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De Rham algebra (reminder)

DEFINITION: Let M be a smooth manifold. A bundle of differential
i-forms on M is the bundle ΛiT ∗M of antisymmetric i-forms on TM . It is
denoted ΛiM .

REMARK: Λ0M = C∞M .

DEFINITION: Let α ∈ (V ∗)⊗i and α ∈ (V ∗)⊗j be polylinear forms on V .
Define the tensor multiplication α⊗ β as

α⊗ β(x1, ..., xi+j) := α(x1, ..., xj)β(xi+1, ..., xi+j).

DEFINITION: Let
⊗
k T
∗M Π−→ ΛkM be the antisymmetrization map,

Π(α)(x1, ..., xn) :=
1

n!

∑
σ∈Symn

(−1)σα(xσ1, xσ2, ..., xσn).

Define the exterior multiplication ∧ : ΛiM × ΛjM −→ Λi+jM as α ∧ β :=
Π(α⊗ β), where α⊗ β is a section ΛiM ⊗ ΛjM ⊂

⊗
i+j T

∗M obtained as their
tensor multiplication.

REMARK: The fiber of the bundle Λ∗M at x ∈ M is identified with the
Grassmann algebra Λ∗T ∗xM. This identification is compatible with the Grass-
mann product.
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De Rham differential (reminder)

DEFINITION: De Rham differential d : Λ∗M −→ Λ∗+1M is an R-linear
map satisfying the following conditions.

* For each f ∈ Λ0M = C∞M , d(f) ∈ Λ1M is equal to the image of the
Kähler differential df ∈ Ω1M in Λ1M = Ω1M/K.

* (Leibnitz rule) d(a∧ b) = da∧ b+ (−1)ja∧ db for any a ∈ ΛiM, b ∈ ΛjM .
* d2 = 0.

THEOREM:
De Rham differential is uniquely determined by these axioms.

REMARK: The proof of uniqueness is based on the following lemmas.

LEMMA: Let A =
⊕
Ai be a graded algebra, B ⊂ A a set of multiplicative

generators, and D1, D2 : A−→A two odd derivations which are equal on B.
Then D1 = D2.

LEMMA: Λ∗M is generated by C∞M and d(C∞M).

REMARK: Let t1, ..., tn be coordinate functions on Rn, αi coordinate mono-
mials, and α :=

∑
fiαi. Define d(α) :=

∑
i
∑
j
dfi
dtj
dtj ∧ αi. Then d satisfies

axioms of de Rham differential. This proves its existence.
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Lie derivative (reminder)

DEFINITION: Let B be a smooth manifold, and v ∈ TM a vector field. An
endomorphism Liev : Λ∗M −→ Λ∗M , preserving the grading is called a Lie
derivative along v if it satisfies the following conditions.

(1) On functions Liev is equal to a derivative along v. (2) [Liev, d] = 0.
(3) Liev is a derivation of the de Rham algebra.

REMARK: The algebra Λ∗(M) is generated by C∞M = Λ0(M) and d(C∞M).
The restriction Liev |C∞M is determined by the first axiom. On d(C∞M) is
also determined because Liev(df) = d(Liev f). Therefore, Liev is uniquely
defined by these axioms.

LEMMA: {d, {d,E}} = 0 for each E ∈ End(Λ∗M).

Proof: By the super Jacobi identity, {d, {d,E}} = −{d, {d,E}}+ {{d, d, }E}},
however, {d, d} = 2d2 = 0.

THEOREM: (Cartan’s formula) Let iv be a convolution with a vector field.
Then {d, iv} is a Lie derivative along v.

Proof: {d, {d, iv}} = 0 by the lemma above. A supercommutator of two
derivations is a derivation. Finally, {d, iv} acts on functions as iv(df) = 〈v, df〉.
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Pullback of a differential form (reminder)

DEFINITION: Let M
ϕ−→ N be a morphism of smooth manifolds, and

α ∈ ΛiN be a differential form. Consider an i-form ϕ∗α taking value

α
∣∣∣ϕ(m)(Dϕ(x1), ...Dϕ(xi))

on x1, ..., xi ∈ TmM . It is called the pullback of α. If M
ϕ−→ N is a closed

embedding, the form ϕ∗α is called the restriction of α to M ↪→ N .

