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Geometry 4: Germs of functions

Rules: You may choose to solve only “hard” exercises (marked with !, * and **) or “ordinary” ones
(marked with ! or unmarked), or both, if you want to have extra problems. To have a perfect score,
a student must obtain (in average) a score of 10 points per week. It’s up to you to ignore handouts
entirely, because passing tests in class and having good scores at final exams could compensate (at
least, partially) for the points obtained by grading handouts.

Solutions for the problems are to be explained to the examiners orally in the class and marked
in the score sheet. It’s better to have a written version of your solution with you. It’s OK to share
your solutions with other students, and use books, Google search and Wikipedia, we encourage it.
The first score sheet will be distributed February 11-th.

If you have got credit for 2/3 of ordinary problems or 2/3 of “hard” problems, you receive
6t points, where t is a number depending on the date when it is done. Passing all “hard” or all
“ordinary” problems (except at most 2) brings you 10t points. Solving of “**” (extra hard) problems
is not obligatory, but each such problem gives you a credit for 2 “*” or “!” problems in the “hard”
set.

The first 3 weeks after giving a handout, t = 1.5, between 21 and 35 days, t = 1, and afterwards,
t = 0.7. The scores are not cumulative, only the best score for each handout counts.

Please keep your score sheets until the final evaluation is given.

4.1 Direct limit

Definition 4.1. Commutative diagram of vector spaces is given by the fol-
lowing data. First, there is a directed graph (graph with arrows). For each
vertex of this graph (also called a diagram) one gives a vector space, and each
arrow corresponds to a homomorphism of the associated vector spaces. These
homomorphism are compatible, in the following way. Whenever there exist two
ways of going from one vertex to another, the compositions of the corresponding
arrows are equal.

Remark 4.1. A neighbourhood of a subset X ⊂ M is an open subset con-
taining X.

Exercise 4.1. Let (M,F) be a space ringed by a sheaf of functions, x ∈ M a
point, {Ui} – the set of all neighbourhoods of x. Consider a diagram, with the set
of vertices indexed by {Ui}, and arrows from Ui to Uj corresponding to inclusions
Uj ↪→ Ui. Prove that the space of sections F(Ui) with homomorphisms given
by restrictions form a commutative diagram.

Definition 4.2. Let C be a commutative diagram of vector spaces A,B – vector
spaces, corresponding to two vertices of a diagram, and a ∈ A, b ∈ B elements
of these vector spaces. Write a ∼ b if a and b are mapped to the same element
d ∈ D by a composition of arrows from C. Let ∼ be an equivalence relation
generated by such a ∼ b.

Exercise 4.2. a. Let A
φ−→ B be a diagram of two spaces and one arrow.

Prove that b ∼ b′ is equivalent to b = b′ for each b, b′ ∈ B.

b. Let A
φ−→ B, A−→ 0 be a diagram of three spaces, with φ injective.

Prove that for each b, b′ ∈ B, b ∼ b′ is equivalent to b− b′ ∈ imφ.

Definition 4.3. Let {Ci} be a set of vector spaces associated with the vertices
of a commutative diagram C, and E ⊂

⊕
i Ci a subspace generated by the

vectors (x − y), where x ∼ y. A quotient
⊕

i Ci/E is called a direct limit of
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a diagram {Ci}. The same notion is also called colimit and inductive limit.
Direct limit is denoted lim

→
.

Exercise 4.3. Let C1 −→ C2 −→ C3 −→ ... be a diagram with all arrows injec-
tive. Prove that lim

→
Ci is a union of all Ci.

Exercise 4.4. Let C1 −→ C2 −→ C3 −→ ...−→ Cn be a diagram. Prove that
lim
→
Ci = Cn.

Exercise 4.5. Find an example of a diagram C1 −→ C2 −→ C3 −→ ... where
all spaces Ci are non-zero, and the colimit lim

→
Ci vanishes.

Exercise 4.6 (*). Find an example of a diagram C1 −→ C2 −→ C3 −→ ... where
all spaces Ci are non-zero, all arrows are also non-zero, and the colimit lim

→
Ci

vanishes.

Definition 4.4. A diagram C is called filtered if for any two vertices Ci, Cj ,
there exists a third vertex Ck, and sequences of arrows leading from Ci to Ck
and from Cj to Ck.

Exercise 4.7. Let C be a commutative diagram of vector spaces Ci, with all Ci
equipped with a ring structure, and all arrows ring homomorphisms. Suppose
that the diagram C is filtered. Prove that lim

→
Ci is a ring, equipped with natural

ring homomorphisms Ci −→ lim
→
Ci.

