Geometry of manifolds

Lecture 11: the Lie derivative

Misha Verbitsky

Math in Moscow and HSE

April 29, 2013

De Rham algebra (reminder)

DEFINITION: Let M be a smooth manifold. A bundle of differential i-forms on M is the bundle $\Lambda^i T^* M$ of antisymmetric i-forms on TM. It is denoted $\Lambda^i M$.

REMARK: $\Lambda^0 M = C^{\infty} M$.

DEFINITION: Let $\alpha \in (V^*)^{\otimes i}$ and $\alpha \in (V^*)^{\otimes j}$ be polylinear forms on V. Define the **tensor multiplication** $\alpha \otimes \beta$ as

$$\alpha \otimes \beta(x_1, ..., x_{i+j}) := \alpha(x_1, ..., x_j)\beta(x_{i+1}, ..., x_{i+j}).$$

DEFINITION: Let $\bigotimes_k T^*M \stackrel{\square}{\longrightarrow} \Lambda^k M$ be the antisymmetrization map,

$$\Pi(\alpha)(x_1, ..., x_n) := \frac{1}{n!} \sum_{\sigma \in \text{Sym}_n} (-1)^{\sigma} \alpha(x_{\sigma_1}, x_{\sigma_2}, ..., x_{\sigma_n}).$$

Define the exterior multiplication \wedge : $\Lambda^i M \times \Lambda^j M \longrightarrow \Lambda^{i+j} M$ as $\alpha \wedge \beta := \Pi(\alpha \otimes \beta)$, where $\alpha \otimes \beta$ is a section $\Lambda^i M \otimes \Lambda^j M \subset \bigotimes_{i+j} T^* M$ obtained as their tensor multiplication.

REMARK: The fiber of the bundle Λ^*M at $x \in M$ is identified with the Grassmann algebra $\Lambda^*T_x^*M$. This identification is compatible with the Grassmann product.

Coordinate monomials (reminder)

DEFINITION: Let $t_1,...,t_n$ be coordinate functions on \mathbb{R}^n , and $\alpha \in \Lambda^*\mathbb{R}^n$ a monomial obtained as a product of several dt_i : $\alpha = dt_{i_1} \wedge dt_{i_2} \wedge ... \wedge dt_{i_k}$ $i_1 < i_2 < ... < i_k$. Then α is called a coordinate monomial.

CLAIM: $\Lambda^*\mathbb{R}^n$ is a trivial bundle, and coordinate monomials are free generators of $\Lambda^*\mathbb{R}^n$.

DEFINITION: An associative algebra $A^* = \bigoplus_{i \in \mathbb{Z}} A^i$ is called a graded algebra if for all $a \in A^i$, $b \in A^j$, the product ab lies in A^{i+j} .

EXAMPLE: De Rham algebra is a graded algebra.

De Rham differential (reminder)

DEFINITION: De Rham differential $d: \Lambda^*M \longrightarrow \Lambda^{*+1}M$ is an \mathbb{R} -linear map satisfying the following conditions.

- * For each $f \in \Lambda^0 M = C^\infty M$, $d(f) \in \Lambda^1 M$ is equal to the image of the Kähler differential $df \in \Omega^1 M$ in $\Lambda^1 M = \Omega^1 M/K$.
 - * (Leibnitz rule) $d(a \wedge b) = da \wedge b + (-1)^j a \wedge db$ for any $a \in \Lambda^i M, b \in \Lambda^j M$.
 - $* d^2 = 0.$

THEOREM:

De Rham differential is uniquely determined by these axioms.

REMARK: The proof of uniqueness is based on the following lemmas.

LEMMA: Let $A = \bigoplus A^i$ be a graded algebra, $B \subset A$ a set of multiplicative generators, and $D_1, D_2: A \longrightarrow A$ two odd derivations which are equal on B. **Then** $D_1 = D_2$.

LEMMA: Λ^*M is generated by $C^{\infty}M$ and $d(C^{\infty}M)$.

REMARK: Let $t_1,...,t_n$ be coordinate functions on \mathbb{R}^n , α_i coordinate monomials, and $\alpha:=\sum f_i\alpha_i$. Define $d(\alpha):=\sum_i\sum_j\frac{df_i}{dt_j}dt_j\wedge\alpha_i$. Then d satisfies axioms of de Rham differential. This proves its existence.

May 6: no lecture

May 6, 2013: NO LECTURE!

Next lecture - May 13, 2013.

Superalgebras

DEFINITION: Let $A^* = \bigoplus_{i \in \mathbb{Z}} A^i$ be a graded algebra over a field. It is called **graded commutative**, or **supercommutative**, if $ab = (-1)^{ij}ba$ for all $a \in A^i, b \in A^j$.

