Geometry of manifolds, lecture 11 M. Verbitsky

Geometry of manifolds

Lecture 11: the Lie derivative

Misha Verbitsky

Math in Moscow and HSE

April 29, 2013



Geometry of manifolds, lecture 11 M. Verbitsky

De Rham algebra (reminder)

DEFINITION: Let M be a s_mooth manifold. A bundle of differential
-forms on M is the bundle A*T*M of antisymmetric -forms on TM. It is
denoted A*M.

REMARK: AOM = C>®°M.

DEFINITION: Let o € (V¥)® and a € (V*)® be polylinear forms on V.
Define the tensor multiplication a ® g as

0 ® B(T1, ey Tig) 1= (@1, oy @) B (@1 s Tig ).

DEFINITION: Let ®.T*M -5 A¥M be the antisymmetrization map,

1

MN(a)(xq, ..., T0) = > (=D)%(z0q, T, s Tap)-

n: ocesSym,,
Define the exterior multiplication A : A'M x ANNM — ANTIM as a A B =

N(a® B), where a® B is a section A'M ® NVM C ®;4,T*M obtained as their
tensor multiplication.

REMARK: The fiber of the bundle A*M at x € M is identified with the
Grassmann algebra A*T; M. This identification is compatible with the Grass-
mann product.
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Coordinate monomials (reminder)
DEFINITION: Let tq,...,ty, be coordinate functions on R", and a € A*R"
a monomial obtained as a product of several dt;: a = dt;; Ndt, N ... A\di;,

11 <12 < ...< 1. T'hen « is called a coordinate monomial.

CLAIM: A*R™ is a trivial bundle, and coordinate monomials are free
generators of N*R™.

DEFINITION: An associative algebra A* = ®;c7A" is called a graded alge-
bra if for all a € A*, b€ AJ, the product ab lies in A*1J.

EXAMPLE: De Rham algebra is a graded algebra.
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De Rham differential (reminder)

DEFINITION: De Rham differential d : A*M — A*tT1M is an R-linear
map satisfying the following conditions.

* For each f € AOM = C®M, d(f) € ALM is equal to the image of the
Kahler differential df € Q1M in AlM = QlM/K.

* (Leibnitz rule) d(aAb) =daAnb+ (—1)aAdb for any a € A'M,b e NI M.

* 42 = 0.

THEOREM:
De Rham differential is uniquely determined by these axioms.

REMARK: The proof of unigueness is based on the following lemmas.

LEMMA: Let A = @ A’ be a graded algebra, B C A a set of multiplicative
generators, and D1,D> : A— A two odd derivations which are equal on B.
Then Di =Dy. n

LEMMA: AN*M is generated by C*°M and d(C*M).

REMARK: Let t1,...,t, be coordinate functions on R", «; coordinate mono-
mials, and « := ¥ fio;. Define d(@) := ;% Didt; A a;. Then d satisfies
axioms of de Rham differential. This proves its existence.
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Superalgebras

DEFINITION: Let A* = @,czA" be a graded algebra over a field. It is
called graded commutative, or supercommutative, if ab = (—1)%Yba for all
a€ A be A,

EXAMPLE: Grassmann algebra A*V is clearly supercommutative.

DEFINITION: Let A* be a graded commutative algebra, and D : A* — A*T?
be a map which shifts grading by 2. It is called a graded derivation if
D(ab) = D(a)b+ (—1)YaD(b), for each a € AJ.

REMARK: If 7 is even, graded derivation is a usual derivation. If it is even,
it an odd derivation.

DEFINITION: Let M be a smooth manifold, and X € T'M a vector field.
Consider an operation of convolution with a vector field iy : A/M — A1 M,
mapping an i-form « to an (i — 1)-form vq,...,v,_1 — a(X,v1,...,v;_1)

EXERCISE: Prove that i:x is an odd derivation.
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Supercommutator

DEFINITION: Let A* be a graded vector space, and E : A* —s A*t?
F . A* —s A*tJ operators shifting the grading by 1,7. Define the super-
commutator {E,F} := EF — (—1)YFE.

DEFINITION: An endomorphism which shifts a grading by ¢ is called even
if 2 is even, and odd otherwise.

EXERCISE: Prove that a supercommutator satisfies graded Jacobi iden-
tity,

(E{F,G}} = ({E,F},G} + (-1)!F{F {E,G}}

where £ and £ are 0 if E, F are even, and 1 otherwise.

