Теория Галуа, лекция 3: тензорные произведения полей

Миша Вербицкий 1 февраля, 2013 матфак ВШЭ

Расширения полей (повторение)

ОПРЕДЕЛЕНИЕ: Расширение поля k есть поле K, содержащее k. Отношение «быть расширением» обозначается [K:k].

ОПРЕДЕЛЕНИЕ: Конечное расширение есть расширение [K:k] такое, что K конечномерно как векторное пространство над k. **Степень** конечного расширения есть размерность K как векторного пространства над k.

ОПРЕДЕЛЕНИЕ: Элемент K называется алгебраическим над k, если он содержится в конечном расширении [K':k], то есть мультипликативно порождает поле K'', конечномерное над k. Алгебраическое расширение есть такое расширение [K:k], что все элементы K алгебраичны над k.

Алгебраические числа (повторение)

TEOPEMA: Сумма, произведение, частное алгебраических над k элементов алгебраично над k.

ОПРЕДЕЛЕНИЕ: Поле $\bar{\mathbb{Q}}$ алгебраических чисел есть множество всех элементов \mathbb{C} , алгебраичных над $\bar{\mathbb{Q}}$.

ОПРЕДЕЛЕНИЕ: Поле K алгебраически замкнуто, если любой многочлен $P(t) \in k[t]$ имеет корень в K.

ТЕОРЕМА: Поле ℚ алгебраически замкнуто. ■

ЗАМЕЧАНИЕ: Коль скоро $\overline{\mathbb{Q}}$ счетно (проверьте это!) а \mathbb{C} несчетно, в \mathbb{C} существуют неалгебраические числа. Они называются трансцендентными.

Трансцендентными являются числа e, π , e^{α} для любого алгебраического $\alpha \neq 0$, e^{π} , $2^{\sqrt{2}}$, $\ln(\alpha)$ для любого алгебраического $\alpha \neq 1$, и число Фредгольма $\sum_{i=0}^{\infty} 2^{-2^i}$.

Минимальные полиномы (повторение)

УТВЕРЖДЕНИЕ: Пусть K – конечномерное пространство над k, снабженное структурой кольца. **Если** K не имеет делителей нуля, то это поле. \blacksquare

ОПРЕДЕЛЕНИЕ: Пусть v — элемент конечномерной алгебры R над k, а $P(t) = t^n + a_{n-1}t^{n-1} + \dots$ полином минимальной степени с коэффициентами из k, удовлетворяющий P(v) = 0. Этот полином называется минимальный полином $v \in R$.

УТВЕРЖДЕНИЕ: Пусть $v \in R$ — элемент конечномерной алгебры R над k, а P(t) — его минимальный полином. Тогда подалгебра $R_v \subset R$, порожденная v, изоморфна k[t]/(P).

Неприводимые полиномы (повторение)

TEOPEMA: Кольцо полиномов k[t] факториально (с однозначным разложением на множители). \blacksquare

ОПРЕДЕЛЕНИЕ: Полином $P(t) \in k[t]$ неприводим, если его нельзя разложить на множители положительной степени.

УТВЕРЖДЕНИЕ: Обозначим идеал, k[t]P(t), порожденный полиномом P(t), за (P). Полином P(t) неприводим тогда и только тогда, когда факторкольцо k[t]/(P) является полем.

ОПРЕДЕЛЕНИЕ: Пусть $P(t) \in k[t]$ – неприводимый полином. Поле k[t]/(P) называется расширение k, полученное добавлением корня P(t). Расширение [k[t]/(P):k] называется примитивным.

УТВЕРЖДЕНИЕ: Пусть [K:k] — конечное расширение. Тогда K может быть получено из k последовательностью примитивных расширений. Иначе говоря, существует набор промежуточных расширений $[K=K_n:K_{n-1}:K_{n-2}:...:K_0=k]$, таких, что каждое $[K_i:K_{i-1}]$ примитивно. \blacksquare

Тензорные произведения колец (повторение)

УТВЕРЖДЕНИЕ: Пусть A и B — кольца над полем k. В силу билинейности произведения, существует мультипликативная операция $(A \otimes_k B) \times (A \otimes_k B) \to A \otimes_k B$, переводящая $a \otimes b, a' \otimes b'$ в $aa' \otimes bb'$.

