dense in Zn with the Dk-topology. We claim that Ln is dense in Zn also in
the Z-topology. Indeed, take z∞ ∈ Zn and let {zj} ⊂ Ln be a sequence
which Dk-converge to z∞. We thus have, in X, a sequence of discs {Dj},
extending {f(zj , Ar)}, with areas in the interval (n − 1, n + 1). By Bishop
compactness theorem [Iv1, Prop. 3.1], this sequence (or a subsequence of it)
converges to a disc with bubbles, necessarily of the form D∞ ∪R where D∞ is
a disc extending f(z∞, Ar) and R is a union of rational curves (the bubbles).
Moreover, area(Dj) converges, as j → ∞, to area(D∞) + area(R), and from
area(D∞) ∈ (n−1, n+1) it follows area(R) < 2, hence R = ∅. This means that
Dj converges uniformly to D∞, i.e. zj converges to z∞ also in the Z-topology.

Hence the countable subset ∪nLn is dense in Z, and consequently Z has a
countable number of irreducible components. Each component is either a thin
subset of Dk or an open subset. By hypothesis (ii), there exists at least one
open component, which we shall call V .

For every compact K ⊂ Dk, the area function a is bounded on V ∩ K.
To see this, let z0, z1 ∈ V and join them by a continuous path {zt}t∈[0,1] ⊂ V .
We thus have in X a continuous family of discs Dt, extending f(zt, Ar), and
by Stokes theorem we find a(z1) − a(z0) =

∫
C

ω, where C is the real surface
∪t∈[0,1]∂Dt (and ω the Kähler form). On Dk × Ar the pull-back f∗(ω) has
a primitive λ, so that

∫
C

ω =
∫
∪{zt}×∂Ar

f∗(ω) =
∫
{z1}×∂Ar

λ − ∫
{z0}×∂Ar

λ.
When z0, z1 belong to a compact K ⊂ Dk, this last quantity is uniformly
bounded.

Look now at the boundary of V in Dk \ I. If z∞ ∈ ∂V \ I is approximated
by a sequence zj ∈ V , then from the boundedness of a(zj) and Bishop theo-
rem again we obtain a disc in X with boundary f(z∞, Ar), that is z∞ ∈ Z.
Obviously, the component of Z which contains z∞ is a thin one. Thus ∂V is
contained in I ∪ { thin components of Z}, i.e. ∂V is thin. From the discon-
nectedness properties of thin subsets we deduce that the complement Dk \ V is
a thin subset of Dk.

Let π : W0 → V be the (normalised) tautological fibration over V , equipped
with the holomorphic map h : W0 → X. By construction, ∂W0 has a neigh-
bourhood isomorphic to V × Ar, sent by h to f(V × Ar). Hence we can glue
Dk × Ar to W0 (using h−1 ◦ f) obtaining a new space W1 with a fibration
π : W1 → Dk and a holomorphic map h : W1 → X such that:

(1) π−1(z) 
 D for z ∈ V , π−1(z) 
 Ar for z ∈ Dk \ V ;
(2) f factorizes through h.

Lemma 2.1. W1 can be embedded (respecting the fibration over Dk)
into Dk × CP 1.

Proof. We use a “rationalisation trick”. By construction, ∂W1 has a
neighbourhood isomorphic to Dk×Ar and hence we can glue to W1 an “exterior
polydisc” Dk × D (in other words, we complete Ar = {r < |w| ≤ 1} to {r <
|w| ≤ ∞}). We obtain a new space W2 with a fibration π : W2 → Dk such that
π−1(z) 
 CP 1 for z ∈ V , π−1(z) 
 D for z ∈ Dk \ V . Of course, in this way
we lost the map to X.
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Let us denote by s : Dk → W2 the section which arises from the zero
section Dk × {0} of the exterior polydisc, and by v : s(Dk) → TW2 the vertical
vector field along the graph of s which arises from the vertical unitary vector
field along Dk × {0}. Also, the “boundary section” Dk × {1} of the exterior
polydisc defines a section s∞ : V → W2. For every z ∈ V , there exists a unique
isomorphism ϕz : π−1(z) → CP 1 which sends s(z) to 0, s∞(z) to ∞, and whose
derivative at s(z), computed on v(z), is equal to 1. As is well known, ϕz depends
holomorphically on z (any CP 1-fibration is locally trivial,...). Thus, by glueing
together these ϕz, we obtain a fibered biholomorphism Φ : π−1(V ) → V ×CP 1.
We want to prove that Φ extends to W2.

