Geometry of manifolds

lecture 3: partition of unity

Misha Verbitsky

Math in Moscow and HSE

February 18, 2013

Sheaves of functions (reminder)

DEFINITION: An open cover of a topological space X is a family of open sets $\{U_i\}$ such that $\bigcup_i U_i = X$.

DEFINITION: A presheaf of functions on a topological space M is a collection of subrings $\mathcal{F}(U) \subset C(U)$ in the ring C(U) of all functions on U, for each open subset $U \subset M$, such that the restriction of every $\gamma \in \mathcal{F}(U)$ to an open subset $U_1 \subset U$ belongs to $\mathcal{F}(U_1)$.

DEFINITION: A presheaf of functions \mathcal{F} is called a sheaf of functions if these subrings satisfy the following condition. Let $\{U_i\}$ be a cover of an open subset $U \subset M$ (possibly infinite) and $f_i \in \mathcal{F}(U_i)$ a family of functions defined on the open sets of the cover and compatible on the pairwise intersections:

$$f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$$

for every pair of members of the cover. Then there exists $f \in \mathcal{F}(U)$ such that f_i is the restriction of f to U_i for all i.

REMARK: A presheaf of functions is a collection of subrings of functions on open subsets, compatible with restrictions. **A sheaf of fuctions is a presheaf allowing "gluing"** a function on a bigger open set if its restrictions to smaller open sets are compatible.

Ringed spaces (reminder)

A ringed space (M, \mathcal{F}) is a topological space equipped with a sheaf of functions. A morphism $(M, \mathcal{F}) \xrightarrow{\Psi} (N, \mathcal{F}')$ of ringed spaces is a continuous map $M \xrightarrow{\Psi} N$ such that, for every open subset $U \subset N$ and every function $f \in \mathcal{F}'(U)$, the function $\psi^* f := f \circ \Psi$ belongs to the ring $\mathcal{F}(\Psi^{-1}(U))$. An isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ^{-1} are morphisms of ringed spaces.

DEFINITION: Let (M, \mathcal{F}) be a topological manifold equipped with a sheaf of functions. It is said to be a **smooth manifold of class** C^{∞} or C^i if every point in (M, \mathcal{F}) has an open neighborhood isomorphic to the ringed space $(\mathbb{B}^n, \mathcal{F}')$, where $\mathbb{B}^n \subset \mathbb{R}^n$ is an open ball and \mathcal{F}' is a ring of functions on an open ball \mathbb{B}^n of this class.

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism φ which induces an isomorphims of ringed spaces, that is, φ and φ^{-1} map (locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class C^{∞} .

Charts and coordinates (reminder)

DEFINITION: Coordinate system on a manifold M is an open subset $V \subset M$ equipped with an isomorphism of ringed spaces $(V, C^{\infty}V) \cong (\mathbb{B}^n, C^{\infty}\mathbb{B}^n)$ per definition of a manifold.

DEFINITION: A chart on a smooth manifold $(M, C^{\infty}M)$ is an open subset $U \subset M$ together with an embedding $\psi : U \longrightarrow \mathbb{R}^n$ given by smooth functions $\varphi_1, ..., \varphi_n \in C^{\infty}M$ inducing a diffeomorphism on any open subset $V \subset U$ equipped with a coordinate system $(V, C^{\infty}V) \cong (\mathbb{B}^n, C^{\infty}\mathbb{B}^n)$.

DEFINITION: Transition map between two charts $\psi_1 : U_1 \longrightarrow \mathbb{R}^n$ and $\psi_2 : U_2 \longrightarrow \mathbb{R}^n$ is a map $\Psi_{ij} : \psi_1(U_1 \cap U_2) \longrightarrow \psi_2(U_1 \cap U_2)$ defined as $\Psi_{ij}(x) = \psi_2(\psi_1^{-1}(x))$.

CLAIM: Transition maps are smooth.

Proof: In local coordinates all functions $\varphi_1, ..., \varphi_n$ used in the definition of the transition map are smooth.

