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Geometry 8: Vector bundles

Rules: You may choose to solve only “hard” exercises (marked with !, * and **) or “ordinary” ones
(marked with ! or unmarked), or both, if you want to have extra problems. To have a perfect score,
a student must obtain (in average) a score of 10 points per week. It’s up to you to ignore handouts
entirely, because passing tests in class and having good scores at final exams could compensate (at
least, partially) for the points obtained by grading handouts.

Solutions for the problems are to be explained to the examiners orally in the class and marked
in the score sheet. It’s better to have a written version of your solution with you. It’s OK to share
your solutions with other students, and use books, Google search and Wikipedia, we encourage it.

If you have got credit for 2/3 of ordinary problems or 2/3 of “hard” problems, you receive
6t points, where t is a number depending on the date when it is done. Passing all “hard” or all
“ordinary” problems (except at most 2) brings you 10t points. Solving of “**” (extra hard) problems
is not obligatory, but each such problem gives you a credit for 2 “*” or “!” problems in the “hard”
set.

The first 3 weeks after giving a handout, t = 1.5, between 21 and 35 days, t = 1, and afterwards,
t = 0.7. The scores are not cumulative, only the best score for each handout counts.

Please keep your score sheets until the final evaluation is given.

8.1 Tensor product

Definition 8.1. Let V, V ′ be R-modules, W a free abelian group generated by
v⊗ v′, with v ∈ V, v′ ∈ V ′, and W1 ⊂W a subgroup generated by combinations
rv⊗v′−v⊗rv′, (v1 +v2)⊗v′−v1⊗v′−v2⊗v′ and v⊗(v′1 +v′2)−v⊗v′1−v⊗v′2.
Define the tensor product V ⊗R V ′ as a quotient group W/W1.

Exercise 8.1. Show that r · v ⊗ v′ 7→ (rv)⊗ v′ defines an R-module structure
on V ⊗R V ′.

Exercise 8.2. Prove that Q⊗Z (Z/2Z) = 0.

Exercise 8.3 (*). Find a non-zero R-module V such that V ⊗R V = 0.

Exercise 8.4. Let I1, I2 be ideals in R. Prove that (R/I1)⊗R(R/I2) = R/(I1+
I2), where I1 + I2 is an ideal generated by linear combinations I1, I2.

Exercise 8.5. Prove that a tensor product of free R-modules is free.

Exercise 8.6. Let F be a sheaf of rings, and B1 and B2 be sheaves of locally
free (M,F)-modules. Prove that

U −→B1(U)⊗F(U) B2(U)

is also a sheaf of modules.

Exercise 8.7 (**). Is the last statement true without the assumption of local
triviality?

Definition 8.2. Tensor product of vector bundles is a tensor product of the
corresponding sheaves of modules.

Remark 8.1. In a similar way one defines exterior powers and symmetric pow-
ers of a bundle.
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Exercise 8.8. Let B1 and B2 be locally free sheaves of C∞M -modules, and
B1 ⊗C∞M B2 their tensor product. Show that the fiber B1 ⊗C∞M B2 in x is
naturally identified with a tensor product of the fibers:(

B1 ⊗C∞M B2

)∣∣
x

∼= B1

∣∣
x
⊗R B2

∣∣
x
.

Exercise 8.9. Let V be an R-module, and HomR(V,R) the space of R-linear
homomorphisms from V to R. Prove that the action r · h(. . . ) 7→ rh(. . . )
gives a structure of R-module on HomR(V,R). Prove that HomR(Rn, R) with
R-module structure defined this way is isomorphic (non-canonically) to a free
module Rn.

Definition 8.3. Let V be an R-module. A dual R-module V ∗ is HomR(V,R)
with the R-module structure defined above.

Exercise 8.10. Consider Q/Z as a Z-module. Prove that (Q/Z)∗ = 0.

Exercise 8.11. Prove that HomZ(Q,Z) = 0.

Exercise 8.12 (*). Let R = C∞(R)0 be a ring of germs of smooth functions
at 0, and K an ideal of functions vanishing in 0 with all derivatives. Prove that
(R/K)∗ := HomR(R/K,R) = 0, or disprove it.

Exercise 8.13 (*). Same question when R = C∞(Rn)0.

Exercise 8.14 (!). Let B be a vector bundle, that is, a locally free sheaf of
C∞M -modules, and TotB π−→ M its total space. Define B∗(U) as a space of
smooth functions on π−1(U) linear in the fibers of π.

a. Show that the natural restriction map B∗(U)−→B∗(V ) defines a sheaf
B∗.

b. Show that this sheaf is locally trivial.

c. (!) Show that B∗(U) is a dual C∞(U)-module to B(U).

Definition 8.4. Let B be a vector bundle, and B∗ a locally trivial sheaf of
C∞M -modules defined above. It is called the dual bundle to B.