Let us look at ϕz in more detail. Using the coordinates given by the
exterior polydisc we have a family of univalent maps

ϕz : D −→ C, z ∈ V,

with ϕz(0) = 0, ϕ′
z(0) = 1 (and the boundary point 1 is sent to ∞). By

Koëbe Theorem, on every compact K ⊂ D the distorsion of ϕz is bounded by
a constant, independent on z. In particular, for every λ ∈ D the (holomorphic)
function V � z → ϕz(λ) is bounded. From the thinness of Dk \ V we deduce
that this function can be holomorphically prolonged to the full Dk. Hence,
even for z ∈ Dk \ V we obtain a map ϕz : D → C, which is still holomorphic
and univalent by the bounded distorsion, and the assignement z → ϕz is still
holomorphic.

This shows that the above Φ extends to an embedding W2 → Dk × CP 1,
and by restriction we obtain the embedding of W1.

We can now conclude the proof of Proposition 2.1. By the previous Lemma
2.1, we may fill in the holes of W1, so that we obtain a manifold W with a D-
fibration over Dk. It remains to prove that h : W1 → X can be meromorphically
extended to W . But this is an immediate consequence of the Thullen type
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extension theorem of Siu [Siu] (by transfinite induction), or of the Hartogs
type extension theorem of Ivashkovich [Iv1].

Remark that the “generic embedding” hypothesis of this Proposition is
really needed: without it, we may easily construct an immersion D×Ar

f→ CP 1

such that f(z0, ·) is an embedding (so that f(z, Ar) extends to a disc for every
z close to z0), whereas f(z1, ·) is an immersion which bounds no disc. The
problem, in the above proof, is that when the boundaries are not embedded
the Bishop theorem becomes more complicated, because the discs may break
into several components (think to an embedded circle in C which is deformed
to acquire a pinching at some point). A somewhat related problem is that
also Wermer theorem becomes more complicated, for immersed nonembedded
circles: we need to consider holomorphic chains instead of simple complex
curves.

3. Holonomy tubes and covering tubes

Let X be compact, connected, Kähler, of dimension n, equipped with a
foliation F of dimension 1, X0 = X \Sing(F), F0 = F|X0 . Take an embedded
disc T ⊂ X0, T 
 Dn−1, transverse to F0, and an embedded subdisc S ⊂ T ,
S 
 Dk, 1 ≤ k ≤ n − 1. We need to develop here some ideas of [Br3] in a
“relative” context. Roughly speaking, the main problem is concerned with the
holonomy of the leaves through points of T : for a generic point this is trivial,
but the subdisc S could be contained (when k < n − 1) in the nongeneric
complementary subset.

To start with, let L0
s be the leaf of F0 through s ∈ S, and let

Hol : π1(L0
s, s) → Diff(T, s)

be the corresponding holonomy representation [God], Diff(T, s) being the
group of germs of holomorphic diffeomorphisms of (T, s). Let

Gs,S = {γ ∈ π1(L0
s, s) | Hol(γ)|(S,s) = id(S,s)}.

It is a subgroup of π1(L0
s, s), but be aware that generally speaking it is not

a normal subgroup, because an element Hol(γ) with γ �∈ Gs,S does not need
to preserve (S, s) ⊂ (T, s). Anyway, we may take the universal covering of
L0

s and quotient it by Gs,S, obtaining in this way a complex connected curve
L̂0

s,S , called the S-holonomy covering of L0
s. Note that L̂0

s,S = L0
s if and

only if the holonomy is trivial on S (but possibly not outside). It is useful
to think at a point of L̂0

s,S as an equivalence class of paths in L0
s starting at

s, where two paths γ1 and γ2 are equivalent if they have the same endpoint
and if their composition γ1 ∗ γ−1

