Теория Галуа 8: Теорема Абеля

Правила: Зачеты по листкам бывают двух типов: когда сданы все (или 1/3, или 2/3) задачи со звездочками, либо все (или 1/3, или 2/3) задачи без звездочек. Задачи с двумя звездочками можно не сдавать. Сдавшим k задач с двумя звездочками разрешается не сдавать 2k задач со звездочками из того же листочка. Задачи, обозначенные (!), следует сдавать всем.

Если сдана 1/3 задач с (*) и (!), студент получает 2t баллов, если 2/3 задач, 6t баллов, если все, кроме (максимум) двух -10t баллов.

Если сдана 1/3 задач без звездочек и с (!), студент получает 2t баллов, если 2/3 задач, студент получает 6t баллов, если все, кроме (максимум) трех -10t баллов.

Эти виды оценок не складываются, то есть больше 10t за листочек получить нельзя.

Коэффициент t равен 1.5, если задачи сданы не позже, чем через 20 дней после выдачи, 1, если между 20 и 35 днями, и 0.7, если позже.

Результаты сдачи записываются на листке ведомости, которая выдается студенту, и ее надо хранить до получения окончательных оценок по курсу.

8.1. Разрешимые группы

Задача 8.1. Пусть задан гомоморфизм $G_2 \stackrel{\phi}{\longrightarrow} \operatorname{Aut}(G_1)$. Определим на множестве пар $(g_1, g_2) \in G_1 \times G_2$ следующую операцию:

$$(g_1, g_2) \cdot (h_1, h_2) = (g_1 \phi(g_2) h_1, g_2 h_2).$$

Докажите, что получится группа.

Определение 8.1. Эта группа называется полупрямым, или скрученным произведением G_1 и G_2 и обозначается $G_1 \rtimes G_2$.

Задача 8.2. В условиях предыдущей задачи докажите, что $(G_1,1)$ задает нормальную подгруппу в G, а фактор по этой подгруппе изоморфен G_2 .

Задача 8.3. Опишите группу S_3 как скрученное произведение двух абелевых групп.

Задача 8.4. Опишите диэдральную группу (группу симметрий правильного многоугольника на плоскости) как скрученное произведение двух абелевых групп.

Задача 8.5 (*). Группой Клейна называется группа кватернионов вида $\pm 1, \pm I, \pm J, \pm K$, с естественной операцией умножения. Можно ли получить группу Клейна как скрученное произведение двух абелевых групп?

Задача 8.6 (!). Пусть $1 \longrightarrow G_1 \longrightarrow G \stackrel{\phi}{\longrightarrow} G_2 \longrightarrow 1$ – расширение групп. Предположим, что задан гомоморфизм $G \stackrel{\psi}{\longrightarrow} G_2$, такой, что $\psi \circ \phi$ – тождественный автоморфизм G_2 (в такой ситуации говорится, что ϕ допускает сечение). Докажите, что G можно получить как скрученное произведение $G_1 \rtimes G_2$.

Определение 8.2. Группа G называется разрешимой, если существует последовательность $1 = G_n \subset G_{n-1} \subset \cdots \subset G_0 = G$ нормальных подгрупп, причем все G_i/G_{i-1} абелевы.

Задача 8.7. Докажите, что подгруппа разрешимой группы разрешима.

Задача 8.8. Докажите, что симметрическая группа S_3 разрешима.

Задача 8.9. Докажите, что симметрическая группа S_4 разрешима.

Задача 8.10. Докажите, что группа Клейна $\{\pm 1, \pm I, \pm J, \pm K\}$ разрешима.

Задача 8.11. Пусть G_0 – группа, G_1 – ее коммутант, $G_2 = [G_1, G_1]$ – коммутант коммутанта, и так далее, $G_i = [G_{i-1}, G_{i-1}]$. Докажите, что G_0 разрешима тогда и только тогда, когда на каком-то шаге мы получим $G_n = 1$.

Определение 8.3. Пусть G – группа, LG_1 – ее коммутант, $LG_2 = [G, LG_1]$, $LG_3 = [G, LG_2]$, и так далее. Эта последовательность подгрупп называется нижним центральным рядом. Группа, у которой нижний центральный ряд заканчивается группой $LG_n = \{1\}$, называется нильпотентной.

Задача 8.12. Докажите, что любая нильпотентная группа разрешима. Приведите пример разрешимой группы, которая не нильпотентна.