EXAMPLE: Grassmann algebra Λ^*V is clearly supercommutative.

DEFINITION: Let A^* be a graded commutative algebra, and $D: A^* \longrightarrow A^{*+i}$ be a map which shifts grading by i. It is called a **graded derivation** if $D(ab) = D(a)b + (-1)^{ij}aD(b)$, for each $a \in A^j$.

REMARK: If i is even, graded derivation is a usual derivation. If it is even, it an odd derivation.

DEFINITION: Let M be a smooth manifold, and $X \in TM$ a vector field. Consider an operation of **convolution with a vector field** $i_X : \Lambda^i M \longrightarrow \Lambda^{i-1} M$, mapping an i-form α to an (i-1)-form $v_1, ..., v_{i-1} \longrightarrow \alpha(X, v_1, ..., v_{i-1})$

EXERCISE: Prove that i_X is an odd derivation.

Supercommutator

DEFINITION: Let A^* be a graded vector space, and $E: A^* \longrightarrow A^{*+i}$, $F: A^* \longrightarrow A^{*+j}$ operators shifting the grading by i, j. Define the supercommutator $\{E, F\} := EF - (-1)^{ij}FE$.

DEFINITION: An endomorphism which shifts a grading by i is called **even** if i is even, and **odd** otherwise.

EXERCISE: Prove that a supercommutator satisfies **graded Jacobi iden- tity**,

$${E, {F,G}} = {{E,F},G} + (-1)^{\tilde{E}\tilde{F}} {F, {E,G}}$$

where \tilde{E} and \tilde{F} are 0 if E,F are even, and 1 otherwise.

REMARK: There is a simple mnemonic rule which allows one to remember a superidentity, if you know the commutative analogue. Each time when in commutative case two letters A, F are exchanged, in supercommutative case one needs to multiply by $(-1)^{\tilde{E}\tilde{F}}$.

EXERCISE: Prove that a supercommutator of superderivations is again a superderivation.

Lie derivative

DEFINITION: Let B be a smooth manifold, and $v \in TM$ a vector field. An endomorphism $\text{Lie}_v: \Lambda^*M \longrightarrow \Lambda^*M$, preserving the grading is called a Lie derivative along v if it satisfies the following conditions.

- (1) On functions Lie_v is equal to a derivative along v. (2) [Lie_v, d] = 0.
- (3) Lie $_v$ is a derivation of the de Rham algebra.

REMARK: The algebra $\Lambda^*(M)$ is generated by $C^{\infty}M = \Lambda^0(M)$ and $d(C^{\infty}M)$. The restriction $\text{Lie}_v|_{C^{\infty}M}$ is determined by the first axiom. On $d(C^{\infty}M)$ is also determined because $\text{Lie}_v(df) = d(\text{Lie}_v f)$. Therefore, Lie_v is uniquely defined by these axioms.

LEMMA: $\{d, \{d, E\}\} = 0$ for each $E \in \text{End}(\Lambda^*M)$.

Proof: By the super Jacobi identity, $\{d, \{d, E\}\} = -\{d, \{d, E\}\} + \{\{d, d, \}E\}\}$, however, $\{d, d\} = 2d^2 = 0$.

THEOREM: (Cartan's formula) Let i_v be a convolution with a vector field. Then $\{d, i_v\}$ is a Lie derivative along v.

Proof: $\{d, \{d, i_v\}\} = 0$ by the lemma above. A supercommutator of two derivations is a derivation. Finally, $\{d, i_v\}$ acts on functions as $i_v(df) = \langle v, df \rangle$.

Pullback of a differential form

DEFINITION: Let $M \xrightarrow{\varphi} N$ be a morphism of smooth manifolds, and $\alpha \in \Lambda^i N$ be a differential form. Consider an *i*-form $\varphi^* \alpha$ taking value

$$\alpha|_{\varphi(m)}(D_{\varphi}(x_1),...D_{\varphi}(x_i))$$

on $x_1,...,x_i \in T_mM$. It is called **the pullback of** α . If $M \xrightarrow{\varphi} N$ is a closed embedding, the form $\varphi^*\alpha$ is called **the restriction** of α to $M \hookrightarrow N$.

LEMMA: (*) Let $\Psi_1, \Psi_2 : \Lambda^* N \longrightarrow \Lambda^* M$ be two maps which satisfy graded Leibnitz identity, commute with de Rham differential, and satisfy $\Psi_1|_{C^{\infty}M} = \Psi_2|_{C^{\infty}M}$. Then $\Psi_1 = \Psi_2$.

Proof: The algebra Λ^*M is generated multiplicatively by $C^{\infty}M$ and $d(C^{\infty}M)$; restrictions of Ψ_i to these two spaces are equal.

CLAIM: Pullback commutes with the de Rham differential.

