Geometry of manifolds

lecture 2: manifolds and ringed spaces

Misha Verbitsky

Math in Moscow and HSE

February 11, 2013

Sheaves and exact sequences

DEFINITION: An open cover of a topological space X is a family of open sets $\{U_i\}$ such that $\bigcup_i U_i = X$.

REMARK: A presheaf of functions is a collection of subrings of functions on open subsets, compatible with restrictions. **A sheaf of fuctions is a presheaf allowing "gluing"** a function on a bigger open set if its restrictions to smaller open sets are compatible.

DEFINITION: A sequence $A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow ...$ of homomorphisms of abelian groups or vector spaces is called **exact** if the image of each map is the kernel of the next one.

CLAIM: A presheaf \mathcal{F} is a sheaf if and only if for every cover $\{U_i\}$ of an open subset $U \subset M$, the sequence of restriction maps

$$0 \to \mathcal{F}(U) \to \prod_i \mathcal{F}(U_i) \to \prod_{i \neq j} \mathcal{F}(U_i \cap U_j)$$

is exact, with $\eta \in \mathcal{F}(U_i)$ mapped to

$$\eta |_{U_i \cap U_j} - \eta |_{U_j \cap U_i} \in \mathcal{F}(U_i \cap U_j) \oplus \mathcal{F}(U_j \cap U_i) \subset \prod_{i \neq j} \mathcal{F}(U_i \cap U_j)$$

Ringed spaces

A ringed space (M, \mathcal{F}) is a topological space equipped with a sheaf of functions. A morphism $(M, \mathcal{F}) \xrightarrow{\Psi} (N, \mathcal{F}')$ of ringed spaces is a continuous map $M \xrightarrow{\Psi} N$ such that, for every open subset $U \subset N$ and every function $f \in \mathcal{F}'(U)$, the function $\psi^* f := f \circ \Psi$ belongs to the ring $\mathcal{F}(\Psi^{-1}(U))$. An isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ^{-1} are morphisms of ringed spaces.

DEFINITION: Let (M, \mathcal{F}) be a topological manifold equipped with a sheaf of functions. It is said to be a **smooth manifold of class** C^{∞} or C^i if every point in (M, \mathcal{F}) has an open neighborhood isomorphic to the ringed space $(\mathbb{B}^n, \mathcal{F}')$, where $\mathbb{B}^n \subset \mathbb{R}^n$ is an open ball and \mathcal{F}' is a ring of functions on an open ball \mathbb{B}^n of this class.

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism φ which induces an isomorphims of ringed spaces, that is, φ and φ^{-1} map (locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class C^{∞} .

Charts and coordinates

DEFINITION: Coordinate system on a manifold M is an open subset $V \subset M$ equipped with an isomorphism of ringed spaces $(V, C^{\infty}V) \cong (\mathbb{B}^n, C^{\infty}\mathbb{B}^n)$ per definition of a manifold.

DEFINITION: A chart on a smooth manifold $(M, C^{\infty}M)$ is an open subset $U \subset M$ together with an embedding $\psi : U \longrightarrow \mathbb{R}^n$ given by smooth functions $\varphi_1, ..., \varphi_n \in C^{\infty}M$ inducing a diffeomorphism on any open subset $V \subset U$ equipped with a coordinate system $(V, C^{\infty}V) \cong (\mathbb{B}^n, C^{\infty}\mathbb{B}^n)$.

DEFINITION: Transition map between two charts $\psi_1 : U_1 \longrightarrow \mathbb{R}^n$ and $\psi_2 : U_2 \longrightarrow \mathbb{R}^n$ is a map $\Psi_{ij} : \psi_1(U_1 \cap U_2) \longrightarrow \psi_2(U_1 \cap U_2)$ defined as $\Psi_{ij}(x) = \psi_2(\psi_1^{-1}(x))$.

CLAIM: Transition maps are smooth.

Proof: In local coordinates all functions $\varphi_1, ..., \varphi_n$ used in the definition of the transition map are smooth.

Atlases on manifolds

DEFINITION: An atlas on a smooth manifold is a collection of charts $\{U_i, \psi_i : U_i \longrightarrow \mathbb{R}^n\}$ satisfying $\bigcup U_i = M$ together with their transition maps.

REMARK: In such a situation, the charts U_i are usually identified with their images $\psi(U_i) \subset \mathbb{R}^n$.

REMARK: The sheaf $C^{\infty}M$ can be reconstructed from an atlas as follows: a function f on $U \subset M$ is smooth if and only if its restrictions to $U \cap U_i$ are smooth on all charts.