Определение 8.4. Обозначим за Z(G) центр группы G. Если $H \subset G$ нормальная подгруппа, обозначим за $Z_H(G)$ все элементы G, которые переходят в Z(G/H) при естественном гомоморфизме $G \longrightarrow G/H$. Верхний центральный ряд группы G есть $UG_0 = Z(G)$, $UG_1 = Z_{UG_0}(G)$, $UG_2 = Z_{UG_1}(G)$, и так далее.

Задача 8.13 (**). Докажите, что нижний центральный ряд нильпотентной группы имеет такую же длину, как и ее верхний центральный ряд.

Определение 8.5. Пусть $t, x \in G$ — элементы группы. Элемент вида xtx^{-1} обозначается t^x . Соответствующая операция называется **сопряжением**, **скруткой**, или **подкруткой на** x. Отображение $x \longrightarrow t^x$ есть (очевидно) автоморфизм группы. Такой автоморфизм называется **внутренним**.

Задача 8.14. Пусть $g_1, g_2 \in S_n$ элементы группы перестановок, разложение которых на циклы имеет одинаковую длину. Докажите, что g_1 можно перевести в g_2 внутренним автоморфизмом.

Задача 8.15 (!). Пусть $g_1, g_2 \in A_n$ элементы группы четных перестановок, разложение которых на непересекающиеся циклы имеет одинаковую длину. Всегда ли g_1 можно перевести в g_2 внутренним автоморфизмом?

Задача 8.16. Пусть t – элемент группы G. такой, что множество

$$\{x \in G \mid \exists g \in G \text{ такой, что } x = t^g t^{-1}\}$$

порождает G. Докажите, что G не разрешима.

Задача 8.17 (!). Докажите, что группа четных подстановок $A_n, n \geqslant 5$ неразрешима.

Указание. Воспользуйтесь предыдущей задачей, взяв t = (123).

Задача 8.18. Докажите, что группа движений \mathbb{R}^3 неразрешима.

Указание. Постройте изоморфизм между A_5 и группой поворотов икосаэдра, и воспользуйтесь предыдущей задачей.

Задача 8.19. Пусть G – группа порядка p^n . Докажите, что центр G содержит больше одного элемента.

Указание. Рассмотрим действие G на себе автоморфизмами. Порядок G равен сумме мощностей классов вида x^G , где x^G есть совокупность всех элементов вида $x^y, y \in G$. Докажите сначала, что если x не лежит в центре, то порядок x^G делится на p. Выведите $|G| = 1 + \sum |y_i^G|$, причем если у G нет центра, все $|y_i^G|$ делятся на p.

Задача 8.20 (!). Пусть G – группа порядка p^n . Докажите, что G нильпотентна.

Замечание 8.1. Если вы хотите применить теорему Силова, пожалуйста, изучите и запомните ее доказательство.

Задача 8.21. Пусть G – группа порядка p^2 , p простое. Докажите, что G абелева.

Задача 8.22. Приведите пример неабелевой группы порядка p^3, p – любое простое число.

Задача 8.23. Рассмотрим множество S верхнетреугольных матриц $n \times n$ с единицей на диагонали над полем k. Докажите, что такие матрицы образуют подгруппу в GL(n,k). Докажите, что эта группа разрешима. Найдите ее порядок для $k = \mathbb{Z}/p\mathbb{Z}$.

8.2. Теорема Абеля

Теорема Абеля утверждает, что общий многочлен пятой степени неразрешим в радикалах; иначе говоря, решение общего уравнения пятой степени нельзя выразить посредством алгебраических операций (умножения, сложения, деления) и операции извлечения корня n-й степени. В этом разделе я приведу пример уравнения, неразрешимого в радикалах.

Задача 8.24. Пусть [K:k] – расширение Галуа. Докажите, что подгруппа $G' \subset \operatorname{Gal}([K:k])$ нормальна тогда и только тогда, когда $[K^{G'}:k]$ – расширение Галуа.

Указание. Из основной теоремы теории Галуа сразу следует это.

Задача 8.25. Пусть $G' \subset \operatorname{Gal}([K:k])$ – нормальная подгруппа. Докажите, что группа $\operatorname{Gal}([K^{G'}:k])$ изоморфна фактору $\operatorname{Gal}([K:k])/G'$.

Задача 8.26 (!). Пусть k — поле характеристики 0, а [K:k] — поле разложения многочлена t^n — a. Докажите, что группа Галуа $\mathrm{Gal}([K:k])$ разрешима.

Указание. Если k содержит корни n-й степени из 1, мы все доказали. Если нет, докажите, что K их содержит. Рассмотрите промежуточное расширение K', полученное добавлением этих корней к k, и докажите, что [K:K'] и [K':k] – расширения Галуа с абелевыми группами Галуа.