ОПРЕДЕЛЕНИЕ: Это кольцо называется тензорным произведением колец A и B, и обозначается $A \otimes_k B$.

ПРИМЕР: Пусть $k[t_1, t_2, ..., t_p]$, $k[u_1, u_2, ..., u_q]$ — кольца полиномов. Тогда

$$k[t_1, t_2, ..., t_p] \otimes_k k[u_1, u_2, ..., u_q] \cong k[t_1, t_2, ..., t_p, u_1, u_2, ..., u_q].$$

ПРИМЕР: $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} = \mathbb{C} \oplus \mathbb{C}$.

ПРИМЕР: Пусть $\mathbb{R}(t)$ — поле рациональных функций с коэффициентами из \mathbb{R} . Тогда $\mathbb{R}(t)\otimes_{\mathbb{R}}\mathbb{C}=\mathbb{C}(t)$.

ЗАМЕЧАНИЕ: Как будет доказано на следующей лекции, тензорное произведение полей есть «почти всегда» прямая сумма полей.

Бесконечное тензорное произведение

Я сейчас буду определять "бесконечное тензорное произведение" для бесконечного набора колец $R_{\alpha}\supset k$, проиндексированных набором индексов $\alpha\in\mathfrak{S}$.

Пусть $S \subset \mathfrak{S}$ — конечное подмножество, а $R_S := \bigotimes_{\alpha \in S} R_\alpha$ — произведение (над k) всех колец, входящих в S.

ЛЕММА: Пусть $S \subset S'$ — подмножество, а $\zeta = x_1 \otimes_k x_2 \otimes ... \in R_S$ какойто моном, а $\zeta' := x_1 \otimes_k x_2 \otimes ... \otimes 1 \otimes 1 \in R_{S'}$ соответствующий моном в $R_{S'}$, дополненный единицами. Рассмотрим отображение $R_S \stackrel{\varphi(S,S')}{\longrightarrow} R_{S'}$, переводящее ζ в ζ' . **Тогда** φ индуцирует вложение колец.

ОПРЕДЕЛЕНИЕ: Бесконечное тензорное произведение $\bigoplus_{\alpha \in \mathfrak{S}} R_{\alpha}$ есть объединение R_S для всех конечных подмножеств $S \subset \mathfrak{S}$ по вложениям $\varphi(S,S')$.

Конструкция алгебраического замыкания

Пусть \mathfrak{S} — множество всех конечных расширений $[K_{\alpha}:k]$, проиндексированных $\alpha \in \mathfrak{S}$, а $R_{\mathfrak{S}}:= \bigotimes_{\alpha \in \mathfrak{S}} K_{\alpha}$ — произведение (над k) всех полей, входящих в S.

TEOPEMA: Пусть \mathfrak{I} — максимальный идеал, а $K:=R_{\mathfrak{S}}/\mathfrak{I}$ — поле, полученное как фактор $R_{\mathfrak{S}}$ по \mathfrak{I} . **Тогда** [K:k] алгебраично, а любой полином $P(t) \in k[t]$ положительной степени имеет корень в K.

Доказательство. Шаг 1: Каждый элемент $R_{\mathfrak{S}}$ происходит из конечного произведения, то есть представлен в виде $\zeta \in R_S \hookrightarrow R_{\mathfrak{S}}$, где R_S — алгебра, которая конечномерна над k. Поскольку ζ лежит в конечномерной алгебре, у ζ есть минимальный полином P(t), с коэффициентами из k. Значит, все элементы K алгебраичны.

Шаг 2: Для любого неприводимого полинома P(t), соответствующее поле $K_P:=k[t]/(P)$ содержит корень P(t). Поскольку $R_{\mathfrak{S}}$ содержит K_P , существует $\zeta\in R_{\mathfrak{S}}$ такой, что $P(\zeta)=0$

Шаг 3: Образ ζ в K является корнем P(t).

Конструкция алгебраического замыкания (продолжение)

СЛЕДСТВИЕ: Для каждого поля k существует алгебраическое расширение [k':k] такое, что все многочлены $P(t) \in k[t]$ положительной степени имеют корни в K.