4.2 A ring of germs of a sheaf of functions

Definition 4.5. Let M,F be a ringed space, x ∈ M its point, and {Ui} the
set of all its neighbourhoods. Consider a commutative diagram with vertices
indexed by {Ui}, and arrows from Ui to Uj corresponding to inclusions Uj ↪→ Ui.
For each vertex Ui we take a vector space of sections F(Ui), and for each arrow
the corresponding restriction map. The direct limit of this diagram is called
the ring of germs of the sheaf F in x.

Remark 4.2. This limit is indeed a ring, as follows from the previous exercise.

Remark 4.3. As a special case of this definition, we obtain rings of germs of
smooth functions, real analytic functions, continuous, Ci and so on.

Exercise 4.8. Let F be a sheaf of functions on a manifold, such that all its
germs are zero. Prove that F is a zero sheaf.

Definition 4.6. A constant sheaf RM is a sheaf of functions which are con-
stant on each connected U ⊂M .

Exercise 4.9. Prove that a ring of germs of a constant sheaf at each point is
R.
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Exercise 4.10 (*). Let F be a sheaf of R-valued functions on M , such that
all its germs are isomorphic to R. Prove that it is constant.

Definition 4.7. An ideal in a ring R is an abelian subgroup I ( R, such that
for all x ∈ R, a ∈ I, the product xa belongs to I.

Remark 4.4. A quotient space R/I is a ring (prove this). Also, for any ring
homomorphism, its kernel is an ideal.

Definition 4.8. A maximal ideal is an ideal I ⊂ R, such that for any other
ideal I ′ ) I, I ′ 3 1.

Exercise 4.11. Show that any ideal is contained in a maximal ideal (use Zorn’s
lemma).1

Exercise 4.12. Show that an ideal I ⊂ R is maximal if and only if the quotient
R/I is a field.

Exercise 4.13 (*). Find all maximal ideals in the ring of smooth functions on
a compact manifold.

Definition 4.9. A ring is called local if it contains only one maximal ideal.

Exercise 4.14. Prove that a ring of rational numbers m
n , where m,n are inte-

ger, and n odd, is local. Find its quotient by the maximal ideal.

Exercise 4.15. Let F be a ring of rational functions (functions P
Q , where P

and Q ∈ C[t1, ..., tn] are polynomials) without a pole in 0. Show that this ring
is local. Find its quotient by a maximal ideal.

Exercise 4.16 (!). Are the following rings local?

a. The ring of germs of smooth functions.

b. The ring of germs of polynomial functions on Rn.

c. The ring of germs of functions of differentiability class Ci, i > 0.

d. The ring of germs of continuous functions.

e. The ring of germs of real analytic functions on Rn.

Exercise 4.17. Show that a ring with a maximal ideal I is local iff each element
r /∈ I is invertible.

Definition 4.10. Zero divisors in a ring are non-zero elements r1, r2, saisfy-
ing r1r2 = 0. Nilpotent is r ∈ R such that rn = 0 for some n.

Exercise 4.18. Find whether the following rings have zero divisors.
1You are not required to prove Zorn’s lemma in this exercise.
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a. The ring of germs of smooth functions.

b. The ring of germs of polynomial functions.

c. The ring of germs of continuous functions.

Definition 4.11. A continuous function f on Rn is called piecewise poly-
nomial if Rn is represented as a union of polyhedra, and on each of these
polyhedra, f is polynomial.

Exercise 4.19. Let F – a sheaf of piecewise polynomial functions on R, S –
a ring of its germs at 0.

a. Find out whether S is a local ring.

b. Show that S is isomorphic to R[t1, t2]/(t1t2 = 0).

Exercise 4.20 (!). Let R be a local ring, m its maximal ideal, and K(R) :=⋂
i m

i. Prove that it is an ideal. Find whether this ideal is zero for

a. The ring of germs of smooth functions.

b. The ring of germs of real analytic functions.

c. The ring of germs of continuous functions.

Exercise 4.21 (*). Let R = k[t1, ..., tn] be a ring of polynomials over a field,
and I ⊂ R an ideal.2 Prove that

⋂
i I
i = 0.

Exercise 4.22. Let R be a ring of germs of smooth functions in x, m its max-
imal ideal, and K(R) :=

⋂
i m

i. Prove that for all f ∈ K(R), all derivatives of
f in zero (of any order) vanish.

Exercise 4.23. Let x1, ..., xn be coordinates on Rn, and f a function with all
derivatives of any order vanishing. Show that f

(P
i x

2
i )p is continuous for any

p > 0.

Exercise 4.24 (!). Under assumptions of the previous exercise, prove that the
function fP

i x
2
i

is smooth.