2 is a loop based at s with no holonomy on
S (i.e. γ1 ∗ γ−1

2 ∈ Gs,S). The natural map L̂0
s,S → L0

s is then the endpoint
map. It is a covering map which may fail to be galoisian, because Gs,S may
fail to be normal. On L̂0

s,S we still have a distinguished point, still denoted by
s, corresponding to the constant path.
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Set now

V 0
S =

⋃
s∈S

L̂0
s,S

and observe that, as in [Br3], proof of Lemma 2.1 (see also [Ily]), this is in a
natural way a complex manifold of dimension k + 1, fibered over S, equipped
with an immersion

π0
S : V 0

S −→ X0

sending fibres to leaves of F0.
Then we add to V 0

S some points according to the following rule. Given any
fibre L̂0

s,S and a parabolic end E ⊂ L̂0
s,S (i.e., a closed subset isomorphic to the

closed punctured disc D
∗
), we say that E is a S-vanishing end if there exists

an embedding f : Dk × Ar → V 0
S such that:

(i) f(0, ∂Ar) = ∂E, orientation preserving;
(ii) f sends fibres of Dk × Ar → Dk to fibres of V 0

S → S;
(iii) the composition π0

S ◦f : Dk×Ar → X extends to a meromorphic family
of discs.

We add to L̂0
s,S a point 0 ∈ D to each S-vanishing end E 
 D

∗
(i.e., we

compactify the end). The result, denoted by L̂s,S , will be called completed
S-holonomy covering of L0

s, and the union

VS =
⋃
s∈S

L̂s,S

will be called S-holonomy tube.
The complex structure of V 0

S extends to VS in a natural way. Indeed,
if f : Dk × Ar → V 0

S is as above then, for every z ∈ Dk, by property (iii),
(π0

S ◦ f)(z, Ar) extends to a disc, tangent to F and therefore cutting Sing(F)
at a finite set of points. It follows that f(z, ∂Ar) bounds, in the corresponding
fibre of V 0

S , a subset isomorphic to D \ {finite set}. By restricting f , we see
that each point in that finite set still gives a S-vanishing end of the fibre. Thus,
after completion, the map f : Dk × Ar → VS extends to a family of discs in
the fibres of VS , and this can be used to define the holomorphic structure of
VS (so that f : Dk × Ar → VS will extend to a holomorphic family of discs in
VS , lifting the meromorphic family of discs in X).

By construction, we still have a submersion QS : VS → S, a section qS :
S → VS giving basepoints, and a meromorphic map

πS : VS ��� X

which extends π0
S . Note that VS \V 0

S is an analytic subset of VS , which contains
the indeterminacies of πS but which may be strictly larger. The restriction of
πS to a fibre of VS , after removal of indeterminacies, sends (VS \ V 0

S )∩ {fibre}
to Sing(F).
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Finally, let L̃s,S be the universal covering of L̂s,S (with basepoint s), and
let

US =
⋃
s∈S

L̃s,S

be the fiberwise universal covering of VS , called S-covering tube. Again, this
is a complex manifold. To see this, we need to verify that if an embedded cycle
in a fibre of VS is not homotopic to zero in the fibre, then its displacement in
nearby fibres enjoys the same property. This gives the Hausdorff property of
US , which is all we need [Ily], [Br2], [Br3]. Now, suppose that the displacement
γ′ ⊂ L̂s′,S of an embedded cycle γ ⊂ L̂s,S is homotopic to zero in the fibre. Then
γ′ bounds a disc in L̂s′,S , and the same obviously holds for every displacement
γ′′ ⊂ L̂s′′,S close to γ′. But, by Proposition 2.1 and the definition of VS , we see
that γ also bounds a disc in L̂s,S , so that it is homotopic to zero in the fibre.

Let us observe that here we may apply Proposition 2.1 (which requires the
almost embedding hypothesis) for the following reasons. First of all, up to a
small deformation of γ we may suppose that γ and its small displacements γ′

are contained in V 0
S , where πS is a holomorphic immersion. Over γ, πS may be

injective or not. In the former case, we can evidently apply Proposition 2.1 (to
the restriction of πS to a neighbourhood of γ). In the latter case, the closed
curve γ ⊂ L̂0

s,S projects into L0
s to a closed curve with selfintersections and

with finite, nontrivial holonomy. It is however easy to see that for a generic
s′ (more precisely: s′ in the Zariski-open subset of S where the cardinality of
the holonomy is maximal) the projection of γ′ ⊂ L̂0

s′,S into L0
s′ is still injective,

and therefore we can apply Proposition 2.1. See also the proof of Lemma 3.1
below for a related argument.

