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Geometry 9: Serre-Swan theorem

Rules: You may choose to solve only “hard” exercises (marked with !, * and **) or “ordinary” ones (marked with
! or unmarked), or both, if you want to have extra problems. To have a perfect score, a student must obtain (in
average) a score of 10 points per week. It’s up to you to ignore handouts entirely, because passing tests in class
and having good scores at final exams could compensate (at least, partially) for the points obtained by grading
handouts.

Solutions for the problems are to be explained to the examiners orally in the class and marked in the score
sheet. It’s better to have a written version of your solution with you. It’s OK to share your solutions with other
students, and use books, Google search and Wikipedia, we encourage it.

If you have got credit for 2/3 of ordinary problems or 2/3 of “hard” problems, you receive 6t points, where t is
a number depending on the date when it is done. Passing all “hard” or all “ordinary” problems (except at most 2)
brings you 10t points. Solving of “**” (extra hard) problems is not obligatory, but each such problem gives you a
credit for 2 “*” or “!” problems in the “hard” set.

The first 3 weeks after giving a handout, t = 1.5, between 21 and 35 days, t = 1, and afterwards, t = 0.7. The
scores are not cumulative, only the best score for each handout counts.

Please keep your score sheets until the final evaluation is given.

9.1 Vector bundles and Whitney theorem

Exercise 9.1. Let M ⊂ Rn be a smooth submanifold of Rn, and TM ⊂ Rn ×Rn the set of
all pairs (v, x) ∈ M × Rn, where x ∈ M × Rn is a point of M , and v ∈ Rn a vector tangent
to M in m, that is, satisfying

lim
t−→ 0

d(M,m+ tv)

t
−→ 0.

a. Prove that the natural additive operation on TM ⊂ M × Rn (addition of the second
argument) defines a structure of a (relative) topological group over M on TM .

b. Prove that a multiplication by real numbers defines on TM a structure of a relative
vector space over M .

c. Prove that TM is a total space of a vector bundle.

d. (!) Prove that this vector bundle is isomorphic to a tangent bundle, that is, to the
sheaf DerR(C∞M).

Definition 9.1. The tangent bundle of M , as well as its total space, is denoted by TM .

Exercise 9.2. Let M be a metrizable manifold. Prove that the bundle TM is a direct
summand of a trivial bundle.

Hint. Apply Whitney’s embedding theorem and use the previous exercise.

Exercise 9.3. Let B be a vector bundle on M , and TotB its total space. Consider the

tangent bundle T TotB, and let M
φ
↪→ TotB be an embedding corresponding to a zero

section. Prove that the pullback φ∗T TotB is isomorphic (as a bundle) to the direct sum
TM ⊕B.

Exercise 9.4 (!). Prove that any vector bundle on a metrizable, connected manifold is a
direct summand of a trivial bundle.

Hint. Use exercises 9.3 and 9.2.

Exercise 9.5. Show that the bundle TS1 is trivial
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Exercise 9.6 (!). Let M be a manifold which is not orientable. Prove that the bundle TM
is non-trivial.

Exercise 9.7. Prove that any 1-dimensional bundle on a sphere S2 is trivial.

Exercise 9.8 (*). Let TS2 ⊕ R be a direct sum of a tangent bundle TS2 and a trivial
1-dimensional bundle. Is the bundle TS2 ⊕ R trivial?

Exercise 9.9. Let G be a topological group, diffeomorphic to a manifold, with all group
maps smooth (such a group is called Lie group). Prove that the tangent bundle TG is
trivial.

Exercise 9.10 (*). Find a non-trivial vector bundle on S3, or prove that it does not exist.

Definition 9.2. Rank of a bundle is the dimension of its fibers.

Definition 9.3. A line bundle is a bundle of rank 1.

Exercise 9.11. Let M be a simply connected manifold. Prove that any real line bundle on
M is trivial.

Definition 9.4. Let B be a vector bundle of rank n, and ΛnB its top exterior product. This
bundle is called determinant bundle of B.

Definition 9.5. A real vector bundle is called orientable if its determinant bundle is trivial.

Exercise 9.12. a. Prove that a direct sum of orientable vector bundles is orientable.

b. Prove that a tensor product of orientable vector bundles is orientable.

Exercise 9.13 (*). Find a non-trivial, orientable 3-dimensional real vector bundle on a
2-dimensional torus, or prove that it does not exist.

Exercise 9.14 (*). Let B be a real vector bundle on Sn of dimension > n+ 1. Prove that
B is trivial, or find a counterexample.

Exercise 9.15 (**). Consider a bundle Λ2Sn of 2-forms on an n-dimensional sphere. Find
all n for which this bundle is trivial.

9.2 Projective modules

Definition 9.6. Let V be an R-module, and V ′ ⊂ V its submodule. Assume that V contains
a submodule V ′′, not intersecting V ′, such that V ′ together with V ′′ generate V . In this
case, V ′ and V ′′ are called direct summands of V , and V – a direct sum of V ′ and V ′′.
This is denoted V = V ′ ⊕ V ′′.

Exercise 9.16. Consider a submodule nZ ⊂ Z. Can it be realized as a direct summand of
Z?