Exercise 4.25 (!). Let R be a ring of germs of smooth functions in x ∈ Rn,
K(R) :=

⋂
i m

i the ideal defined above. Prove that K(R) is an ideal of functions
with vanishing derivatives of any order at x.

Hint. Use the previous exercise.

Exercise 4.26 (*). Let R/K(R) be the ring defined above.

a. Are there non-zero nilpotents in R/K(R)?

b. Are there zero divisors in R/K(R)?
2The ideals in R are tacitly assumed to be 6= R.
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4.3 Soft sheaves

Definition 4.12. Let (M,F) be a topological space ringed by a sheaf of func-
tions, and X ⊂ M its subset. Consider a diagram indexed by open subsets
Ui ⊂ M containing X, with arrows corresponding to inclusions Uj ⊂ Ui, and
associate with each Ui the corresponding section space F(Ui). A direct limit of
this diagram is called the ring of germs of F in X, and denoted as F(X).

Exercise 4.27. Prove that for each open subset U ⊂ M the corresponding
germ space coincides with the space of sections F(U).

Exercise 4.28 (*). Let (M,C∞M) be a manifold ringed by a sheaf of smooth
functions, and X ⊂ M . Suppose that the space of germs of C∞M in X is a
local ring. Prove that X is a point.

Definition 4.13. A ring of functions F on M is called soft if for any closed
subset X ⊂M , the natural map from the space of global sections F(M) to the
space of germs F(X) is surjective.

Exercise 4.29. Show that the sheaf of real analytic functions on Rn is not soft.

Exercise 4.30. Show that a constant sheaf on a manifold is not soft.3

Exercise 4.31. Find a topological space M and a sheaf of functions F on it
such that the restriction map from F(M) to the space of germs of F in a point
is always surjective, but the sheaf F is not soft.

Exercise 4.32. Let N,N ′ ⊂ M be two closed subsets of a metric space, N ∩
N ′ = ∅. Prove that there exist non-intersecting neighbourhoods U ⊃ N , U ′ ⊃
N ′.

Exercise 4.33 (!). Let M be a manifold admitting a partition of unity, N ⊂M
a closed subset, and U ⊃ N its neighbourhood. Prove that M has a locally finite
cover {Ui}, such that all Ui which intersect N are contained in U .

Hint. Prove that M admits a metric, and use the previous exercise.

Definition 4.14. Support of a function f is the set of all points where f 6= 0.
A function is called supported in U if its support is contained in U .

Exercise 4.34. Let U ⊂M be an open subset of a manifold, U ′ b M an open
subset satisfying Ū ′ ⊂ U , and f a smooth function on U with support in U ′.
Prove that f can be extended to a smooth function on M .

Exercise 4.35 (*). Let M be a manifold admitting a partition of unity. Prove
that the sheaf of smooth functions on M is soft.

3All manifolds are tacitly assumed to be of positive dimension.
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Hint. Given a smooth function f on U ⊃ N , find a cover {Ui}, i ∈ I as in
previous exercise, and let {ψi} be a subordinate partition of unity. Let A ⊂ I
be the set of indices α ∈ I such that Uα ∩ N 6= 0. Prove that the function
f ′ :=

∑
α∈A ψαf is supported in U ′ b U , can be extended smoothly to the

whole M , and equal f on N .

Definition 4.15. Let f ∈ F(M) be a section of a sheaf F on M . Support of
f is the set of all points x ∈M such that there is no neighbourhood U 3 x such
that f

∣∣
U

= 0.

Exercise 4.36. Prove that support of any section is closed.

Definition 4.16. A sheaf F on M is called fine if for any locally finite cover
{Uα} of an open set U ⊂M indexed by α ∈ I and any section f ∈ F(U) there
exists a collection of sections fα ∈ F(U) indexed by the same set I such that a
support of any fα is contained in Uα, and

∑
I fα = f .

Remark 4.5. Essentially the fine sheaves are sheaves which admit partition of
unity.

Exercise 4.37 (*). Let M be a smooth manifold. Prove that the sheaf of
smooth functions is fine.

Exercise 4.38 (*). Let M be a smooth manifold. Prove that the sheaf of
smooth functions is soft.

Hint. Use the previous exercise.

Exercise 4.39 (**). Let M be a metrizable topological space. Prove that the
sheaf of continuous functions is fine.

Exercise 4.40 (**). Let M be a metrizable topological space. Find a soft
sheaf on M which is not fine.

Exercise 4.41 (**). Let F be a soft sheaf of functions, with the rings of germs
local at all points. Prove that F is fine, or find a counterexample.

Exercise 4.42 (**). Let M be a metrizable topological space. Prove that any
fine sheaf on M is soft.
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