We also have a submersion PS : US → S, a section pS : S → US giving
basepoints, and a meromorphic map

ΠS : US ��� X

which factorizes as ΠS = πS◦FS , where FS : US → VS is a local diffeomorphism
induced by the coverings L̃s,S → L̂s,S . Set U0

S = F−1
S (V 0

S ), and note that its
complement is an analytic subset of US .

Remarks. These constructions are similar to those of [Br3], following
the scheme

holonomy covering → completion → universal covering.

Let us however observe the following two differences with [Br3]:
(a) Here we are working with foliated meromorphic maps which are not

necessarily immersions (outside their indeterminacy sets). The reason is in-
strumental: in [Br3] we were interested in constructing a hopefully nontrivial
leafwise Poincaré metric, so it was better to add to L0

s the minimal amount
as possible of points (hence to work with the smallest class of maps) in order
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to avoid parabolic leaves. Here, on the contrary, we want to construct entire
curves tangent to F , so that parabolicity is welcome. Note that this difference
with [Br3] exists even in the “absolute” case, i.e. k = n − 1.

(b) Here we have not defined S-vanishing ends of L0
s, neither (completed)

leaves of F . The reason is that the notion of “S-vanishing end of L0
s” is some-

what ambiguous, due to the fact that the holonomy group of L0
s possibly does

not preserve (S, s) ⊂ (T, s). For instance, it makes no sense to say that a
parabolic end of L0

s has trivial or finite holonomy on S, and more generally
it makes no sense to speak of holonomy on S of a parabolic end of L0

s: to do
so we need to join the basepoint s to the end with a path in L0

s, but then the
resulting holonomy will depend on the homotopy class of the chosen path. This
ambiguity disappears when we pass to L̂0

s,S : a parabolic end of L̂0
s,S is associ-

ated not only to a parabolic end of L0
s, but also to a homotopy class of paths in

L0
s from the basepoint to the end. In other words, the preimage of a parabolic

end of L0
s under the covering L̂0

s,S → L0
s has several connected components,

someones are still parabolic ends (the covering is finite), someothers not (the
covering is infinite); and, among those which are parabolic ends, someones are
S-vanishing, someothers not.

We also insist on the fact that the coverings L̂s,S (and consequently L̃s,S)
do depend on S, and not only on s: if S1, S2 ⊂ T are two different subdiscs and
s ∈ S1 ∩ S2, then L̂s,S1 and L̂s,S2 may be very different (and consequently, for
example, it may happen that L̃s,S1 is parabolic whereas L̃s,S2 is hyperbolic).
However, we may compare US and UT (or, more generally, US1 and US2 when
S1 ⊂ S2). Indeed, for every s ∈ S, Gs,T is a subgroup of Gs,S , so that we have
a covering L̂0

s,T → L̂0
s,S . These coverings glue together to a fiberwise covering

V 0
T |S → V 0

S . A T -vanishing end of L̂0
s,T is clearly mapped to a S-vanishing

end of L̂0
s,S , hence the covering above extends to a map L̂s,T → L̂s,S . But

this map may fail to be a covering, for the same reasons evoked in remark (b)
above: the preimage in L̂0

s,T of a S-vanishing end of L̂0
s,S may have several

connected components, and only some of them (possibly none) are T -vanishing
ends of L̂0

s,T . Moreover, even if a connected component is a T -vanishing end,

the corresponding map from L̂s,T to L̂s,S may acquire a ramification, because
the order of the holonomy on T may be larger than the order of the holonomy
on S. Thus, we still have a holomorphic map VT |S → VS , as well as UT |S → US ,
but these maps generally speaking are not fiberwise coverings.

Finally, and closing this circle of considerations, it is worth noting that all
these constructions can be done also in the “limit case” dim S = 0, i.e. S is a
single point s. Then L̂0

s,{s} = L0
s, and L̂s,{s} is obtained by compactifying each

analytic end of L0
s. Here, an end of a leaf is analytic if it accumulates to a

single point of X (necessarily singular for the foliation); otherwise the end is
called transcendental.