Exercise 9.17. Let R be a ring without zero divisors, and V = R a free module of rank 1.
Find all direct summands of V .
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Exercise 9.18 (*). Consider a ring of truncated polynomials R := R[t]/(tk), and let V = R
be a one-dimensional R-module. Find all direct summands of V .

Definition 9.7. An R-module is called projective if it is a direct summand of a free module⊕
I R (possibly of infinite rank).

Exercise 9.19. Prove that each R-module is a quotient of a free module.

Exercise 9.20. Let V be an R-module, described below, and A
π−→ B a surjective homo-

morphism of R-modules. Prove that each R-module homomorphism V
φ−→ B can be lifted

to a morphism V
ψ−→ A, making the following diagram commutative.

V
φ - A

B

π

?

ψ

-

a. Prove it in assumption that V is a free R-module

b. (!) Prove it in assumption that V is projective.

Exercise 9.21 (!). Let V be a module for which the statement of Exercise 9.20 holds true.
Prove that V is projective.

Hint. Consider as A a free R-module, mapped to V surjectively, and let B be V , and π an
identity map.

Definition 9.8. Let 0−→A ↪→ B −→ C −→ 0 – be an exact sequence of R-modules. As-
sume that for some C ′ ⊂ B one has B = A⊕C ′. In this case it is said that the exact sequence
0−→A ↪→ B −→ C −→ 0 splits.

Exercise 9.22 (!). Let C be an R-module. Prove that the following conditions are equiva-
lent.

(i) Every exact sequence 0−→A ↪→ B −→ C −→ 0 splits

(ii) The module C is projective.

Exercise 9.23. Let V be a finitely generated projective module over R. Prove that it is
free, if

a. (*) R = Z.

b. (*) R is a polynomial ring C[t].

c. (*) R is a local ring.

Exercise 9.24 (**). A Z-module V is torsion-free if the natural map
V −→ V ⊗Z Q is injective. Prove that any torsion-free Z-module is projective, or find a
counterexample (“finitely generated” is not assumed here).

Exercise 9.25. Let B be a bundle over a metrizable manifold M , and B(M) the space of
smooth sections of B. Prove that B(M) is a projective C∞M -module.

Hint. Use the exercise 9.4.
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9.3 Categories and functors

Definition 9.9. A category C is a collection of data (“set of objects of C”, “set of mor-
phisms from an object to an object”, “operation of composition on morphisms”, “identity
morphism”), satisfying the following axioms

Objects: The set Ob(C) of objects of C.

Morphisms: For each X,Y ∈ Ob(C), one is given the set of morphisms from X to Y ,
denoted by Mor(X,Y ).

Composition of morphisms: If φ ∈ Mor(X,Y ), ψ ∈ Mor(Y,Z), one is given the mor-
phism φ ◦ ψ ∈Mor(X,Z), called composition of φ and ψ.

Identity morphism: For eachA ∈ Ob(C) one has a distinguished morphism IdA ∈Mor(A,A).

These data satisfy the following axioms.

Associativity of composition: φ1 ◦ (φ2 ◦ φ3) = (φ1 ◦ φ2) ◦ φ3.

Properties of identity morphism: For each morphism φ ∈Mor(X,Y ), one has IdX ◦φ =
φ = φ ◦ IdY .

Exercise 9.26. Prove that the following data define categories.

a. Objects are groups, morphisms are group homomorphisms.

b. Objects are vector spaces, morphisms are linear maps.

c. Objects are vector spaces, morphisms are surjective linear maps.

d. Objects are topological spaces, morphisms – continuous maps.

e. Objects are smooth manifolds, morphisms are smooth maps.

f. Objects – vector bundles on M , morphisms are morphisms of vector bundles.

Definition 9.10. Let C1, C2 be categories. A covariant functor from C1 to C2 is the
following collection of data.

(i) A map F : Ob(C1)−→ Ob(C2).

(ii) A map F : Mor(X,Y )−→ Mor(F (X), F (Y )), defined for each X,Y ∈ Ob(C1).

These data define a functor from C1 to C2, if F (φ)◦F (ψ) = F (φ◦ψ), and F (IdX) = IdF (X).

Exercise 9.27. Let C be a category of sheaves of modules over a ringed space (M,F). Prove
that a correspondence B −→B(M) defines a functor from C to a category of F(M)-modules.

Definition 9.11. Two functors F,G : C1 −→ C2 are called equivalent if for each X ∈
Ob(C1) there exists an isomorphism ΨX : F (X)−→G(X), such that for each φ ∈Mor(X,Y )
one has

F (φ) ◦ΨY = ΨX ◦G(φ). (9.1)

Definition 9.12. A functor F : C1 −→ C2 is called equivalence of categories if there
exist functors G,G′ : C2 −→ C1 such that F ◦ G is equivalent to an identity functor on C1,
and G′ ◦ F is equivalent to identity functor on C2.
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Exercise 9.28. Prove that the following categories are not equivalent.

a. (!) Category of vector spaces and category of groups.

b. (!) Category of topological spaces and category of vector spaces.

c. (!) Category of groups and category of topological spaces.

