Комплексные пространства 3: Подготовительная теорема Вейерштасса.

Правила: Зачеты по листкам бывают двух типов: когда сданы все (или или 2/3) задачи со звездочками, либо все (или 2/3) задачи без звездочек. Задачи с двумя звездочками можно не сдавать. Сдавшим k задач с двумя звездочками разрешается не сдавать 2k задач со звездочками или факториалом из того же листочка. Задачи, обозначенные (!), следует сдавать и тем и другим.

Если сданы 2/3 задач со звездочками и (!), студент получает 6t баллов, если все, кроме (максимум) одной – 10t баллов.

Если сданы 2/3 задач без звездочки и с (!), студент получает 6t баллов, если все, кроме (максимум) двух – 10t баллов.

Эти виды оценок не складываются, то есть больше 10t за листочек получить нельзя.

Коэффициент t равен 1.5, если задачи сданы не позже, чем через 31 день после выдачи, 1, если между 31 и 50 днями, и 0.7, если позже.

Результаты сдачи записываются на листке ведомости, которая выдается студенту; просьба не терять ее, больше нигде результаты храниться не будут.

3.1. Главная часть ростка голоморфной функции

Определение 3.1. (см. также листок 2)

Пусть f — голоморфная функция на M, зануляющаяся в $0 \in B \subset \mathbb{C}^n$. Запишем ее ряд Тэйлора $f(z) = \sum_{i=0}^{\infty} P_i(t_1,...,t_n)$, где P_i — однородные полиномы. Говорится, что **у** f есть нуль кратности k в $\mathbf{0}$, (или порядка k), если $P_0 = ... = P_{k-1} = 0$. В такой ситуации главная часть функции f есть однородный полином P_k .

Задача 3.1. Пусть $f \in \mathcal{O}_n$ – росток голоморфной функции, имеющий нуль порядка k в 0.

- а. Докажите, что предел $\lim_{z_n \to 0} \frac{F(0, z_n)}{z_n^k}$ конечен.
- б. Докажите, что $\lim_{z_n\to 0}\frac{F(0,z_n)}{z_n^k}\neq 0$, если $Q(0,...,0,z_n)\neq 0$, где $Q(z_1,...,z_n)$ главная часть F.

Задача 3.2. Пусть Q – ненулевой однородный полином от $t_0, ..., t_n$, а V(Q) – множество его нулей, которое мы рассматриваем как подмножество в $\mathbb{C}P^n$.

- а. Докажите, что $\mathbb{C}P^n\backslash V(Q)$ непусто.
- б. Докажите, что V(Q) множество меры нуль в $\mathbb{C}P^n$.

Задача 3.3. Пусть $Q_1,...,Q_n,... \in \mathbb{C}[z_1,...,z_{n+1}]$ – счетный набор ненулевых однородных полиномов, а $Z_1,...,Z_n,... \subset \mathbb{C}P^n$ – их множества нулей. Докажите, что $\mathbb{C}P^n \setminus \bigcup Z_i$ непусто.

Задача 3.4 (!). Пусть $f_1,...,f_n,...\in\mathcal{O}_n$ — набор ростков голоморфных функций, зануляющихся в нуле с порядком $k_1,k_2,....$ Докажите, что есть такая система координат $z_1,...,z_n$, что $\lim_{z_n\to 0}\frac{f_i(0,z_n)}{z_n^{k_i}}\neq 0$ для всех i.

Задача 3.5 (*). Пусть f – росток голоморфной функции с нулем порядка 2 и главной частью – невырожденной квадратичной формой. Докажите "лемму Морса": в какой-то системе координат $z_1, ..., z_n$, функция f записывается как $f = \sum z_i^2$.

Задача 3.6 ().** Пусть $f \in \mathcal{O}_2$ – росток голоморфной функции на \mathbb{C}^2 . Доажите, что существует голоморфная замена координат, которая переводит f в полином, или найдите контрпример.