The following Lemma is one of the motivations for the previous relative
constructions. Note that it is well possible that for every s ∈ S the full
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holonomy (on T ) of L0
s is nontrivial. However, this cannot happen for the

S-holonomy:

Lemma 3.1. Let S0 be the subset of S corresponding to leaves without
holonomy on S:

S0 = {s ∈ S|Gs,S = π1(L0
s, s)}.

Then S \ S0 is thin.

Proof. It is a simple adaptation to our relative context of a classical
argument in foliation theory [God, page 96]. Just observe that, for every
γ ∈ π1(L0

s, s), the fixed point set {s′ ∈ S| Hol(γ)(s′) = s′ } is either the
full (S, s) or a proper analytic subset of it.

Let us now look at the convexity properties of the S-covering tube US ,
following [Br5]. From now on we shall restrict to the case in which the manifold
X is projective. The results that we need are resumed in the next Proposition.

Proposition 3.1. The following holds:
(i) If there exists a fibre of US isomorphic to CP 1, then all the fibres are

isomorphic to CP 1 and

US 
 S × CP 1.

(ii) The set of fibres of US isomorphic to C is either complete pluripolar or
full, and in the latter case

US 
 S × C.

Proof. The first statement follows from Proposition 2.1, exactly as in
[Br3, Lemma 2.3]. Consider now the case in which all the fibres are isomorphic
to C or D. If the set of hyperbolic fibres is not empty then, by [Br5], the
fibrewise Poincaré metric on US has a plurisubharmonic variation; this implies
that the set of parabolic fibres is complete pluripolar. If, otherwise, all the fibres
are parabolic then we proceed as in [Br4, Theorem 1] in order to obtain (using
the plurisubharmonicity result of [Br5]) the product structure US 
 S×C.

Probably these results can be proved also in the Kähler case, by adapting
arguments from [Br2] and [Br3]. There are however some additional difficulties
here, because we are in a relative context (S = T in [Br3]) and moreover the
map ΠS : US ��� X is not necessarily a foliated meromorphic immersion (as in
[Br3]) and can contract divisors.

4. Lifting entire curves and proof of the Theorem

Notation and assumptions as in the previous section, with X projective.
We now investigate the structure of the set E(S) ⊂ S through which there are
entire curves in X tangent to F . Let us define P(S) ⊂ S as the set of points
over which the fibre of the covering tube US is parabolic (C or CP 1). Of course,
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P(S) is a subset of E(S), and we define Z(S) as their difference, so that we
have the splitting

E(S) = P(S) ∪ Z(S).

Our aim is to prove the following fact.

Proposition 4.1. Z(S) is a thin subset of S.

The Theorem stated in the Introduction follows from Proposition 4.1 and
Proposition 3.1 of the previous section. Indeed, P(S) is either complete pluripo-
lar or full, and in the latter case US is a product of S with C or CP 1, so that
the map F of the Theorem will be ΠS : US ��� X or a restriction of it.

In order to prove Proposition 4.1, let us firstly observe that standard facts
in complex analytic geometry (Barlet’s cycles space, etc.) show that the subset
of S through which there are rational or elliptic curves tangent to F is either a
countable union of proper analytic subsets or the full S. In this last case, the
holonomy tube VS is a rational or elliptic fibration over a Zariski open dense
subset, and the covering tube US is a product of S with C or CP 1, so that
P(S) = S and consequently Z(S) = ∅. See also [Br4, §2] for a more detailed
description of the elliptic case.

Therefore, from now on we shall suppose that through a very generic point
of S there is no rational nor elliptic curve tangent to F . Let us call a leaf L0

s

transcendental if its closure in X is not an algebraic curve, and observe that
if s is in E(S) and if L0

s is not transcendental then its closure is a rational or
elliptic curve (possibly singular and with selfintersections). Hence, if we define

E0(S) = {s ∈ E(S) | L0
s is transcendental and without holonomy on S},

then by the previous considerations and by Lemma 3.1 E(S) \ E0(S) is thin.
For each s ∈ E0(S) we have two possibilities for L0

s:
(1) L0

s is isomorphic to C minus a discrete (possibly finite or empty) subset
Γ; each point Γ corresponds to an analytic end of L0

s, whereas the point at
infinity of C corresponds to a transcendental end (nonisolated if Γ is infinite).

