
Geometry 3: Hausdorff dimension Misha Verbitsky

Geometry 3: Hausdorff dimension
Rules: You may choose to solve only “hard” exercises (marked with !, * and **) or “ordinary” ones
(marked with ! or unmarked), or both, if you want to have extra problems. To have a perfect score, a
student must obtain (in average) a score of 10 points per week. It’s up to you to ignore handouts entirely,
because passing tests in class and having good scores at final exams could compensate (at least, partially)
for the points obtained by grading handouts.

Solutions for the problems are to be explained to the examiners orally in the class and marked in the
score sheet. It’s better to have a written version of your solution with you. It’s OK to share your solutions
with other students, and use books, Google search and Wikipedia, we encourage it. The first score sheet
will be distributed February 11-th.

If you have got credit for 2/3 of ordinary problems or 2/3 of “hard” problems, you receive 6t points,
where t is a number depending on the date when it is done. Passing all “hard” or all “ordinary” problems
(except at most 2) brings you 10t points. Solving of “**” (extra hard) problems is not obligatory, but
each such problem gives you a credit for 2 “*” or “!” problems in the “hard” set.

The first 3 weeks after giving a handout, t = 1.5, between 21 and 35 days, t = 1, and afterwards,
t = 0.7. The scores are not cumulative, only the best score for each handout counts.

Please keep your score sheets until the final evaluation is given.

The original English translation of this handout was done by Sasha Anan′in (UNICAMP) in 2010.

3.1 Hausdorff dimension and measure

Definition 3.1. Let M be a metric space. The diameter diamM ∈ [0,∞]
is the number sup

x,y∈M
d(x, y).

Definition 3.2. In a metric space, a ball of radius ε centered at x is defined
as the set of all points y satisfying d(x, y) < ε.

Exercise 3.1. Describe all possible values of the diameter of the ball of
radius ε in a metric space.

Exercise 3.2. Let M be a metric space and let ε > 0. Show that M admits
a cover by balls of diameter ≤ ε.

Definition 3.3. Let {Si} be a cover of a metric space M by balls of radius
r with r < ε. Define µd,ε ∈ [0,∞] as

µd,εM := inf
{Si}

∑
i

(diamSi)
d,

where the infimum is taken over all such covers. The limit

µdM := sup lim
ε→0

µd,εM

is called d-dimensional Hausdorff measure of M .
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Exercise 3.3. Consider M = Rn with a metric given by the norm∣∣(x1, . . . , xn)
∣∣ := max |xi|.

Show that the n-dimensional Hausdorff measure of a polyhedron equals its
volume (in the usual sense).

Exercise 3.4. Consider the metric onM = Rn given by the norm
∣∣(x1, . . . , xn)

∣∣ :=∑
|xi|.

a. Prove that the n-dimensional Hausdorff measure of a polyhedron is
proportional to its volume.

b. (*) Calculate the coefficient of proportionality.

Exercise 3.5. Consider M = Rn with the usual (Euclidean) metric.

a. Show that the n-dimensional Hausdorff measure of a polyhedron is
proportional to its volume.

b. (*) Calculate the coefficient of proportionality.

Definition 3.4. A map f : M → N of metric spaces is called Lipschitz with
constant C > 0 if d(x, y) ≥ C ·d

(
f(x), f(y)

)
for all x, y ∈M . A map is called

bi-Lipschitz if it is bijective and the inverse map is also Lipschitz (with some
constant).

Exercise 3.6. Show that every Lipschitz map is continuous.

Exercise 3.7 (*). Construct an example of a continuous map of metric
spaces that is not Lipschitz.

Exercise 3.8. Let d1, d2 be two norms on a vector space V . Denote the
corresponding metrics by the same letters. Prove that the identity map
IdV : (V, d1)−→ (V, d2) is Lipschitz if and only if the unit ball B1(r, d1) is
bounded in the metric d2.