Exercise 9.29 (*). Let M be a compact manifold. Prove that the category of sheaves of
C∞M -modules is equivalent to the category of modules over C∞M , or find a counterexample.

9.4 Serre-Swan theorem

Definition 9.13. Let x ∈ M be a point on a manifold. A stalk of a C∞M -module V is a
tensor product C∞x M ⊗C∞M V , where C∞x M is a ring of germs of C∞M in x. We consider
a stalk Vx as a C∞x M -module.

Definition 9.14. Recall that a stalk of a sheaf F at x ∈M is a space of germs of F at x.

Exercise 9.30. Let V be a free C∞M -module. Prove that a stalk of the space of sections
V (M) in x is a stalk of the sheaf V in x.

Definition 9.15. Let x ∈M be a point on a manifold. Denote by mx ⊂ C∞M the ideal of
all functions vanishing in x. Let B be a sheaf of C∞M -modules, and b a section of B. We
say that b nowhere vanishes if its germ bx does not lie in mxB for each x ∈M .

Exercise 9.31 (!). Let R be a ring of smooth functions on a smooth manifold, mz a maximal
ideal of z ∈ M , and B a free R-module, considered as a trivial vector bundle on M of rank
n. Let x1, ..., xn ∈ B be a set of sections which are linearly independent in B/mz0B and
generate B/mz0B, for a fixed point z0 ∈ M . Let ξ ∈ ΛnB, ξ := x1 ∧ x2 ∧ ... ∧ xn be the
determinant of xi, considered as a section of a line bundle detB. Suppose that ξ nowhere
vanishes on U ⊂M . Prove that

{
xi
∣∣
U

}
are free generators of B

∣∣
U

.

Hint. Define a map ν : (C∞U)n −→B
∣∣
U

mapping generators ei ∈ (C∞U)n to xi. To prove
that ν is an isomorphism, use the inverse function theorem.

Exercise 9.32 (!). Let R be a ring of germs of smooth functions on Rn, and V a free R-
module, and V = V1 ⊕ V2 a direct sum decomposition. Prove that V1 and V2 are also free
modules.

Hint. Use the previous exercise.

Exercise 9.33. Let A be a free C∞M -module, decomposed as a direct sum of two projective
modules: A = B ⊕ C. We identify A with a space of sections of a trivial sheaf of C∞M -
modules, denoted by A. Let B ⊂ A be a subsheaf consisting of all sections γ ∈ V(U), such
that the germs of γ at each x ∈M lie in the stalk Bx. Define C ⊂ A in a similar fashion.

a. Prove that B, C are sheaves of C∞M -modules.

b. Prove that A = B ⊕ C.

c. Prove that the stalk Bx of a C∞M -module B in x ∈ M is isomorphic to the stalk Bx
of the corresponding sheaf of modules.
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Definition 9.16. Let V be a projective C∞M -module, and rkx V := dimV/mxV dimension
of its fiber in x. This number is called rank of V in x.

Exercise 9.34. Let V be a projective C∞M -module, and x ∈ M . Assume that rkx V = n.
Prove that the stalk Vx at x is a free C∞x M -module of rank n.

Hint. Use exercise 9.32.

Exercise 9.35. Prove that the rank of a projective C∞M -module over a connected manifold
M is constant.

Hint. Use exercise 9.31.

Definition 9.17. Let B be a projective C∞M -module, x1, ..., xn its sections such that such
that their determinant x1 ∧ x2 ∧ ... ∧ xk ∈ ΛkB is nowhere vanishing. Then {xi} are called
linearly independent.

Exercise 9.36. Let B be a sheaf of C∞M -modules generated by linearly independent sec-
tions x1, ..., xk. Prove that B is free.

Exercise 9.37 (!). Let A be a free C∞M -module, A = B ⊕ C its decomposition, and B, C
the corresponding sheaves of modules. Prove each point x ∈M has a neighbourhood U such
that the sheaf B

∣∣
U

is generated by k := rkxB linearly independent sections {x1, ..., xk}.

Hint. Use exercise 9.31.

Exercise 9.38 (!). Let B be a projective C∞M -module, and B a sheaf of modules, gener-
ated as in Exercise 9.33. Prove that this sheaf is locally trivial.

Hint. Use the previous exercise.

Exercise 9.39 (!). Let Cp be a category with objects projective C∞M -modules, and mor-
phisms homomorphism of C∞M -modules with kernels and cokernels projective, . Check
that the axioms of category are satisfied.

Remark 9.1. Recall that we defined morphisms of vector bundles as morphisms of the
corresponding sheaves of C∞M -modules such that their kernels and cokernels are locally
free C∞M -modules.

Exercise 9.40. (Serre-Swan theorem) Let Cb be a category of vector bundles on M .

a. (*) Consider a map Ψ making a vector bundle from a projective C∞M -module, as in
Exercise 9.38. Prove that Ψ(B) does not depend on a choice of a free module A ⊃ B.

b. (*) Prove that Ψ defines a functor from Cp to Cb.

c. (*) Show that this functor defines an equivalence of categories.
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