Exercise 8.15. Prove that the fiber B∗
∣∣
x

is a vector space dual to B
∣∣
x

.

Exercise 8.16. Let B be a non-trivial vector bundle. Prove that B∗ is also
non-trivial.

Definition 8.5. Bilinear form on a bundle B is a section of (B ⊗ B)∗. A
symmetric bilinear form on B is called positive definite if it gives a positive
definite form on all fibers of B. Symmetric positive definite form is also called
a metric. A skew-symmetric bilinear form on B is called non-degenerate if
it is non-degenerate on all fibers of B.
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Exercise 8.17 (!). Let B be a vector bundle on a metrizable manifold M .
Prove that B admits a metric.

Hint. Construct the metric locally, and use partition of unity.

Exercise 8.18. Construct a 2-dimensional vector bundle which does not admit
a non-degenerate skew-symmetric bilinear form.

Exercise 8.19 (**). Let M be a simply connected manifold, and B a 2n-
dimensional vector bundle. Prove thatB admits a non-degenerate skew-symmetric
bilinear form, or find a counterexample.

Exercise 8.20 (*). Find a non-trivial 3-dimensional bundle B such that its
exterior square Λ2B is trivial.

Exercise 8.21 (*). Find a 2-dimensional bundle which does not admit a non-
degenerate bilinear symmetric form of signature (1, 1).

8.2 Smooth morphisms of vector bundles and subbundles

Definition 8.6. Let B,B′ be sheaves on M . A sheaf morphism from B to B′
is a collection of homomorphisms B(U)−→B′(U), defined for each open subset
U ⊂M , and compatible with the restriction maps:

B(U) −−−−→ B′(U)y y
B(U1) −−−−→ B′(U1)

Remark 8.2. Morphisms of sheaves of modules are defined in the same way,
but in this case the maps B(U)−→B′(U) should be compatible with the module
structure.

Definition 8.7. A sheaf morphism is called injective if it is injective on germs
and surjective, if it is surjective on germs.

Exercise 8.22. Let B φ−→ B′ be an injective morphism of sheaves on M .
Prove that φ induces an injective map B(M)−→B′(M) on the spaces of global
sections.

Exercise 8.23 (*). Find an example of a surjective sheaf morphism which is
not surjective on global sections.

Definition 8.8. Let B φ−→ B′ be a morphism of locally free sheaves of C∞M -
modules. It is called a smooth morphism, or a morphism of vector bun-
dles if on each of the germ spaces φ has free kernel and free cokernel.
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Definition 8.9. Let F be a locally free sheaf of C∞M -modules, and Fx its
space of germs in x. Denote the quotient Fx/mxFx by F

∣∣
x

. This space is called
the fiber of F in x. A morphism of sheaves induces a linear map on each of
its fibers.

Exercise 8.24 (!). Find an example of an injective morphism of locally free
C∞M -modules which is not injective in some fiber.

Exercise 8.25 (*). Prove that a surjective morphism of locally free sheaves
of C∞M -modules is a smooth morphism of vector bundles, in the sense of the
above definition.

Exercise 8.26. Let B −→B1 be a smooth morphism of vector bundles on M .

a. Prove that the corresponding map Ψ of total spaces is a homomorphism
of relative vector spaces over M .

b. Prove that Ψ has no critical points.

Definition 8.10. A subbundle B1 ⊂ B is an image of an injective morphism
of vector bundles.

Exercise 8.27. Let B1 ⊂ B be a subbundle. Prove that the quotient B/B1 is
also a vector bundle.

Exercise 8.28 (!). Let B1
φ−→ B2 be a morphism of vector bundles. Prove

that the image of φ is a subbundle in B2, and its kernel is a subbundle in B1.

Definition 8.11. Direct sum of vector bundles is a direct sum of correspond-
ing sheaves.

Exercise 8.29. Prove that a total space of a direct sum of vector bundles B⊕B′
is homeomorphic to TotB ×M TotB′.

Exercise 8.30. Let B be a vector bundle equipped with a metric (that is, a
positive definite symmetric form), and B1 ⊂ B a subbundle. Consider a subset
TotB⊥1 ⊂ TotB, consisting of all v ∈ B

∣∣
x

orthogonal to B1

∣∣
x
⊂ B

∣∣
x

. Prove that
TotB⊥1 is a total space of a subbundle, denoted as B⊥1 ⊂ B.

Definition 8.12. A subbundle B⊥1 ⊂ B is called orthogonal complement of
B to B1 ⊂ B.

Exercise 8.31. Let B1 ⊂ B be a sub-bundle. Prove that B is isomorphic to a
direct sum of B1 and another bundle.

Hint. Find a metric on B and use the previous exercise.

Remark 8.3. In this situation, it is said that B1 is a direct sum of B.
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