Задача 8.27 (!). Пусть группа Галуа [K:k] разрешима, а k содержит все корни из единицы. Докажите, что [K:k] можно представить в виде последовательности расширений Галуа $k = K_0 \subset K_1 \subset ... \subset K_n = K$, таким образом, что для каждого i, $\operatorname{Gal}([K_i:K_{i-1}])$ - циклическая группа.

Задача 8.28 (!). (теорема Галуа) Докажите, что расширение Галуа [K:k] порождается последовательным добавлением решений уравнения $t^n-a=0$ тогда и только тогда, когда группа $\operatorname{Gal}[K:k]$ разрешима.

Замечание 8.2. Пусть $P(t) \in k[t]$ – многочлен. Группой Галуа P называется группа Галуа его поля разложения. Теорема Галуа утверждает, что уравнение P(t)=0 разрешимо в радикалах тогда и только тогда, когда группа Галуа P(t) разрешима.

Определение 8.6. Пусть группа G действует на множестве Σ . Действие называется **транзитивным**, если любой $x \in \Sigma$ можно перевести в любой $y \in \Sigma$ применением подходящего $q \in G$.

Задача 8.29. Пусть $G \subset S_n$, – подгруппа, содержащая транспозицию и действующая транзитивно на $\{1, 2, 3, \ldots, n\}$.

- а. (!) Докажите, что $G = S_n$ для n = 5.
- б. (*) Докажите, что $G = S_n$ для любого простого n.

Задача 8.30. Пусть $P \in k[t]$ – неприводимый многочлен, ξ_1, \dots, ξ_n – его корни, и пусть все эти корни различны. Докажите, что группа Галуа P действует на $\{\xi_1, \dots, \xi_n\}$ транзитивно.

Указание. Разобьем $\{\xi_1, \dots, \xi_n\}$ на смежные классы по действию $\mathrm{Gal}(P)$. Пусть S такой класс. Докажите, что полином $\prod_{\xi_i \in S} (t - \xi_i)$ имеет коэффициенты в k, и делит P.

Задача 8.31 (!). Пусть $P \in \mathbb{Q}[t]$ – неприводимый многочлен степени n, у которого ровно n-2 вещественных корня. Докажите, что его группа Галуа равна S_n .

Указание. Докажите, что Gal(P) транзитивно действует на корнях P, а комплексное сопряжение сохраняет поле разложения P и действует на множестве корней как транспозиция.

Задача 8.32. (теорема Эйзенштейна) Пусть $Q = t^n + t^{n-1}a_{n-1} + t^{n-2}a_{n-2} + \cdots + a_0$ — такой многочлен с целыми коэффициентами, что все a_i делят заданное простое число p, а $a_0 \not/ p^2$. Докажите, что Q неприводим над \mathbb{Q} .

Задача 8.33. Докажите, что $Q(t)=x^5-10x+5$ – неприводимый (над $\mathbb Q$) многочлен, у которого ровно 3 вещественных корня. Выведите из этого, что его группа Галуа это S_5 .

Задача 8.34 (!). Докажите, что уравнение $x^5 - 10x + 5 = 0$ неразрешимо в радикалах.

Задача 8.35 (*). Постройте расширение Галуа $[K:\mathbb{Q}]$ с группой Галуа $(\mathbb{Z}/5\mathbb{Z})^2$.

Задача 8.36 (**). Пусть n — число вершин правильного n-угольника в \mathbb{R}^2 , который можно построить циркулем и линейкой. Докажите, что каждый простой делитель n имеет вид 2^k+1 .

Задача 8.37 (*). Докажите, что для любого n существует расширение Галуа $[K:\mathbb{Q}]$ с группой Галуа S_n (симметрической группой).

Задача 8.38 (*). Пусть G – конечная группа. Постройте конечное расширение [K:k] с группой Галуа G.

Задача 8.39 (*). Пусть $[K:\mathbb{Q}]$ – расширение Галуа с группой Галуа $(\mathbb{Z}/2\mathbb{Z})^2$. Докажите, что $K=\mathbb{Q}[\alpha,\beta]$, где $\alpha=\sqrt{x},\ \beta=\sqrt{y}$, а x,y – взаимно простые целые числа, или найдите контрпример.

Задача 8.40 ().** Пусть $[K:\mathbb{Q}]$ – конечное расширение, а Z – множество всех корней из единицы, лежащих в K. Докажите, что Z конечно.