Proof: Let $d_1, d_2 : \Lambda^* N \longrightarrow \Lambda^{*+1} M$ be the maps $d_1 = \varphi^* \circ d$ and $d_2 = d \circ \varphi^*$. These maps satisfy Leibnitz identity, they are equal on $C^{\infty} M$ and commute with the de Rham differential.

Flow of diffeomorphisms

DEFINITION: Let $f: M \times [a,b] \longrightarrow M$ be a smooth map such that for all $t \in [a,b]$ the restriction $f_t := f \big|_{M \times \{t\}} : M \longrightarrow M$ is a diffeomorphism. Then f is called a flow of diffeomorphisms.

CLAIM: Let V_t be a flow of diffeomorphisms, $f \in C^{\infty}M$, and $V_t^*(f)(x) := f(V_t(x))$. Consider the map $\frac{d}{dt}V_t|_{t=c}$: $C^{\infty}M \longrightarrow C^{\infty}M$, with $\frac{d}{dt}V_t|_{t=c}(f) = (V_c^{-1})^*\frac{dV_t}{dt}|_{t=c}f$. Then $\frac{d}{dt}V_t|_{t=c}$ is a derivation (that is, a vector field).

DEFINITION: The vector field $\frac{d}{dt}V_t|_{t=c}$ is called a vector field tangent to a flow of diffeomorphisms V_t at t=c.

Lie derivative and a flow of diffeomorphisms

DEFINITION: Let v be a vector field on M, and $V: M \times [a,b] \longrightarrow M$ a flow of diffeomorphisms which satisfies $\frac{d}{dt}V_t|_{t=c}=v$ for each c, and $V_0=\mathrm{Id}$. Then V_t is called an exponent of v.

CLAIM: Exponent of a vector field is unique; it exists when M is compact. This statement is called "Picard-Lindelöf theorem" or "uniqueness and existence of solutions of ordinary differential equations".

PROPOSITION: Let v be a vector field, and V_t its exponent. For any $\alpha \in \Lambda^*M$, consider $V_t^*\alpha$ as a Λ^*M -valued function of t. Then $\text{Lie}_v \alpha = \frac{d}{dt}(V_t^*\alpha)$.

Proof: By definition, $\operatorname{Lie}_v = \frac{d}{dt}V_t$ on functions. Lie_v commutes with de Rham differential, because $\operatorname{Lie}_v = i_v d + di_v$. The map $\frac{d}{dt}V_t$ commutes with de Rham differential, because it is a derivative of a pullback. Now **Lemma (*) is** applied to show that $\operatorname{Lie}_v \alpha = \frac{d}{dt}(V_t^*\alpha)$.

Homotopy operators

DEFINITION: A complex is a sequence of vector spaces and homomorphisms ... $\stackrel{d}{\longrightarrow} C_{i-1} \stackrel{d}{\longrightarrow} C_i \stackrel{d}{\longrightarrow} C_{i+1} \stackrel{d}{\longrightarrow} ...$ satisfying $d^2 = 0$. Homomorphism $(C_*, d) \longrightarrow (C'_*, d)$ of complexes is a sequence of homomorphism $C_i \longrightarrow C'_i$ commuting with the differentials.

DEFINITION: An element $c \in C_i$ is called **closed** if $c \in \ker d$ and **exact** if $c \in \operatorname{im} d$. Cohomology of a complex is a quotient $\frac{\ker d}{\operatorname{im} d}$.

REMARK: A homomorphism of complexes induces a natural homomorphism of cohomology groups.

DEFINITION: Let (C_*,d) , (C'_*,d) be a complex. Homotopy is a sequence of maps $h: C_* \longrightarrow C'_{*-1}$. Two homomorphisms $f,g: (C_*,d) \longrightarrow (C'_*,d)$ are called homotopy equivalent if $f-g=\{h,d\}$ for some homotopy operator h.

CLAIM: Let $f, f' : (C_*, d) \longrightarrow (C'_*, d)$ be homotopy equivalent maps of complexes. Then f and f' induce the same maps on cohomology.

Proof. Step 1: Let g := f - f'. It would suffice to prove that g induces 0 on cohomology.

Lie derivative and homotopy

CLAIM: Let $f, f': (C_*, d) \longrightarrow (C'_*, d)$ be homotopy equivalent maps of complexes. Then f and f' induce the same maps on cohomology.

Proof. Step 1: Let g := f - f'. It would suffice to prove that g induces 0 on cohomology.

Step 2: Let $c \in C_i$ be a closed element. Then g(c) = dh(c) + hd(c) = dh(c) exact.