(2) L0
s is isomorphic to C∗ minus a discrete subset Γ; each point of Γ

corresponds to an analytic end of L0
s, whereas the two points at infinity of C∗

correspond to two transcendental ends.
Correspondingly, we decompose E0(S) = E(1)

0 (S) ∪ E(2)
0 (S). Next, for each

j = 1, 2 let E(j)
0 (S)′ be the set of points of E(j)

0 (S) around which E(j)
0 (S) is not

thin. It is easy to see that the difference E(j)
0 (S) \ E(j)

0 (S)′ is thin.
Proposition 4.1 is therefore a consequence of the next Lemma.

Lemma 4.1. E(1)
0 (S)′ ∪ E(2)

0 (S)′ ⊂ P(S).

Proof. We give the proof for E(2)
0 (S)′, the one for E(1)

0 (S)′ being totally
similar. We will prove, more precisely, that for every s ∈ E(2)

0 (S)′ the fibre of
VS over s is isomorphic to C∗.



730 Marco Brunella

. ..

L
L

0

s(z)

0

0 0

8 8

σ  (0)

σ  (0)

σ  (0)

σ  (

γ

0 0

γ
γ

8

8

σ  (
σ  (

z

z
z

)

)
)

s

Let us firstly consider the fibre of V 0
S over s, which is, by the absence of

holonomy, the leaf L0
s 
 C∗ \ Γ. Call ∞ and 0 the two transcendental ends

of L0
s. Let f∞ : Dk × Ar → V 0

S be a holomorphic embedding, sending fibres
to fibres, such that σ∞(0) = f∞(0, ∂Ar) is a “circle around ∞” in L0

s, i.e. an
oriented circle bounding a region containing the end ∞ (because this end is
possibly nonisolated, such a region may contain other ends, it doesn’t matter).
The map f∞|{0}×Ar

, followed by π0
S : V 0

S → X, cannot be extended to a disc,
for the transcendency of the end ∞. Therefore, by Proposition 2.1, the same
non-extension holds for f∞|{z}×Ar

for z outside a thin subset of Dk. When
f∞(z, Ar) is in a fibre over E(2)

0 (S), this means that σ∞(z) = f∞(z, ∂Ar) is still
an oriented circle around a transcendental end (or more) of the fibre. Similar
considerations can be done starting with a holomorphic embedding f0 such that
σ0(0) = f0(0, ∂Ar) is a circle around 0 in L0

s. Hence, for some non-thin subset
B ⊂ Dk we have that, for every z ∈ B, σ∞(z) and σ0(z) are in a fibre L0

s(z)

over E(2)
0 (S), where they are circles around transcendental ends.

Take now a point γ ∈ Γ, and let fγ : Dk × Ar → V 0
S be an embedding

such that σγ(0) = fγ(0, ∂Ar) is a circle around γ in L0
s. Up to a shift of f∞,

resp. f0, closer to ∞, resp. 0, we may suppose that the three oriented circles
σ∞(0), σ0(0) and σγ(0) bound three disjoint regions on L0

s. The same must
hold for the three circles σ∞(z), σ0(z) and σγ(z), when z is sufficiently close
to 0 and the corresponding fibre L0

s(z) is over E(2)
0 (S): this is a consequence of

the fact that L0
s(z) has genus zero. Thus, for every z ∈ B, close to 0, σ∞(z)

is a circle around one transcendental end (say ∞), σ0(z) is a circle around the
other transcendental end (0), and σγ(z) bounds a region which can contain
only analytic ends (possibly more than one).



Entire curves tangent to a foliation 731

Therefore, fγ |{z}×Ar
followed by π0

S can be extended to a disc, for every
z ∈ B close to 0, and by Proposition 2.1 we see that γ is a S-vanishing end.
This proves that the fibre of VS over s is equal to L0

s ∪ Γ 
 C∗.

