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Geometry 2: Remedial topology

Rules: You may choose to solve only “hard” exercises (marked with !, * and **) or “ordinary”
ones (marked with ! or unmarked), or both, if you want to have extra problems. To have a
perfect score, a student must obtain (in average) a score of 10 points per week. It’s up to you
to ignore handouts entirely, because passing tests in class and having good scores at final exams
could compensate (at least, partially) for the points obtained by grading handouts.

Solutions for the problems are to be explained to the examiners orally in the class and marked
in the score sheet. It’s better to have a written version of your solution with you. It’s OK to share
your solutions with other students, and use books, Google search and Wikipedia, we encourage
it. The first score sheet will be distributed February 11-th.

If you have got credit for 2/3 of ordinary problems or 2/3 of “hard” problems, you receive
6t points, where t is a number depending on the date when it is done. Passing all “hard” or
all “ordinary” problems (except at most 2) brings you 10t points. Solving of “**” (extra hard)
problems is not obligatory, but each such problem gives you a credit for 2 “*” or “!” problems in
the “hard” set.

The first 3 weeks after giving a handout, t = 1.5, between 21 and 35 days, t = 1, and
afterwards, t = 0.7. The scores are not cumulative, only the best score for each handout counts.

Please keep your score sheets until the final evaluation is given.

2.1 Topological spaces

Definition 2.1. A set of all subsets of M is denoted 2M . Topology on M
is a collection of subsets S ⊂ 2M called open subsets, and satisfying the
following conditions.

1. Empty set and M are open

2. A union of any number of open sets is open

3. An intersection of a finite number of open subsets is closed.

A complement of an open set is called closed. A set with topology on it is
called a topological space. An open neighbourhood of a point is an
open set containing this point.

Definition 2.2. A map φ : M −→M ′ of topological spaces is called con-
tinuous if a preimage of each open set U ⊂ M ′ is open in M . A bijective
continuous map is called a homeomorphism if its inverse is also continuos.

Exercise 2.1. Let M be a set, and S a set of all subsets of M . Prove that
S defines topology on M . This topology is called discrete. Describe the
set of all continuous maps from M to a given topological space.

Exercise 2.2. Let M be a set, and S ⊂ 2M a set of two subsets: empty
set and M . Prove that S defines topology on M . This topology is called
codiscrete. Describe the set of all continuous maps from M to a space with
discrete topology.
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Definition 2.3. Let M be a topological space, and Z ⊂ M its subset.
Open subsets of Z are subsets obtained as Z ∩ U , where U is open in M .
This topology is called induced topology.

Definition 2.4. A metric space is a set M equipped with a distance
function d : M ×M −→ R>0 satisfying the following axioms.

1. d(x, y) = 0 iff x = y.

2. d(x, y) = d(y, x).

3. (triangle inequality) d(x, y) + d(y, z) > d(x, z).

An open ball of radius r with center in x is {y ∈M | d(x, y) < r}.

Definition 2.5. Let M be a metric space. A subset U ⊂M is called open
if it is obtained as a union of open balls. This topology is called induced
by the metric.

Definition 2.6. A topological space is called metrizable if its topology
can be induced by a metric.

Exercise 2.3. Show that discrete topology can be induced by a metric, and
codiscrete cannot.

Exercise 2.4. Prove that an intersection of any collection of closed subsets
of a topological space is closed.

Definition 2.7. An intersection of all closed supersets of Z ⊂ M is called
closure of Z.

Definition 2.8. A limit point of a set Z ⊂M is a point x ∈M such that
any neighbourhood of M contains a point of Z other than x. A limit of a
sequence {xi} of points in M is a point x ∈M such that any neighbourhood
of x ∈M contains all xi for all i except a finite number. A sequence which
has a limit is called convergent.

Exercise 2.5. Show that a closure of a set Z ⊂ M is a union of Z and all
its limit points.

Exercise 2.6. Let f : M −→M ′ be a continuous map of topological
spaces. Prove that f(limi xi) = limi f(xi) for any convergent sequence
{xi ∈M}.
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Exercise 2.7. Let f : M −→M ′ be a map of metrizable topological spaces,
such that f(limi xi) = limi f(xi) for any convergent sequence {xi ∈ M}.
Prove that f is continuous.

Exercise 2.8 (*). Find a counterexample to the previous problem for non-
metrizable, Hausdorff topological spaces.

Exercise 2.9 (**). Let f : M −→M ′ be a map of countable topological
spaces, such that f(limi xi) = f(limi xi) for any convergent sequence {xi ∈
M}. Prove that f is continuous, or find a counterexample.

Exercise 2.10 (*). Let f : M −→N be a bijective map inducing homeo-
morphisms on all countable subsets of M . Show that it is a homeomorphism,
or find a counterexample.

2.2 Hausdorff spaces

Definition 2.9. Let M be a topological space. It is called Hausdorff, or
separable, if any two distinct points x 6= y ∈ M can be separated by
open subsets, that is, there exist open neighbourhoods U 3 x and V ∈ y
such that U ∩ V = ∅.

Remark 2.1. In topology, the Hausdorff axiom is usually assumed by de-
fault. In subsequent handouts, it will be always assumed (unless stated
otherwise).

Exercise 2.11. Prove that any subspace of a Hausdorff space with induced
topology is Hausdorff.

Exercise 2.12. Let M be a Hausdorff topological space. Prove that all
points in M are closed subsets.

Exercise 2.13. Let M be a topological space, with all points of M closed.
Prove that M is Hausdorff, or find a counterexample.