Напомню, что алгебраическое замыкание поля k есть алгебраическое расширение $[\bar{k}:k]$, которое алгебраически замкнуто.

TEOPEMA: Пусть k — поле. **Тогда существует алгебраическое замыкание** $[\bar{k}:k]$.

Доказательство. Шаг 1: Мы можем построить расширение [k':k] такое, что все полиномы над k имеют корни в k'. Нам нужно, чтобы все полиномы над k' имели корни в k; это верно, но не вполне очевидно. Вместо этого мы рассмотрим цепочку расширений $k \subset k' \subset k'' \subset ...$, и положим $\bar{k} := k \cup k' \cup k'' \cup ...$

Шаг 2: Возьмем полином $P(t) \in \bar{k}$. Каждый из его коэффициентов лежит в одном из полей $k^{(i)}$, их конечное число, что дает $P(t) \in k^{(n)}[t]$. Тогда P(t) имеет корень в $k^{(n+1)}$.

Конструкция алгебраического замыкания (окончание)

Шаг 2: Возьмем полином $P(t) \in \overline{k}$. Каждый из его коэффициентов лежит в одном из полей $k^{(i)}$, их конечное число, что дает $P(t) \in k^{(n)}[t]$. Тогда P(t) имеет корень в $k^{(n+1)}$.

Шаг 3: Осталось убедиться, что \bar{k} алгебраично над k. Каждый элемент $x \in \bar{k}$ лежит в каком-то $k^{(n)}$, значит, достаточно доказать, что $[k^{(n)}:k]$ алгебраично.

Шаг 4: Имеем конечную цепочку расширений $[k^{(n)}:k^{(n-1)}:...:k]$, и каждое последовательное расширение алгебраично. Поэтому алгебраичность $[k^{(n)}:k]$ вытекает из следующей леммы.

ЛЕММА: Пусть $K_2 \supset K_1 \supset K_0$ — расширения полей, причем $[K_i:K_{i-1}]$ алгебраично. **Тогда** $[K_2:K_0]$ алгебраично.

ДОКАЗАТЕЛЬСТВО: Каждый $x \in K_2$ является корнем многочлена $P(t) \in K_1[t]$. Возьмем поле $[K_1' : K_0]$, содержащее все коэффициенты P(t). Оно конечно над K_0 , потому что порождено конечным числом алгебраических элементов. Получаем цепочку конечных расширений $[K_1'[x] : K_1' : K_0]$, то есть $[K_1'[x] : K_0]$ конечно. \blacksquare

Идеалы в кольцах (повторение)

ЗАМЕЧАНИЕ: Все кольца в дальнейшем предполагаются коммутативные, с единицей, и $1 \neq 0$. Все гомоморфизмы сохраняют 1. Все идеалы в кольце R по умолчанию предполагаются **нетривиальными**, то есть не равными R. Кольцо, содержащее поле k, называется коммутативной k-алгеброй, или кольцом над k.

ОПРЕДЕЛЕНИЕ: Максимальный идеал в кольце есть идеал, который не содержится ни в каком большем.

TEOPEMA: Каждый идеал I в кольце содержится в максимальном идеале. \blacksquare

ОПРЕДЕЛЕНИЕ: Элемент $r \in R$ в кольце R называется нильпотентным, если $r^k = 0$, для какого-то $k \in \mathbb{N}$.

ЗАМЕЧАНИЕ: Множество всех нильпотентов в кольце образует идеал (проверьте это). Этот идеал называется нильрадикалом кольца.

УПРАЖНЕНИЕ: Докажите, что фактор кольца по нильрадикалу не имеет ненулевых нильпотентов.

Артиновы кольца

ОПРЕДЕЛЕНИЕ: Кольцо над полем (ассоциативное, коммутативное, но не обязательно с единицей) будем называть коммутативной алгеброй.

ОПРЕДЕЛЕНИЕ: Пусть дана коммутативная алгебра R с единицей над полем k. Говорят, что R артиново кольцо над полем k, если R конечномерна как векторное пространство.

ОПРЕДЕЛЕНИЕ: Артиново кольцо R называется **полупростым**, если в нем нет ненулевых нильпотентов.