LEMMA: (*) Let Ψ1,Ψ2 : Λ∗N −→ Λ∗M be two maps which satisfy graded

Leibnitz identity, commute with de Rham differential, and satisfy Ψ1|C∞M =

Ψ2|C∞M . Then Ψ1 = Ψ2.

Proof: The algebra Λ∗M is generated multiplicatively by C∞M and d(C∞M);

restrictions of Ψi to these two spaces are equal.

CLAIM: Pullback commutes with the de Rham differential.

Proof: Follows from Lemma (*).
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Flow of diffeomorphisms (reminder)

DEFINITION: Let f : M × [a, b]−→M be a smooth map such that for all

t ∈ [a, b] the restriction ft := f
∣∣∣M×{t} : M −→M is a diffeomorphism. Then f

is called a flow of diffeomorphisms.

CLAIM: Let Vt be a flow of diffeomorphisms, f ∈ C∞M , and V ∗t (f)(x) :=

f(Vt(x)). Consider the map d
dtVt|t=c : C∞M −→ C∞M , with d

dtVt|t=c(f) =

(V −1
c )∗dVtdt |t=cf . Then (V −1

c )∗ ddtVt|t=c is a derivation (that is, a vector field).

Proof:
d

dt
Vt|t=c(fg) = V ∗c f

d

dt
Vt|t=c(g) + V ∗c g

d

dt
Vt|t=c(f).

DEFINITION: The vector field (V −1
c )∗ ddtVt|t=c is called a vector field tan-

gent to a flow of diffeomorphisms Vt at t = c.
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Lie derivative and a flow of diffeomorphisms (reminder)

DEFINITION: Let v be a vector field on M , and V : M × [a, b]−→M a flow

of diffeomorphisms which satisfies (V −1
c )∗ ddtVt|t=c = v for each c, and V0 = Id.

Then Vt is called an exponent of v.

CLAIM: Exponent of a vector field is unique; it exists when M is compact.

This statement is called “Picard-Lindelöf theorem” or “uniqueness and

existence of solutions of ordinary differential equations”.

PROPOSITION: Let v be a vector field, and Vt its exponent. For any α ∈
Λ∗M , consider V ∗t α as a Λ∗M-valued function of t. Then Liev α = d

dt(V
∗
t α)|t=0.

Proof: By definition, Liev = d
dtVt on functions. Liev commutes with de Rham

differential, because Liev = ivd+ div. The map d
dtVt commutes with de Rham

differential, because it is a derivative of a pullback. Now Lemma (*) is

applied to show that Liev α = d
dt(V

∗
t α).
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Homotopy operators

DEFINITION: A complex is a sequence of vector spaces and homomor-
phisms ...

d−→ Ci−1
d−→ Ci

d−→ Ci+1
d−→ ...

satisfying d2 = 0. Homomorphism (C∗, d)−→ (C′∗, d) of complexes is a se-
quence of homomorphism Ci −→ C′i commuting with the differentials.

DEFINITION: An element c ∈ Ci is called closed if c ∈ ker d and exact if
c ∈ im d. Cohomology of a complex is a quotient ker d

im d .

REMARK: A homomorphism of complexes induces a natural homomorphism
of cohomology groups.

DEFINITION: Let (C∗, d), (C′∗, d) be a complex. Homotopy is a sequence
of maps h : C∗ −→ C′∗−1. Two homomorphisms f, g : (C∗, d)−→ (C′∗, d) are
called homotopy equivalent if f − g = {h, d} for some homotopy operator h.

CLAIM: Let f, f ′ : (C∗, d)−→ (C′∗, d) be homotopy equivalent maps of com-
plexes. Then f and f ′ induce the same maps on cohomology.