Remark. In fact, at least one of the two sets E(j)
0 (S)′, j = 1, 2, must be

empty, otherwise VS would have at the same time a non-thin subset of C-fibres
and a non-thin subset of C∗-fibres, which is impossible [Br4].

5. Appendix: towards a pluripolar Lang conjecture

In the eighties of the last century Serge Lang did the following conjecture
[Lan, §IV.5]: given a complex projective manifold of general type Y , there
exists a proper subvariety Z ⊂ Y such that every (nonconstant) entire curve in
Y is actually contained in Z. This conjecture is still largely open, but in recent
years several positive results appeared for relatively large classes of surfaces:
we refer to [Br1] for a survey and some bibliography. These results are based
on a link with foliations which will be recalled below. We shall discuss here a
weak version of Lang’s conjecture for surfaces, in which the algebraic subset
Z is replaced by a pluripolar subset of Y . Of course, a pluripolar subset may
be much bigger than an algebraic one, but it is still something small in Y (for
instance, it has measure zero).

The starting point is the following fact, which may be attributed to Green-
Griffiths, Demailly, Siu, McQuillan: see [Dem], [McQ], and references therein.

Proposition 5.1. Let Y be a smooth complex projective surface of gen-
eral type. Then there exists a finite collection of complex projective manifolds
X1, ..., Xn, each one equipped with a foliation by curves Fi and a surjective
map πi : Xi → Y , such that the following holds. If f : C → Y is an en-
tire curve, then for some i ∈ {1, ..., n}, f can be lifted to Xi as an entire curve
g : C → Xi (i.e. f = πi◦g) which is tangent to Fi and not completely contained
in Sing(Fi).

Let us briefly sketch the proof, following mostly [McQ].
Over Y we have a tower of CP 1-bundles P1, P2, ..., the so-called jet-bundles:

P1 is the projective tangent bundle PTY , and each Pj is a CP 1-bundle over
Pj−1, obtained by taking higher order derivatives. On each Pj there is a tau-
tological line bundle Lj ∈ Pic(Pj). Because Y is of general type, by Riemann-
Roch formula and Bogomolov vanishing theorem one finds that Lj is big for
some j sufficiently large, which now will be fixed (strictly speaking, this is
perhaps not completely correct, and we need to twist Lj with some positive
combination of the pull-backs of Li, i < j [McQ] [Dem], but this does not affect
substantially the subsequent discussion). This means that if L0 ∈ Pic(Y ) is
ample then for some m sufficiently big the line bundle L⊗m

j ⊗ pr∗j (L−1
0 ) (where

prj is the projection from Pj to Y ) is effective, thus represented by a divisor Z
in Pj .

Any entire curve f : C → Y can be lifted, by taking derivatives, to Pj ,
f (j) : C → Pj . One can associate to f (j) a closed positive current Φ(j), which
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satisfies McQuillan’s tautological inequality: c1(Lj) · [Φ(j)] ≤ 0. We also have
c1(pr∗j (L0))·[Φ(j)] = c1(L0)·(prj)∗[Φ(j)] > 0 because L0 is ample, and therefore
[Z] · [Φ(j)] < 0. This inequality implies that f (j)(C) is actually contained in the
support |Z| of Z.

Let W ⊂ Pj be (one of) the irreducible component(s) of |Z| which contains
f (j)(C), and let us distinguish several cases:

(1) W is horizontal, i.e. its projection to Pj−1 is surjective. Then W is
naturally equipped with a (tautological) foliation F , and f (j) is (tautologically)
tangent to F . Up to desingularisation, W will be one of the Xi, and F the cor-
responding Fi. It could happen, however, that f (j)(C) is completely contained
in Sing(F), a situation that we want to avoid. This case will be treated later.

(2) W is vertical, i.e. its projection to Pj−1 is still an hypersurface W ′ ⊂
Pj−1. Then f (j−1)(C) is contained in W ′. If W ′ is horizontal, we are in the
same situation as in (1). If W ′ is vertical, we project again. Continuing in this
way, either we get the same situation as in (1), in some lower order jet-space
Pk, or W projects to Y to a curve C, containing f(C). In this last case we take
on Y any foliation tangent to C, and we are done (with Xi = Y ).