REMARK: There is a simple mnemonic rule which allows one to remember
a superidentity, if you know the commutative analogue. Each time when in
commutative case two letters A, F' are exchanged, in supercommutative case
one needs to multiply by (—1)#4",

EXERCISE: Prove that a supercommutator of superderivations is again
a superderivation.
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Lie derivative

DEFINITION: Let B be a smooth manifold, and v € TTM a vector field. An
endomorphism Lie, : AN*M — A*M, preserving the grading is called a Lie
derivative along v if it satisfies the following conditions.
(1) On functions Liey, is equal to a derivative along v. (2) [Liey,d] = 0.
(3) Liey is a derivation of the de Rham algebra.

REMARK: The algebra A*(M) is generated by C®°M = A°(M) and d(C>®°M).
The restriction Liey|cys is determined by the first axiom. On d(C*°M) is
also determined because Liey(df) = d(Liey f). Therefore, Lie, is uniquely
defined by these axioms.

LEMMA: {d,{d,E}} =0 for each E € End(A\*M).

Proof: By the super Jacobi identity, {d,{d, F}} = —{d,{d, F}} + {{d,d, } E}},
however, {d,d} =2d°=0. =

THEOREM: (Cartan’s formula) Let i, be a convolution with a vector field.
Then {d,i,} is a Lie derivative along v.

Proof: {d,{d,iv}} = O by the lemma above. A supercommutator of two
derivations is a derivation. Finally, {d,i,} acts on functions as i,(df) = (v, df).

m
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Pullback of a differential form

DEFINITION: Let M -2 N be a morphism of smooth manifolds, and
a € A'N be a differential form. Consider an i-form ¢*a taking value

a‘go(m)(DSO(wl)a . Dp(z;))

on x1,...z; € TmM. It is called the pullback of a. If M -2 N is a closed
embedding, the form ¢*« is called the restriction of a« to M — N.

LEMMA: (*) Let W1,W5: A*N — A*M be two maps which satisfy graded
Leibnitz identity, commute with de Rham differential, and satisfy Wi|ccops =
\U2|CooM. Then Wi = W,,

Proof: The algebra A*M is generated multiplicatively by C*®°M and d(C*°M);
restrictions of W, to these two spaces are equal. =

CLAIM: Pullback commutes with the de Rham differential.

Proof: Let di,d> : A*N — A*T1M be the maps di = ¢*od and do =
dop*. These maps satisfy Leibnitz identity, they are equal on C°°M and

commute with the de Rham differential. =
O
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Flow of diffeomorphisms

DEFINITION: Let f: M X [a,b] — M be a smooth map such that for all
t € [a,b] the restriction f; := f‘Mx{t} . M — M is a diffeomorphism. Then f
is called a flow of diffeomorphisms.

CLAIM: Let V; be a flow of diffeomorphisms, f € C®°M, and V,*(f)(x) :
f(Vi(z)). Consider the map 4Viji=. : C®M — C®M, with 4Vi|;—.(f)
(Vc_l)*%ltch. Then %Vﬂtzc iIs a derivation (that is, a vector field).

DEFINITION: The vector field %Vthzc is called a vector field tangent to
a flow of diffeomorphisms V; at ¢t = c.
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Lie derivative and a flow of diffeomorphisms

DEFINITION: Let v be a vector field on M, and V : M x [a,b] — M a flow
of diffeomorphisms which satisfies %Vth:c = v for each ¢, and Vg =1d. Then
V4 is called an exponent of v.

CLAIM: Exponent of a vector field is unique; it exists when M is compact.
This statement is called “Picard-Lindelof theorem” or *“uniqueness and
existence of solutions of ordinary differential equations’.

PROPOSITION: Let v be a vector field, and V; its exponent. For any
a € N*M, consider Vi*a as a A*M-valued function of t. Then Liey,a = %(Vt*oz).

Proof: By definition, Lie, = %Vt on functions. Lie, commutes with de Rham
differential, because Liey, = i,d + diy,. The map %Vt commutes with de Rham
differential, because it is a derivative of a pullback. Now Lemma (*) is
applied to show that Lie,a = $(V/*a). =
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Homotopy operators

DEFINITION: A complex is a sequence of vector spaces and homomor-
. d d d d

phisms ... — C;_1 — C; — Cijp1 — ...

satisfying d2 = 0. Homomorphism (Cx,d) — (C.,d) of complexes is a se-

quence of homomorphism C; — C,g commuting with the differentials.