Proof. Step 1: Let g := f − f ′. It would suffice to prove that g induces 0
on cohomology.
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Lie derivative and homotopy

CLAIM: Let f, f ′ : (C∗, d)−→ (C′∗, d) be homotopy equivalent maps of com-

plexes. Then f and f ′ induce the same maps on cohomology.

Proof. Step 1: Let g := f − f ′. It would suffice to prove that g induces 0

on cohomology.

Step 2: Let c ∈ Ci be a closed element. Then g(c) = dh(c) + hd(c) = dh(c)

exact.

DEFINITION: Let d be de Rham differential. A form in ker d is called closed,

a form in im d is called exact. Since d2 = 0, any exact form is closed. The

group of i-th de Rham cohomology of M , denoted Hi(M), is a quotient

of a space of closed i-forms by the exact: H∗(M) = ker d
im d .

REMARK: Let v be a vector field, and Liev : Λ∗M −→ Λ∗M be the corre-

sponding Lie derivative. Then Liev commutes with the de Rham differ-

ential, and acts trivially on the de Rham cohomology.

Proof: Liev = ivd+ div maps closed forms to exact.
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Poincaré lemma

DEFINITION: An open subset U ⊂ Rn is called starlike if for any x ∈ U the

interval [0, x] belongs to U .

THEOREM: (Poicaré lemma) Let U ⊂ Rn be a starlike subset. Then

Hi(U) = 0 for i > 0.

REMARK: The proof would follow if we construct a vector field ~r such

that Lie~r is invertible on Λ∗(M): Lie~rR = Id. Indeed, for any closed form α

we would have α = Lie~rRα = di~rRα+ i~rRdα = di~rRα, hence any closed form

is exact.

Then Poincaré lemma is implied by the following statement.

PROPOSITION: Let U ⊂ Rn be a starlike subset, t1, ..., tn coordinate func-

tions, and ~r :=
∑
ti
d
dti

the radial vector field. Then Lie~r is invertible on

Λi(U) for i > 0.
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Radial vector field on starlike sets

PROPOSITION: Let U ⊂ Rn be a starlike subset, t1, ..., tn coordinate func-

tions, and ~r :=
∑
ti
d
dti

the radial vector field. Then Lie~r is invertible on

Λi(U) for i > 0.

Proof. Step 1: Let t be the coordinate function on a real line, f(t) ∈ C∞R
a smooth function, and v := t ddt a vector field. Define R(f)(t) :=

∫ 1
0
f(λt)
λ dλ.

Then this integral converges whenever f(0) = 0, and satisfies LievR(f) = f .

Indeed, ∫ 1

0

f(λt)

λ
dλ =

∫ t
0

f(λt)

tλ
d(tλ) =

∫ t
0

f(z)

z
d(z),

hence LievR(f) = tf(t)
t = f(t).

Step 2: Consider a function f ∈ C∞Rn satisfying f(0) = 0, and x =

(x1, ..., xn) ∈ Rn. Then

R(f)(x) :=
∫ 1

0

f(λx)

λ
dλ

converges, and satisfies Lie~rR(f) = f.
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Radial vector field on starlike sets (cont.)

Step 3: Consider a differential form α ∈ Λi, and let hλx−→ λx be the homo-

thety with coefficient λ ∈ [0,1]. Define

R(α) :=
∫ 1

0
λ−1h∗λ(α)dλ.

Since h∗λ(α) = 0 for λ = 0, this integral converges. It remains to prove that

Lie~rR = Id.

Step 4: Let α be a coordinate monomial, α = dti1 ∧ dti2 ∧ ... ∧ dtik. Clearly,

Lie~r(T
−1α) = 0, where T = ti1ti2...tik. Since h∗λ(fα) = h∗λ(tf)T−1α, we have

R(fα) = R(Tf)T−1α for any function f ∈ C∞M. This gives

Lie~rR(fα) = Lie~rR(Tf)T−1α = TfT−1α = fα.
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