3.2. Формула Ньютона

Определение 3.2. Пусть $\alpha_1,...,\alpha_n$ – набор независимых переменных, а e_i – коэффициенты многочлена $t^n+e_1t^{n-1}+...+e_{n-1}t+e_n:=\prod_{i=1}^n(t+\alpha_i)$. Тогда e_j называются элементарными симметрическими полиномами от α_i . Полиномы Ньютона $p_j:=\sum_{i=1}^n\alpha_i^j$. Полный однородный симметрический полином степени k это h_k , полученный как сумма всех мономов от α_i степени k. Соответствующие производящие функции это формальные ряды $E(t):=\sum_{i=0}^n e_it^i, \ P(t):=\sum_{i=1}^\infty p_it^i, \ H(t):=\sum_{i=0}^\infty h_it^i.$

Задача 3.7. Докажите, что $H(t) = \prod_{i=1}^n \frac{1}{1-t\alpha_i}$.

Задача 3.8. Докажите, что $E(t) = \prod_{i=1}^{n} (1 + t\alpha_i)$.

Задача 3.9. Докажите, что H(t)E(-t) = 1.

Задача 3.10. Докажите, что $\frac{E'(-t)}{E(-t)} = -\sum_{i=1}^n \frac{\alpha_i}{1-t\alpha_i}$.

Задача 3.11. Докажите, что $P(t) = -t \frac{E'(-t)}{E(-t)}$.

Задача 3.12. Докажите, что p_i выражаются как полиномы от e_i с целыми коэффициентами.

Задача 3.13. Докажите, что h_i выражаются полиномы от e_i с целыми коэффициентами. Докажите, что e_i выражаются полиномы от h_i с целыми коэффициентами.

Задача 3.14. (формула Ньютона)

Докажите, что $ke_k = \sum_{i=1}^{k-1} (-1)^i e_{k-i} p_i$.

Указание. Воспользуйтесь формулой $P(t) = -t \frac{E'(-t)}{E(-t)}.$

Задача 3.15 (!). Докажите, что e_i выражаются как полиномы от p_i с рациональными коэффициентами.

Задача 3.16 (*). Докажите, что $kh_k = \sum_{i=1}^k h_{k-i} p_i$.

Задача 3.17 (*). Пусть $P(t) \in \mathbb{C}[t]$ многочлен степени d, а $f_1, ..., f_d$ ростки функций от z такие, что значения $f_1(0),...,f_d(0)$ все различны, а $P(f_i(z))=$ z для всех i. Обозначим за g_i ростки функций такие, что $g_i(0)=0,$ а $g_i'=$ f_i ("первообразные" f_i). Докажите, что функция $\prod_{i=1}^d (u-g_i(z))$ от двух переменных u,z продолжается до полиномиальной функции на \mathbb{C}^2 .

3.3. Логарифмическая производная и теорема Руше

Задача 3.18 (!). Пусть f – голоморфная функция на диске, не зануляющаяся на его границе $\partial \Delta,$ а $S_k(f):=\frac{1}{2\pi\sqrt{-1}}\int_{\partial \Delta}\frac{f'}{f}z^kdz.$ Докажите, что $S_k(f) = \sum \alpha_i^k$, где α_i – все нули f, взятые с кратностями.

Задача 3.19. (теорема Руше)

Пусть f_t – семейство голоморфных функций на диске Δ , непрерывно зависящих от параметра $t \in \mathbb{R}$ и не зануляющихся на $\partial \Delta$. Докажите, что число нулей f_t в Δ постоянно.

Указание. Воспользуйтесь предыдущей задачей.

Задача 3.20. Докажите, что все нули полинома $f(z)=z^5+3z^3+7$ лежат в круге $|z| \leqslant 2$.

Задача 3.21. Докажите, что уравнение $z + e^{-z} - 10 = 0$ имеет ровно одно решение с $\operatorname{Re} z > 0$.

Задача 3.22 (!). Пусть F(x,y) – голоморфная функция от двух переменных, не имеющая нулей на множестве |x|=1, а $\phi(x)$ – голоморфная функция на диске. Рассмотрим функцию Φ , переводящую точку y_0 в $\sum \phi(\alpha_i)$, где α_i – все нули функции $F(x,y_0)$ в диске $|x| \leq 1$ с кратностями. Докажите, что Ф голоморфна.