(3) Returning to (1), let us consider the case in which f (j)(C) ⊂ S, where S
is an irreducible component of Sing(F). The codimension of S in Pj is at least
3, but by projecting to lower order jet-spaces Pk (or to Y ) we finally obtain
an hypersurface which contains f (k)(C) (or f(C)). As in (1) or (2), we then
obtain a foliation to which f (h) or f is tangent. The problem may reappear,
but after a finite number of steps we avoid in this way to fall completely into
the singular set of the foliation.

Remark that all the foliations thus constructed are intrinsically defined
starting from Z, they do not depend on f . This completes the proof of the
above Proposition.

We are therefore lead to the following problem: we have a surface of general
type Y , a projective manifold X with a foliation by curves F and a surjective
map π : X → Y , and we would like to bound the size of π(Enc), where Enc is
the set of points of X0 = X \ Sing(F) through which there is an entire curve
tangent to F and whose projection to Y is not constant. Lang’s conjecture is
equivalent to the assertion that π(Enc) is an algebraic curve (a finite union of
rational and elliptic curves).

Let T ⊂ X be a disc transverse to F , and express E(T ) as in the Intro-
duction:

E(T ) =
[ ∪∞

j=0 P(Sj)
] ∪R.

In order to prove the pluripolar Lang conjecture (“there exists a pluripolar
subset of Y which contains all the entire curves”) it would be sufficient to
prove that, for every j, the parabolic fibres of the covering tube USj

are sent by
π ◦ ΠSj

to a pluripolar subset of Y (unless π ◦ ΠSj
is constant on the fibres of

USj
, in which case those fibres do not produce entire curves in Y ).
This is somewhat related to measure hyperbolicity [Lan]. Indeed, let us

firstly consider the case P(Sj) = Sj . Then USj
= Sj ×C or Sj ×CP 1, and, by

measure hyperbolicity of Y , the map π ◦ΠSj
is either constant on the fibres or
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it has rank 1, in which case its image is a single entire curve. Next, suppose
that P(Sj) is thin, and take subdiscs Ri ⊂ Sj , i ∈ N, whose union covers Sj .
Because P(Sj) is complete pluripolar, P(Sj)∩Ri is either complete pluripolar
or full, but the latter option is again set out by measure hyperbolicity. By
continuing in this way, we are therefore reduced to the case in which P(Sj)
is complete pluripolar but not thin, on every neighbourhood of every point of
it. This means that each parabolic fibre of USj

is accumulated by a “large”
set of parabolic fibres. One can expect that this should imply that the generic
rank of π ◦ ΠSj

along parabolic fibres (and hence everywhere) is 1, giving the
pluripolarity (and even thinness) of the image.

All of this is still conjectural, but, at least, let us observe the following true
corollary of our results. Given a surface of general type Y , by a meromorphic
family of curves on Y we mean a connected complex manifold U equipped with
a holomorphic map P : U → B, all of whose fibres are irreducible curves, and
a meromorphic map π : U ��� Y which does not contract to a point a generic
P -fibre, and which has maximal rank at a generic point. Let P ⊂ B be the
set of points of B over which the P -fibre is parabolic, and suppose that P is
Zariski-dense in B. Such a family of curves can be lifted to the jet-bundles Pj

over Y , giving maps π(j) : U ��� Pj . Obviously, if P−1(P) is sent by π(j) into
some subvariety Z ⊂ Pj , then the full U is sent into the same Z. Looking at
the proof of the Proposition above, we therefore see that the family U can be
lifted to some Xi, as a family of curves tangent to Fi. Then, by our Theorem
and measure hyperbolicity of Y :

Corollary 5.1. P is a pluripolar subset of B.

For instance, we deduce from this result that on a surface of general type
we cannot have a nontrivial real analytic family of entire curves. By this, we
mean a real analytic map π′ : M → Y such that: 1) M = (0, 1)×R2, and each
fibre Mt = {t}×R2 is equipped with a complex structure, varying analytically
with t, so that Mt 
 C; 2) π′|Mt

is holomorphic, for every t. Indeed, such a
real map can be complexified, giving rise to a holomorphic family of curves on
Y , with B a disc and P an interval in B.
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