Exercise 3.9 (*). Let M = Rn and let d1, d2 be some norms on M . Show
that IdM : (M,d1)→ (M,d2) is bi-Lipschitz.
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Exercise 3.10 (!). Let U ⊂ Rn be a bounded open subset and Φ : U → Rn

a smooth map which can be smoothly extended to the boundary ∂U . Prove
that Φ is Lipschitz.

Exercise 3.11 (!). Let M
f−→ N be a Lipschitz map of metric spaces

with constant C. Show that µdM ≥ Cdµdf(M), where µd is d-dimensional
Hausdorff measure on M .

Exercise 3.12 (!). Suppose that µdM <∞. Show that µd′M = 0 for every
d′ > d.

Hint. Deduce from diamSi < ε the inequality

µd′,εM = inf
{Si}

∑
i

(diamSi)
d′ ≤ εd

′−d inf
{Si}

∑
i

(diamSi)
d = εd

′−dµd,εM (3.1)

and pass to the limit ε→ 0.

Exercise 3.13 (!). Suppose that µd′M = ∞. Show that µdM = ∞ for
every d < d′.

Hint. Use the inequality (3.1) and pass to the limit ε→ 0.

Definition 3.5. Let M be a metric space. The Hausdorff dimension
dimHM ∈ [0,∞] is the supremum of all d such that µdM =∞.

Exercise 3.14. Find the Hausdorff dimension of a finite set.

Exercise 3.15. Let f : M → N be a Lipschitz map. Show that f does not
increase the Hausdorff dimension: dimHM ≥ dimH f(M).

Exercise 3.16. Show that every bi-Lipschitz map preserve Hausdorff di-
mension (“Hausdorff dimension is a bi-Lipschitz invariant”).

Exercise 3.17 (*). Find the Hausdorff dimension of the Cantor set K ⊂
[0, 1], obtained as a set of all real numbers without a number 1 in their ternary
expansion.

Definition 3.6. A subset Z ⊂ Rn has measure zero if for every ε > 0
there exists a countable cover of Z by balls Ui such that

∑
i VolUi < ε.
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Exercise 3.18. Show that the countable union of subsets of zero measure
has measure zero.

Exercise 3.19. Show that the image of a subset of zero measure under a
Lipschitz map Rn → Rn has measure zero.

Exercise 3.20 (!). Show that the image of a subset of zero measure under
a smooth map Rn → Rn has measure zero.

Hint. Prove that a smooth map is Lipschitz, and use the previous exercise.

Exercise 3.21 (*). Construct an example of a continuous map from Rn to
Rn that sends a subset of zero measure to a subset of nonzero measure.

Exercise 3.22 (!). Let M ⊂ Rd be a subset such that dimHM < d. Show
that M has measure zero.

Definition 3.7. LetM be a smooth manifold with a countable atlas {Ui, ϕi :
Ui → Rn}. A subset Z ⊂ M has measure zero if the image ϕ(Z ∩ Ui) has
measure zero in Rn for every i.

Exercise 3.23. Show that this definition does not depend on the choice of
an atlas on M .

Exercise 3.24. Let M
f−→ Rn be a smooth map of manifolds and let M be

a union of compact subsets. Show that dimH f(M) ≤ dimM .

Hint. Show first that f is Lipschitz on compact subsets. Then use the fact
that Lipschitz maps satisfy dimH f(M) ≤ dimM .

Exercise 3.25 (!). Let M
f−→ N be a smooth map of manifolds such that

dimM < dimN . Show that the image of M has measure zero.

Hint. Use the previous exercise.

Remark 3.1. This theorem is a special case of Sard’s lemma that claims
that the set of critical values of a smooth map has measure zero.
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3.2 Whitney’s theorem (with a bound on dimension

Definition 3.8. The Klein bottle is the quotient of the two-dimensional
torus T 2 := S1 × S1 by the action of the group Z/2Z mapping (t1, t2) to
(t1 + π,−t2).