ОПРЕДЕЛЕНИЕ: Пусть R_1, \ldots, R_n – алгебры над полем. Возьмем прямую сумму $\oplus R_i$, с естественным (почленным) умножением и сложением. Получившаяся алгебра называется **прямой суммой** R_i , обозначается $\oplus R_i$.

Сейчас я буду доказывать такую теорему.

TEOPEMA: Пусть A — полупростое артиново кольцо. **Тогда** A есть прямая сумма полей.

Конечномерные алгебры над полем и идемпотенты

ОПРЕДЕЛЕНИЕ: Пусть $v \in R$ – такой элемент алгебры R, что $v^2 = v$. Тогда v называется **идемпотентом**.

ЗАМЕЧАНИЕ: Произведение идемпотентов - идемпотент. Если e — идемпотент, то 1-e — тоже идемпотент.

СЛЕДСТВИЕ: Для идемпотента e, произведение e(1-e) равно нулю. Поэтому каждый идемпотент $e \in A$ задает разложение A в прямую сумму: A = eA + (1-e)A (проверьте это)

Конечномерные алгебры над полем и идемпотенты (продолжение)

УТВЕРЖДЕНИЕ: Пусть A — коммутативная алгебра, в которой нет нильпотентов и конечномерная над полем. Тогда A содержит идемпотент.

Доказательство. Шаг 1: Поскольку A конечномерно, любая убывающая цепочка идеалов обрывается. Значит, есть идеал $I \subset A$, который не содержит ненулевых идеалов. Дальше мы будем рассматривать этот идеал как подалгебру в A (без единицы).

Шаг 2: Поскольку в A нет нильпотентов, $z^2 \neq 0$. А поскольку I минимальный, для любого ненулевого $z \in I$, имеем zI = I.

Шаг 3: Му доказали, что умножение на любой $z \in I$ не имеет ядра в I. Следовательно, все элементы I обратимы, как эндоморфизмы I.

Шаг 4: Поскольку I конечномерно, элементы $z, z^2, z^3, ... \in \operatorname{End} I$ линейно зависимы, что дает выражение вида P(z)=0. Если у этого полинома нет свободного члена, разделим на z, пользуясь тем, что у z нет ядра. Получим соотношение $\operatorname{Id}_I = az + bz^2 + cz^3 + ...$ в кольце эндоморфизмов I.

Шаг 5: Элемент $U:=az+bz^2+cz^3+...$ удовлетворяет Ux=x для любого $x\in I$, поэтому является идемпотентом.

Структурная теорема для полупростых артиновых алгебр

ЗАМЕЧАНИЕ: Аргумент шага 5 доказывает следующее утверждение. Пусть I — коммутативная алгебра без делителей нуля, конечномерная над полем. Тогда I содержит единицу, т.е. является полем.

СЛЕДСТВИЕ: Пусть A есть кольцо, конечномерное над полем, и без нильпотентов. Тогда A есть прямая сумма полей.

Доказательство. Шаг 1: Пусть $I \subset A$ — нетривиальный идеал. В силу доказанного утверждения, I содержит ненулевой идемпотент a.

Тогда a и a-1 – идемпотенты, произведение которых равно нулю, а сумма равна 1. Это дает $A = aA \oplus (1-a)A$, где aA и (1-a)A – подалгебры с единицей. Воспользовавшись индукцией по dim A, можно считать, что aA и (1-a)A – прямые суммы полей.

В следующей лекции я буду применять эти знания к тензорным произведениям полей.

Структурная теорема для полупростых артиновых алгебр: единственность разложения

ЛЕММА: Пусть A есть прямая сумма полей, $A = \bigoplus_i k_i$. **Тогда разложение** $A = \bigoplus_i k_i$ **определено однозначно** с точностью до перестановки слагаемых.

ДОКАЗАТЕЛЬСТВО: Если $A = \bigoplus_i k_i = \bigoplus_i k_i'$, каждое из полей k_i разложится в прямую сумму, $k_i = \bigoplus_j k_i \cap k_j'$. Поскольку поле не имеет нетривиальных разложений такого вида, получаем, что $k_i = k_j'$ для какого-то индекса j.