Exercise 2.14. Count the number of non-isomorphic topologies on a finite
set of 4 elements. How many of these topologies are Hausdorff?

Exercise 2.15 (!). Let Z1, Z2 be non-intersecting closed subsets of a metriz-
able space M . Find open subsets U ⊃ Z1, V ⊃ Z2 which do not intersect.
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Definition 2.10. Let M,N be topological spaces. Product topology is
a topology on M ×N , with open sets obtained as a union of U × V , where
U is open in M and V is open in N .

Exercise 2.16. Prove that a topology on X is Hausdorff if and only if the
diagonal {(x, y) ∈ X ×X | x = y} is closed in the product topology.

Definition 2.11. Let ∼ be an equivalence relation on a topological space
M . Factor-topology (or quotient topology) is a topology on the set
M/ ∼ of equivalence classes such that a subset U ⊂M/ ∼ is open whenever
its preimage in M is open.

Exercise 2.17. Let G be a finite group acting on a Hausdorff topological
space M .1 Prove that the quotient map is closed.2

Exercise 2.18 (*). Let ∼ be an equivalence relation on a topological space
M , and Γ ⊂M ×M its graph, that is, the set {(x, y) ∈M ×M | x ∼ y}.
Suppose that the map M −→M/ ∼ is open, and the Γ is closed in M ×M .
Show that M/ ∼ is Hausdorff.

Hint. Prove that diagonal is closed in M ×M .

Exercise 2.19 (!). Let G be a finite group acting on a Hausdorff topolog-
ical space M . Prove that M/G with the quotient topology is Hausdorff.

Hint. Use the previous exercise.

Exercise 2.20 (**). Let M = R, and ∼ an equivalence relation with at
most 2 elements in each equivalence class. Prove that R/ ∼ is Hausdorff, or
find a counterexample.

Exercise 2.21 (*). (“gluing of closed subsets”) Let M be a metrizable
topological space, and Zi ⊂M a finite number closed subsets which do not
intersect, grouped into pairs of homeomorphic Zi ∼ Z ′i. Let∼ an equivalence
relation generated by these homeomorphisms. Show that M/ ∼ is Hausdorff.

1Speaking of a group acting on a topological space, one always means continuous action.
2a closed map is a map which puts closed subsets to closed subsets.
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2.3 Compact spaces

Definition 2.12. A cover of a topological space M is a collection of open
subsets {Uα ∈ 2M} such that

⋃
Uα = M . A subcover of a cover {Uα} is a

subset {Uβ} ⊂ {Uα}. A topological space is called compact if any cover of
this space has a finite subcover.

Exercise 2.22. Let M be a compact topological space, and Z ⊂M a closed
subset. Show that Z is also compact.

Exercise 2.23. Let M be a countable, metrizable topological space. Show
that either M contains a converging sequence of pairwise different elements,
or M contains a subset with discrete topology.

Definition 2.13. A topological space is called sequentially compact if
any sequence {zi} of points of M has a converging subsequence.

Exercise 2.24. Let M be metrizable a compact topological space. Show
that M is sequentially compact.

Hint. Use the previous exercise.

Remark 2.2. Heine-Borel theorem says that the converse is also true:
any metric space which is sequentially compact, is also compact. Its proof
is moderately difficult (please check Wikipedia or any textbook on point-
set topology, metric geometry or analysis; “Metric geometry” by Burago-
Burago-Ivanov is probably the best place).

In subsequent handouts, you are allowed to use this theorem without a
proof.

Exercise 2.25 (*). Construct an example of a Hausdorff topological space
which is sequentially compact, but not compact.

Exercise 2.26 (*). Construct an example of a Hausdorff topological space
which is compact, but not sequentially compact.

Definition 2.14. A topological group is a topological space with group
operations G×G−→G, x, y 7→ xy and G−→G, x 7→ x−1 which are continu-
ous. In a similar way, one defines topological vector spaces, topological
rings and so on.
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Exercise 2.27 (*). Let G be a compact topological group, acting on a
topological space M in such a way that the map M×G−→M is continuous.
Prove that the quotient space is Hausdorff.

Exercise 2.28. Let f : X −→ Y be a continuous map of topological spaces,
with X compact. Prove that f(X) is also compact.

Exercise 2.29. Let Z ⊂ Y be a compact subset of a Hausdorff topological
space. Prove that it is closed.

Exercise 2.30. Let f : X −→ Y be a continuous, bijective map of topo-
logical spaces, with X compact and Y Hausdorff. Prove that it is a homeo-
morphism.

Definition 2.15. A topological space M is called pseudocompact if any
continuous function f : M −→ R is bounded.

Exercise 2.31. Prove that any compact topological space is pseudocom-
pact.

Hint. Use the previous exercise.

Exercise 2.32. Show that for any continuous function f : M −→ R on a
compact space there exists x ∈M such that f(x) = supz∈M f(z).

Exercise 2.33. Consider Rn as a metric space, with the standard (Eu-
clidean) metric. Let Z ⊂ Rn be a closed, bounded set (“bounded” means
“contained in a ball of finite radius”). Prove that Z is sequentially compact.

Exercise 2.34 (**). Find a pseudocompact Hausdorff topological space
which is not compact.

Definition 2.16. A map of topological spaces is called proper if a pre-
image of any compact subset is always compact.

Exercise 2.35 (*). Let f : X −→ Y be a continuous, proper, bijective
map of metrizable topological spaces. Prove that f is a homeomorphism, or
find a counterexample.

Exercise 2.36 (*). Let f : X −→ Y be a continuous, proper map of
metrizable topological spaces. Show that f is closed, or find a counterex-
ample.
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