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Kähler differentials

DEFINITION: Let R be a ring over a field k, and V an R-module. A k-linear

map D : R−→ V is called a derivation if it satisfies the Leibnitz identity

D(ab) = aD(b) + bD(a). The space of derivations from R to V is denoted

Derk(R, V ).

REMARK: Derk(R, V ) is an R-module, with a natural R-action.

DEFINITION: Let R be a ring over a field k. Define an R-module Ω1
kR (the

module of Kähler differentials) with the following generators and relations.

* Generators of Ω1
kR are indexed by elements of R; for each a ∈ R, the

corresponding generator of Ω1
kR is denoted da.

* Relations in Ω1
kR are generated by expressions d(ab) = adb+ bda, for all

a, b ∈ R, and dλ = 0 for each λ ∈ k.

EXERCISE: Prove that the map d : R−→Ω1
kR mapping a to da is a deriva-

tion.
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Universal property of Kähler differentials

CLAIM: Let V be an R-module, and D ∈ Derk(R, V ) a derivation. Then there

exists a unique R-module homomorphism ϕD : Ω1
kR−→ V mapping bda

to bD(a).

REMARK: Consider a category C of R-modules equipped with a derivation

(V,D : R−→ V ), and define morphisms in C as morphisms of R-modules which

commute with the derivation map. Then Ω1R is an initial object in this

category. This is called the universal property of the module of Kähler

differentials.

CLAIM: Derk(R, V ) = HomR(Ω1R, V ).

Proof: A composition of a derivation R
d−→ Ω1R and an R-module homo-

morphism Ω1R−→ V lies in Derk(R, V ). On the other hand, any derivation

ξ ∈ Derk(R, V ) is obtained this way, by the universal property.

COROLLARY: Derk(R) = (Ω1R)∗, where V ∗ := Hom(V,R).
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Kähler differentials over polynomials

REMARK: Unlike the derivations, the Kähler differentials are functorial

on R.

CLAIM: Let R
ϕ−→ R′ be a ring homomorphism. Consider Ω1R′ as an R-

module, using the action r, a−→ ϕ(r)a. Then there exists an R-module

homomorphism Ω1R−→Ω1R′, mapping dr to dϕ(r).

CLAIM: Let R = k[t1, ..., tn] be a polynomial ring over a field of characteristic

0. Then Ω1
kR is a free R-module generated by dt1, dt2, ..., dtn.

Proof. Step 1: For each polynomial P ∈ R, the element dP can be expressed

as a sum
∑ dP

dti
dti. Therefore, each α ∈ Ω1R cam be written as

∑
iQidti.

Step 2: This expression α =
∑
iQidti is unique, because the pairing Derk(R)×

Ω1R−→R maps d
dtk
×
∑
iQidti to Qk, hence the coefficients Qk ∈ R are

determined unambiguously.
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Cotangent bundle

DEFINITION: Let A, B be finitely generated R-modules, and ν : A×B −→R

a bilinear pairing. Define the annihilator of ν in B as a submodule consisting
of all elements b ∈ B for which the homomorphism ν(·, b) : A−→R vanishes.

DEFINITION: Let M be a smooth manifold, R := C∞M the ring of smooth
finctions, and ν : Der(R) ×Ω1R−→R the pairing obtained from an isomor-
phism Der(R) = (Ω1R)∗. Consider its annihilator K ⊂ Ω1R. Define the
cotangent bundle as Λ1M := Ω1R/K.

CLAIM: Λ1M is generated as a C∞M-module by d(C∞M).

CLAIM: In these assumptions, Λ1M is an image of the tautological map
Ω1M

τ−→ (Ω1M)∗∗. Moreover, Λ1(M) = Der(R)∗.

Proof. Step 1: By construction, Λ1M is a quotient of Ω1M by a kernel
of a map Ω1M

τ−→ Der(R)∗ = (Ω1M)∗∗. Therefore, Λ1M = im τ .

Step 2: Let V ⊂ Der(R)∗ be a C∞M-submodule generated by the symbols
df ∈ Der(R)∗ which are paired with vector fields v as 〈v, df〉. Clearly, V = im τ .
If M admits coordinates t1, ..., tn, one has V = Der(R)∗, because Der(R)∗

is freely generated by d
dti

.
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Cotangent bundle (cont.)