DEFINITION: An element ¢ € C; is called closed if c € kerd and exact if

ceimd. Cohomology of a complex is a quotient ‘frenrg.

REMARK: A homomorphism of complexes induces a natural homomorphism
of cohomology groups.

DEFINITION: Let (Ck,d), (C.,d) be a complex. Homotopy is a sequence
of maps h: Cx — C,_;. Two homomorphisms f,g : (Cs,d) — (Cy,d) are
called homotopy equivalent if f — g = {h,d} for some homotopy operator h.

CLAIM: Let f,f': (Ck,d) — (CL,d) be homotopy equivalent maps of com-
plexes. Then f and f’ induce the same maps on cohomology.

Proof. Step 1: Let g := f — f’. It would suffice to prove that g induces 0
on cohomology.
12
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Lie derivative and homotopy

CLAIM: Let f,f': (Ck,d) — (CL,d) be homotopy equivalent maps of com-
plexes. Then f and f’ induce the same maps on cohomology.

Proof. Step 1: Let g := f — f’. It would suffice to prove that g induces O
on cohomology.

Step 2: Let ¢ € C; be a closed element. Then g(c¢) = dh(c) 4+ hd(c) = dh(c)
exact. m

DEFINITION: Let d be de Rham differential. A form in kerd is called closed,
a form in imd is called exact. Since d2 = 0, any exact form is closed. The
group of i-th de Rham cohomology of M, denoted H*(M), is a quotient

of a space of closed i-forms by the exact: H*(M) = &<

REMARK: Let v be a vector field, and Lie, : AN*M — A*M be the corre-
sponding Lie derivative. Then Lie, commutes with the de Rham differ-
ential, and acts trivially on the de Rham cohomology.

Proof: Liey = 1,d + di, maps closed forms to exact. m
13
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Poincaré lemma

DEFINITION: An open subset U C R" is called starlike if for any € U the
interval [0, x] belongs to U.

THEOREM: (Poicaré lemma) Let U C R™ be a starlike subset. Then
H*(U) =0 for i > 0.

REMARK: The proof would follow if we construct a vector field » such
that Lie- is invertible on AN*(M): LieR = Id. Indeed, for any closed form «
we would have a = Liep Ra = dipRa + ipRda = dipRa, hence any closed form
IS exact.

Then Poincaré lemma is implied by the following statement.

PROPOSITION: Let U C R™ be a starlike subset, tq,...,t, coordinate func-
tions, and r = Zt-i the radial vector field. Then Liez is invertible on

' tdt;
Ai(U) for i > 0.

14
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Radial vector field on starlike sets

PROPOSITION: Let U C R™ be a starlike subset, tq,...,t, coordinate func-
tions, and r = th'% the radial vector field. Then Liez is invertible on

AY(U) for i > 0.

Proof. Step 1: Let ¢t be the coordinate function on a real line, f(t) € C*°R
a smooth function, and v := t% a vector field. Define R(f)(t) := fol %’\t)aﬂ.
Then this integral converges whenever f(0) = 0, and satisfies Liey, R(f) = f.
Indeed,

L) ot f(At) [t f(z)
/O A\ = / S d(th) = /O d(2),

A 0 z
hence Liey R(f) = 12 = f(¢).

Step 2: Consider a function f € C°R" satisfying f(0) = 0, and z =
(z1,...,zn) € R™. Then

o) |

R(D@) = [ 10

converges, and satisfies LiezR(f) = f.
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Radial vector field on starlike sets (cont.)

Step 3: Consider a differential form a € A?, and let hyx — Ax be the homo-
thety with coefficient \ € [0,1]. Define

1
R(a) := /O A~L1R% (@)d.
Since hi(a) = 0 for A = 0, this integral converges. It remains to prove that

LierR = Id.

Step 4: Let a be a coordinate monomial, a = dt;; Adt;, A ... Adt; . Clearly,

Lie(T~1a) = 0, where T = t;,t;,..t;,. Since hi(fa) = hi(tf)T 1o, we have

R(fa) = R(Tf)T1a for any function f € C>®M. This gives

LiezR(fa) = LiezR(TH)T ta=TfT"1a = fa.
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