Exercise 3.26. Show that this action is free, and the quotient is a manifold.

Exercise 3.27. Let M
f−→ N be a smooth map of manifolds, f(x) = y,

and U 3 x, V 3 y charts, equipped with the embeddings U ↪→ Rm, V ↪→ Rn.
Choose U and V in such a way that f(U) ⊂ V , and consider f

∣∣
U

as a map
from U ⊂ Rm to Rn. Suppose that the differential Df : TxRm −→ TyRn is
injective for one choice of the charts U, V . Prove that it is injective for any
other choice of the charts.

Definition 3.9. A smooth map of manifolds M
f−→ N is called immer-

sion if its differential Df : TxM −→ Tf(x)N , computed in local coordinates,
is injective.

Exercise 3.28. Construct an immersion of the Klein bottle into R3.

Exercise 3.29 (!). Let M
f−→ N be a smooth map of manifolds, where

M is compact. Show that f is a smooth embedding if and only if it is an
injective immersion.

Hint. Use the inverse function theorem.

Definition 3.10. Let M ↪→ Rn be a smooth m-submanifold. The tangent
plane at p ∈M is the plane in Rn tangent to M (i.e, the plane lying in the
image of the differential given in local coordinates). A tangent vector is an
arbitrary vector in this plane with the origin at p. The space of all tangent
vectors at p is denoted by TpM . Given a metric on Rn, we can define the
space of unit tangent vectors Sm−1M as the set of all pairs (p, v), where
p ∈M , v ∈ TpM , and |v| = 1.

Exercise 3.30. Prove that Sm−1M is a smooth manifold and that the nat-
ural projection Sm−1M →M is a smooth map with fibers Sm−1.

Remark 3.2. Sm−1M is called the unit sphere bundle over M .
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Exercise 3.31 (*). Show that the manifold Sm−1M does not depend on an
embedding M ↪→ Rn, i.e., for any two embeddings of M into Rn and into
Rn′

, the corresponding manifolds Sm−1M are diffeomorphic.

Exercise 3.32 (!). Let M
ϕ
↪→ Rn be a manifold of dimension m embedded

into Rn, λ ∈ Pn−1
R a straight line in Rn, and let Pλ : Rn → Rn−1 denote the

projection onto the quotient Rn/λ ∼= Rn−1.

a. Denote the diagonal by ∆ ⊂M ×M . Define the map M ×M \∆
B−→

Pn−1
R by sending the pair of points (x, y) ∈M ×M to the straight line

passing through ϕ(x) − ϕ(y). Show that Pλ ◦ ϕ : M → Rn−1 is an
injection if and only if λ does not lie in the image of B.

b. Let Sm−1M
B0−→ Pn−1

R be a map sending a tangent vector to the cor-
responding line in Rn. Show that Pλ ◦ ϕ : M → Rn−1 is an immersion
if and only if λ does not lie in the image of B0.

Exercise 3.33 (!). Let M
ϕ
↪→ Rn be an embedded manifold of dimension m

with n > 2m + 2. Show that there exists a projection Rn P−→ R2m+2 such
that P ◦ ϕ : M → R2m+2 is an immersion.

Hint. Use the fact that the images of the maps B0 and B in the previous
problem have measure zero and apply induction on n.

Exercise 3.34. In assumptions of the previous exercise, prove that there

exists a projection Rn P−→ R2m+1 such that P ◦ ϕ : M → R2m+1 is an
immersion.

Exercise 3.35. Is any n-dimensional manifold embeddable in R2n−1 ?

Exercise 3.36 (**). Is it possible to construct an immersion of the complex
projective space P2

C into R5 ?

Exercise 3.37. Let M be a compact manifold of dimension n. Show that
M admits a smooth closed embedding into R2n+2.

Remark 3.3. Whitney showed that any m-dimensional manifold with a
countable basis of topology admits a closed embedding into R2m. This state-
ment is called the “strong Whitney theorem.”
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