Embedded submanifolds

DEFINITION: A closed embedding φ : $N \hookrightarrow M$ of topological spaces is an injective map from N to a closed subset $\varphi(N)$ inducing a homeomorphism of N and $\varphi(N)$.

DEFINITION: $M \subset \mathbb{R}^n$ is called a submanifold of dimension m if for every point $x \in N$, there is a neighborhood $U \subset \mathbb{R}^n$ diffeomorphic to an open ball, such that this diffeomorphism maps $U \cap N$ onto a linear subspace of dimension m.

DEFINITION: Let $M \subset \mathbb{R}^n$ be a submanifold. A sheaf of smooth functions $C^{\infty}M$ is defined as the sheaf of all functions on $U \subset M$ which can be locally extended to smooth functions on an open subset of \mathbb{R}^n containing U.

Embedded submanifolds are smooth

EXAMPLE: Let $M = \mathbb{R}^k \subset \mathbb{R}^n$ be a linear space, and $\pi : \mathbb{R}^n \longrightarrow M$ be a linear projection. A function f on $U \subset M$ is smooth if and only if $\pi^* f$ is smooth (by definition, $\pi^* f(z) = f(\pi(z))$). Therefore, any smooth function on U can be extended to $\pi^{-1}(U) \subset \mathbb{R}^n$. We obtain that $(M, C^{\infty}M) \cong (\mathbb{R}^k, C^{\infty}\mathbb{R}^k)$.

CLAIM: Let $M \subset \mathbb{R}^n$ be a submanifold, and $C^{\infty}M$ the sheaf defined above. **Then** $(M, C^{\infty}M)$ is a smooth manifold.

Proof: Locally around each point of M, the pair (\mathbb{R}^n, M) is diffeomorphic to $(\mathbb{R}^n, \mathbb{R}^k)$. Then the previous example can be applied.

THEOREM: Any manifold can be embedded to \mathbb{R}^n .

Its proof takes some work and will be done in the next lecture.

Locally finite covers

DEFINITION: An open cover $\{U_{\alpha}\}$ of a topological space M is called **locally** finite if every point in M possesses a neighborhood that intersects only a finite number of U_{α} .

CLAIM: Let $\{U_{\alpha}\}$ be a locally finite atlas on a manifold M. Then there exists a refinement $\{V_{\beta}\}$ of $\{U_{\alpha}\}$ such that a closure of each V_{β} is compact in M.

Proof: Let $\{U_{\alpha}\}$ be a locally finite atlas on M, and $U_{\alpha} \xrightarrow{\varphi_{\alpha}} \mathbb{R}^{n}$ homeomorphisms. Consider a cover $\{V_{i}\}$ of \mathbb{R}^{n} given by open balls of radius 2 centered in integer points, and let $\{W_{\beta}\}$ be a cover of M obtained as union of $\varphi_{\alpha}^{-1}(V_{i})$. **Then** $\{W_{\beta}\}$ **is locally finite.**

DEFINITION: Let $U \subset V$ be two open subsets of M such that the closure of U is contained in V. In this case we write $U \subseteq V$.

Locally finite covers and their subcovers

EXERCISE: Let K_1, K_2 be non-intersecting compact subsets of a Hausdorff topological space M. Show that there exist a pair of open subsets $U_1 \supset K_1$, $U_2 \supset K_2$ satisfying $U_1 \cap U_2 = \emptyset$.

CLAIM: Let $U \subset M$ be an open subset with compact closure, and $V \supset M \setminus U$ another open subset. Then there exists $U' \subset U$ such that the closure of U' is contained in U, and $V \cup U' = M$.

Proof. Step 1: The complement $M \setminus U$ does not intersect $M \setminus V$, these sets are closed, and $M \setminus V$ is compact. Replacing M by the closure \overline{U} , we may consider that that $M \setminus U$ is also compact.

Step 2: Take open subsets $A, B \subset M$ separating $M \setminus U$ and $M \setminus V$. Then the closure \overline{B} does not intersect $M \setminus U$, because B does not intersect an open neighbourhood of $M \setminus U$. Therefore, U' := B lies in U with its closure.

Step 3: By construction, \overline{B} contains $M \setminus V$, hence $U' \cup V = M$.

Locally finite covers and their subcovers

THEOREM: Let $\{U_{\alpha}\}$ be a countable locally finite cover of a Hausdorff topological space, such that a closure of each U_{α} is compact. Then there exists another cover $\{V_{\alpha}\}$ indexed by the same set, such that $V_{\alpha} \in U_{\alpha}$.