CLAIM: In these assumptions, Λ1M is an image of the tautological map
Ω1M

τ−→ (Ω1M)∗∗. Moreover, Λ1(M) = Der(R)∗.

Proof. Step 1: By construction, Λ1M is a quotient of Ω1M by a kernel
of a map Ω1M

τ−→ Der(R)∗ = (Ω1M)∗∗. Therefore, Λ1M = im τ .

Step 2: If M admits coordinates t1, ..., tn, one has V = Der(R)∗, because
Der(R)∗ is freely generated by d

dti
.

Step 3: Using partition of unity, we obtain that V is a subsheaf of
Der(R)∗ = (TM)∗. Indeed, suppose that for some covering {Ui} one has
α
∣∣∣Ui =

∑
fj(i)dgj(i), ϕi a partition of unity subordinate to {Ui}, and ψi func-

tions with support in Ui satisfying ψi|supϕi = 1. Then α =
∑
ϕifj(i)d(ψigj(i)).

Step 4: Locally in M, V = Der(R)∗, because locally M admits coordinates.
Therefore, the sheaves V and Der(R)∗ coincide.

COROLLARY: Λ1M is a locally free sheaf of C∞M-modules. Moreover,
Λ1M = TM∗.

COROLLARY: Λ1M is generated as a C∞M-module by d(C∞M).
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De Rham algebra

DEFINITION: Let M be a smooth manifold. A bundle of differential
i-forms on M is the bundle ΛiT ∗M of antisymmetric i-forms on TM . It is
denoted ΛiM .

REMARK: Λ0M = C∞M .

DEFINITION: Let α ∈ (V ∗)⊗i and α ∈ (V ∗)⊗j be polylinear forms on V .
Define the tensor multiplication α⊗ β as

α⊗ β(x1, ..., xi+j) := α(x1, ..., xj)β(xi+1, ..., xi+j).

DEFINITION: Let
⊗
k T
∗M Π−→ ΛkM be the antisymmetrization map,

Π(α)(x1, ..., xn) :=
1

n!

∑
σ∈Symn

(−1)σα(xσ1, xσ2, ..., xσn).

Define the exterior multiplication ∧ : ΛiM × ΛjM −→ Λi+jM as α ∧ β :=
Π(α⊗ β), where α⊗ β is a section ΛiM ⊗ ΛjM ⊂

⊗
i+j T

∗M obtained as their
tensor multiplication.

REMARK: The fiber of the bundle Λ∗M at x ∈ M is identified with the
Grassmann algebra Λ∗T ∗xM. This identification is compatible with the Grass-
mann product.
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Coordinate monomials

DEFINITION: Let t1, ..., tn be coordinate functions on Rn, and α ∈ Λ∗Rn

a monomial obtained as a product of several dti: α = dti1 ∧ dti2 ∧ ... ∧ dtik
i1 < i2 < ... < ik. Then α is called a coordinate monomial.

CLAIM: Λ∗Rn is a trivial bundle, and coordinate monomials are free

generators of Λ∗Rn.

DEFINITION: An associative algebra A∗ = ⊕i∈ZAi is called a graded alge-

bra if for all a ∈ Ai, b ∈ Aj, the product ab lies in Ai+j.

EXAMPLE: De Rham algebra is a graded algebra.
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De Rham differential

DEFINITION: De Rham differential d : Λ∗M −→ Λ∗+1M is an R-linear
map satisfying the following conditions.

* For each f ∈ Λ0M = C∞M , d(f) ∈ Λ1M is equal to the image of the
Kähler differential df ∈ Ω1M in Λ1M = Ω1M/K.

* (Leibnitz rule) d(a∧ b) = da∧ b+ (−1)ja∧ db for any a ∈ ΛiM, b ∈ ΛjM .
* d2 = 0.

REMARK: A map on a graded algebra which satisfies the Leibnitz rule above
is called an odd derivation.

REMARK: The following two lemmas are needed to prove uniqueness of de
Rham differential.

LEMMA: Let A =
⊕
Ai be a graded algebra, B ⊂ A a set of multiplicative

generators, and D1, D2 : A−→A two odd derivations which are equal on B.
Then D1 = D2.

LEMMA: Λ∗M is generated by C∞M and d(C∞M).