DEFINITION: Let d be de Rham differential. A form in ker d is called **closed**, a form in im d is called **exact**. Since $d^2 = 0$, any exact form is closed. The **group of** i-th **de Rham cohomology of** M, denoted $H^i(M)$, is a quotient of a space of closed i-forms by the exact: $H^*(M) = \frac{\ker d}{\operatorname{im} d}$.

REMARK: Let v be a vector field, and $\text{Lie}_v: \Lambda^*M \longrightarrow \Lambda^*M$ be the corresponding Lie derivative. Then Lie_v commutes with the de Rham differential, and acts trivially on the de Rham cohomology.

Proof: Lie_v = $i_v d + di_v$ maps closed forms to exact.

Poincaré lemma

DEFINITION: An open subset $U \subset \mathbb{R}^n$ is called **starlike** if for any $x \in U$ the interval [0,x] belongs to U.

THEOREM: (Poicaré lemma) Let $U \subset \mathbb{R}^n$ be a starlike subset. Then $H^i(U) = 0$ for i > 0.

REMARK: The proof would follow if we construct a vector field \vec{r} such that $\operatorname{Lie}_{\vec{r}}$ is invertible on $\Lambda^*(M)$: $\operatorname{Lie}_{\vec{r}}R = \operatorname{Id}$. Indeed, for any closed form α we would have $\alpha = \operatorname{Lie}_{\vec{r}}R\alpha = di_{\vec{r}}R\alpha + i_{\vec{r}}Rd\alpha = di_{\vec{r}}R\alpha$, hence any closed form is exact.

Then Poincaré lemma is implied by the following statement.

PROPOSITION: Let $U \subset \mathbb{R}^n$ be a starlike subset, $t_1, ..., t_n$ coordinate functions, and $\vec{r} := \sum t_i \frac{d}{dt_i}$ the radial vector field. Then $\text{Lie}_{\vec{r}}$ is invertible on $\Lambda^i(U)$ for i > 0.

Radial vector field on starlike sets

PROPOSITION: Let $U \subset \mathbb{R}^n$ be a starlike subset, $t_1, ..., t_n$ coordinate functions, and $\vec{r} := \sum t_i \frac{d}{dt_i}$ the radial vector field. Then $\text{Lie}_{\vec{r}}$ is invertible on $\Lambda^i(U)$ for i > 0.

Proof. Step 1: Let t be the coordinate function on a real line, $f(t) \in C^{\infty}\mathbb{R}$ a smooth function, and $v := t \frac{d}{dt}$ a vector field. Define $R(f)(t) := \int_0^1 \frac{f(\lambda t)}{\lambda} d\lambda$. Then this integral converges whenever f(0) = 0, and satisfies $\text{Lie}_v R(f) = f$. Indeed,

$$\int_0^1 \frac{f(\lambda t)}{\lambda} d\lambda = \int_0^t \frac{f(\lambda t)}{t\lambda} d(t\lambda) = \int_0^t \frac{f(z)}{z} d(z),$$

hence $\operatorname{Lie}_v R(f) = t \frac{f(t)}{t} = f(t)$.

Step 2: Consider a function $f \in C^{\infty}\mathbb{R}^n$ satisfying f(0) = 0, and $x = (x_1, ..., x_n) \in \mathbb{R}^n$. Then

$$R(f)(x) := \int_0^1 \frac{f(\lambda x)}{\lambda} d\lambda$$

converges, and satisfies $\operatorname{Lie}_{\vec{r}} R(f) = f$.

Radial vector field on starlike sets (cont.)

Step 3: Consider a differential form $\alpha \in \Lambda^i$, and let $h_{\lambda}x \longrightarrow \lambda x$ be the homothety with coefficient $\lambda \in [0,1]$. Define

$$R(\alpha) := \int_0^1 \lambda^{-1} h_{\lambda}^*(\alpha) d\lambda.$$

Since $h_{\lambda}^*(\alpha) = 0$ for $\lambda = 0$, this integral converges. It remains to prove that $\operatorname{Lie}_{\vec{r}} R = \operatorname{Id}$.

Step 4: Let α be a coordinate monomial, $\alpha = dt_{i_1} \wedge dt_{i_2} \wedge ... \wedge dt_{i_k}$. Clearly, $\text{Lie}_{\vec{r}}(T^{-1}\alpha) = 0$, where $T = t_{i_1}t_{i_2}...t_{i_k}$. Since $h_{\lambda}^*(f\alpha) = h_{\lambda}^*(tf)T^{-1}\alpha$, we have $R(f\alpha) = R(Tf)T^{-1}\alpha$ for any function $f \in C^{\infty}M$. This gives

$$\operatorname{Lie}_{\vec{r}} R(f\alpha) = \operatorname{Lie}_{\vec{r}} R(Tf) T^{-1} \alpha = Tf T^{-1} \alpha = f\alpha.$$