Proof. Step 1: Let $U_1, U_2, ...$ be all elements of the cover. Suppose that $V_1, ..., V_{n-1}$ is already found. To take an induction step it remains to find $V_n \in U_n$

Step 2: Replacing U_i by V_i and renumbering, we may assume that n = 1. **Then the statement of Theorem follows from the previous exercise applied to** $V = \bigcup_{i=2}^{\infty} U_i$ and $U = U_1$.

Construction of a partition of unity

REMARK: If all U_{α} are diffeomorphic to \mathbb{R}^n , all V_{α} can be chosen diffeomorphic to an open ball. Indeed, any compact set is contained in an open ball.

COROLLARY: Let M be a manifold admitting a locally finite countable cover $\{U_{\alpha}\}$, with $\varphi_{\alpha} : U_{\alpha} \longrightarrow \mathbb{R}^{n}$ diffeomorphisms. Then there exists another atlas $\{U_{\alpha}, \varphi'_{\alpha} : U_{\alpha} \longrightarrow \mathbb{R}^{n}\}$, such that $\varphi'_{\alpha}(\mathbb{B})$ is also a cover of M, and $\mathbb{B} \subset \mathbb{R}^{n}$ a unit ball.

EXERCISE: Find a smooth function ν : $\mathbb{R}^n \longrightarrow [0,1]$ which vanishes outside of $\mathbb{B} \subset \mathbb{R}^n$ and is positive on \mathbb{B} .

REMARK: In assumptions of Corollary, let $\nu_{\alpha}(z) := \nu(\varphi'_{\alpha})$, and $\mu_i := \frac{\nu_i}{\sum_{\alpha} \nu_{\alpha}}$. Then μ_{α} : $M \longrightarrow [0, 1]$ are smooth functions with support in U_{α} satisfying $\sum_{\alpha} \mu_{\alpha} = 1$. Such a set of functions is called a partition of unity.

Partition of unity: a formal definition

DEFINITION: Let M be a smooth manifold and let $\{U_{\alpha}\}$ a locally finite cover of M. A **partition of unity** subordinate to the cover $\{U_{\alpha}\}$ is a family of smooth functions $f_i : M \to [0, 1]$ with compact support indexed by the same indices as the U_i 's and satisfying the following conditions. (a) Every function f_i vanishes outside U_i (b) $\sum_i f_i = 1$

The argument of previous page proves the following theorem.

THEOREM: Let $\{U_{\alpha}\}$ be a countable, locally finite cover of a manifold M, with all U_{α} diffeomorphic to \mathbb{R}^n . Then there exists a partition of unity subordinate to $\{U_{\alpha}\}$.

Whitney's theorem for compact manifolds

THEOREM: Let M be a compact smooth manifold. Then M admits a closed smooth embedding to \mathbb{R}^N .

Proof. Step 1: Choose a finite atlas $\{V_i, \varphi_i : V_i \longrightarrow \mathbb{R}^n, i = 1, 2, ..., m\}$, and subordinate partution of unity $\mu_i : M \longrightarrow [0, 1]$. Let $\alpha : [0, 1] \longrightarrow [0, 1]$ be a smooth, monotonous function mapping 0 to 0 and [1/2m, 1] to 1, and $\nu_i := \alpha(\mu_i)$.

Step 2: Denote by W_i the set of interior points of $\overline{W}_i := \{z \mid \nu_i(z) = 1\}$. Since $\sum_{i=1}^m \mu_i = 1$, the set $\{W_i\}$ is a cover of M.

Step 3: For each *i*, the map $\Phi_i(z) := \left(\nu_i \varphi_i(z), \sqrt{1 - |\varphi_i(z)|^2 \nu_i(z)^2}\right)$ is injective on W_i and maps *M* to a sphere $S^n \subset \mathbb{R}^{n+1}$.

Step 4: The product map

$$\Psi := \prod_{i=1}^{m} : \Phi_i : M \longrightarrow \underbrace{S^n \times S^n \times \dots \times S^n}_{m \text{ times}}$$

is an injective, continuous map from a compact, hence it is a homeomorphism to its image (prove it).

Whitney's theorem for compact manifolds (cont.)

Step 5: Any smooth function on $\overline{W}_i := \{z \mid \nu_i(z) = 1\}$ can be obtained as a restriction of a smooth function on $\Phi_i(\overline{W}_i) \subset S^n$, hence **this map induces** an isomorphism of the ring of smooth functions on \overline{W}_i and its image.

Step 6: Let W_i be the set of interior points of \overline{W}_i . We have constructed a cover $\{W_i\}$ of M such that on each W_i the map Ψ induced an isomorphism of ringed spaces.