Задача 3.23 (*). Пусть f_t – непрерывное семейство непостоянных голоморфных функций на диске, где $t \in [0,1]$. Докажите, что множество всех t, для которых f_t инъективно, замкнуто.

Указание. Воспользуйтесь теоремой Руше.

3.4. Подготовительная теорема Вейерштрасса

Определение 3.3. Обозначим диск радиуса r в подпространстве \mathbb{C}^k с координатами $z_1, ..., z_k$ за $B_r(z_1, ...z_{n-1})$.

Задача 3.24. Пусть F – аналитическая функция в окрестности 0 в \mathbb{C}^n , такая, что $\lim_{z_n\to 0}\frac{F(0,z_n)}{z_n^k}\neq 0,\infty.$ Рассмотрим проекцию $\Pi:\mathbb{C}^n\longrightarrow\mathbb{C}^{n-1}$ на первые n-1 переменных.

- а. (!) Докажите, что для подходящей пары r,r', ограничение F на полидиск $\Delta(n-1,1):=B_r(z_1,...,z_{n-1})\times \Delta_{r'}(z_n)$ не зануляется на $\Pi^{-1}(\partial \Delta_{r'}(z_n)$, где $\partial \Delta_{r'}(z_n)$ граница диска.
- б. (!) Докажите, что в этом случае ограничение F на этот полидиск имеет ровно k нулей $\alpha_1, ..., \alpha_k$ на каждом слое Π .
- в. (!) Докажите, что $\sum_{i=1}^k \alpha_i^d$ голоморфная функция на $B_r(z_1,...,z_{n-1}).$
- г. (!) Докажите, что любой элементарный симметрический полином от α_i голоморфная функция на $B_r(z_1,...,z_{n-1})$.

Указание. Для последнего пункта, примените тождество Ньютона, чтобы выразить элементарные симметрические полиномы через p_i .

Определение 3.4. Полином Вейерштрасса есть функция $f \in \mathcal{O}_{n-1}[z_n]$, то есть полиномиальная по последней переменной, с коэффициентами, которые аналитичны и зависят только от первых n-1 переменных.

Задача 3.25 (!). Пусть F – росток аналитической функции в окрестности 0 в \mathbb{C}^n , такой, что $\lim_{z_n\to 0}\frac{F(0,z_n)}{z_n^k}\neq 0,\infty.$ Рассмотрим проекцию $\Pi:\mathbb{C}^n\longrightarrow\mathbb{C}^{n-1}$ на первые n-1 переменных, и пусть $P(z_n)\in\mathcal{O}_{n-1}[z_n]$ – полином Вейерштрасса, который выражается как $P(z_n)=\sum_{i=0}^k e_i z_n^i$, где e_i – элементарные симметрические полиномы от нулей $\alpha_1,...,\alpha_k$ из предыдущей задачи. Докажите, что $F=P(z_n)u$, где u – росток обратимой функции.

Задача 3.26 (!). Пусть F – росток аналитической функции в окрестности 0 в \mathbb{C}^n . Докажите, что в подходящей системе координат, $F=uP(z_n)$, где $P(z_n)$ полином Вейерштрасса степени k, такой, что $P(0,...,0,z_n)=z_n^k$, а u обратима. Докажите, что степень полинома $P(z_n)$ не зависит от выбора системы координат.

Задача 3.27 (!). Пусть F_1 , ..., F_i , ..., счетный набор ростков аналитических функций в окрестности 0 в \mathbb{C}^n . Докажите, что в подходящей системе координат, все $F_i=u_iP_i(z_n)$, где $P_i(z_n)$ полином Вейерштрасса степени k, такй, что $P_i(0,...,0,z_n)=z_n^k$, а u_i обратимы. Докажите, что степень полинома $P_i(z_n)$ не зависит от выбора системы координат.