Proof: By definition, Λ∗M is generated by Λ0M = C∞M and Λ1M . However,
d(C∞M) generate Λ1M , as shown above.
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De Rham differential: uniqueness and existence

THEOREM:

De Rham differential is uniquely determined by these axioms.

Proof: De Rham differential is an odd derivation. Its value on C∞M is defined

by the first axiom. On d(C∞M) de Rham differential valishes, because d2 = 0.

DEFINITION: Let t1, ..., tn be coordinate functions on Rn, αi coordinate

monomials, and α :=
∑
fiαi. Define d(α) :=

∑
i
∑
j
dfi
dtj
dtj ∧ αi.

EXERCISE:

Check that d satisfies the properties of de Rham differential.

COROLLARY: De Rham differential exists on any smooth manifold.

Proof: Locally, de Rham differential d exists, as follows from the construction

above. Since d is unique, it is compatible with restrictions. This means that

d defines a sheaf morphism. Restricting this sheaf morphism to global

sections, we obtain de Rham differential on Λ∗M .
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Superalgebras

DEFINITION: Let A∗ = ⊕i∈ZAi be a graded algebra over a field. It is

called graded commutative, or supercommutative, if ab = (−1)ijba for all

a ∈ Ai, b ∈ Aj.

EXAMPLE: Grassmann algebra Λ∗V is clearly supercommutative.

DEFINITION: Let A∗ be a graded commutative algebra, and D : A∗ −→A∗+i

be a map which shifts grading by i. It is called a graded derivation if

D(ab) = D(a)b+ (−1)ijaD(b), for each a ∈ Aj.

REMARK: If i is even, graded derivation is a usual derivation. If it is even,

it an odd derivation.

DEFINITION: Let M be a smooth manifold, and X ∈ TM a vector field.

Consider an operation of convolution with a vector field iX : ΛiM −→ Λi−1M ,

mapping an i-form α to an (i− 1)-form v1, ..., vi−1 −→ α(X, v1, ..., vi−1)

EXERCISE: Prove that iX is an odd derivation.
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Supercommutator

DEFINITION: Let A∗ be a graded vector space, and E : A∗ −→A∗+i,
F : A∗ −→A∗+j operators shifting the grading by i, j. Define the super-

commutator {E,F} := EF − (−1)ijFE.

DEFINITION: An endomorphism which shifts a grading by i is called even

if i is even, and odd otherwise.

EXERCISE: Prove that a supercommutator satisfies graded Jacobi iden-

tity,

{E, {F,G}} = {{E,F}, G}+ (−1)ẼF̃{F, {E,G}}

where Ẽ and F̃ are 0 if E,F are even, and 1 otherwise.

REMARK: There is a simple mnemonic rule which allows one to remember
a superidentity, if you know the commutative analogue. Each time when in
commutative case two letters A, F are exchanged, in supercommutative case
one needs to multiply by (−1)ẼF̃ .

EXERCISE: Prove that a supercommutator of superderivations is again

a superderivation.
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Lie derivative

DEFINITION: Let B be a smooth manifold, and v ∈ TM a vector field. An
endomorphism Liev : Λ∗M −→ Λ∗M , preserving the grading is called a Lie
derivative along v if it satisfies the following conditions.

(1) On functions Liev is equal to a derivative along v. (2) [Liev, d] = 0.
(3) Liev is a derivation of the de Rham algebra.

REMARK: The algebra Λ∗(M) is generated by C∞M = Λ0(M) and d(C∞M).
The restriction Liev |C∞M is determined by the first axiom. On d(C∞M) is
also determined because Liev(df) = d(Liev f). Therefore, Liev is uniquely
defined by these axioms.

LEMMA: {d, {d,E}} = 0 for each E ∈ End(Λ∗M).

Proof: By the super Jacobi identity, {d, {d,E}} = −{d, {d,E}}+ {{d, d, }E}},
however, {d, d} = 2d2 = 0.

THEOREM: (Cartan’s formula) Let iv be a convolution with a vector field.
Then {d, iv} is a Lie derivative along v.

Proof: {d, {d, iv}} = 0 by the lemma above. A supercommutator of two
derivations is a derivation. Finally, {d, iv} acts on functions as iv(df) = 〈v, df〉.
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