Atlases on manifolds (reminder)

DEFINITION: An atlas on a smooth manifold is a collection of charts $\{U_i, \psi_i : U_i \longrightarrow \mathbb{R}^n\}$ satisfying $\bigcup U_i = M$ together with their transition maps.

REMARK: In such a situation, the charts U_i are usually identified with their images $\psi(U_i) \subset \mathbb{R}^n$.

REMARK: The sheaf $C^{\infty}M$ can be reconstructed from an atlas as follows: a function f on $U \subset M$ is smooth if and only if its restrictions to $U \cap U_i$ are smooth on all charts.

Locally finite covers (reminder)

DEFINITION: An open cover $\{U_{\alpha}\}$ of a topological space M is called **locally** finite if every point in M has a neighborhood intersecting only a finite number of U_{α} .

CLAIM: Let $\{U_{\alpha}\}$ be a locally finite atlas on a manifold M. Then there exists a refinement $\{V_{\beta}\}$ of $\{U_{\alpha}\}$ such that a closure of each V_{β} is compact in M.

THEOREM: Let $\{U_{\alpha}\}$ be a countable locally finite cover of a Hausdorff topological space, such that a closure of each U_{α} is compact. Then there exists another cover $\{V_{\alpha}\}$ indexed by the same set, such that $V_{\alpha} \subseteq U_{\alpha}$.

REMARK: If all U_{α} are diffeomorphic to \mathbb{R}^n , all V_{α} can be chosen diffeomorphic to an open ball. Indeed, any compact set is contained in an open ball.

COROLLARY: Let M be a manifold admitting a locally finite countable cover $\{V_{\alpha}\}$, with $\varphi_{\alpha} : V_{\alpha} \longrightarrow \mathbb{R}^{n}$ diffeomorphisms. Then there exists another atlas $\{U_{\alpha}, \varphi'_{\alpha} : U_{\alpha} \longrightarrow \mathbb{R}^{n}\}$, such that $\varphi'_{\alpha}(\mathbb{B})$ is also a cover of M, and $\mathbb{B} \subset \mathbb{R}^{n}$ a unit ball.

Construction of a partition of unity

CLAIM: There exists a smooth function $\nu : \mathbb{R}^n \longrightarrow [0, 1]$ which vanishes outside of a unit ball $\mathbb{B} \subset \mathbb{R}^n$ and is positive on \mathbb{B} .

Proof. Step 1: There exists a smooth function $a : \mathbb{R} \longrightarrow \mathbb{R}$ which is positive on $\mathbb{R}^{>0}$ and 0 on $\mathbb{R}^{\leq 0}$. Take $a = e^{-x^{-2}}$ on $\mathbb{R}^{>0}$ and a = 0 on $\mathbb{R}^{\leq 0}$.

Step 2: There exists a smooth function $b : \mathbb{R} \longrightarrow \mathbb{R}$ vanishing outside of [0,1] and positive on the open interval]0,1[. Take b(x) = a(x)a(1-x).

Step 3: There exists a smooth function $c : \mathbb{R} \to \mathbb{R}$ equal to 0 on $]1, \infty[$ and equal to 1 on $] - \infty, 0[$. Take $c(x) = 1 - \lambda^{-1} \int_{-\infty}^{x} b(x) dx$, where $\lambda := \int_{-\infty}^{\infty} b(x) dx$.

Step 4: Now, let $\nu(z) := c(|z|^2)$. This function is smooth, vanishes on $|z| \ge 1$, and positive on |z| < 1.

REMARK: In assumptions of Corollary, let $\nu_{\alpha}(z) := \nu(\varphi'_{\alpha})$, and $\mu_i := \frac{\nu_i}{\sum_{\alpha} \nu_{\alpha}}$. Then μ_{α} : $M \longrightarrow [0, 1]$ are smooth functions with support in U_{α} satisfying $\sum_{\alpha} \mu_{\alpha} = 1$. Such a set of functions is called a partition of unity.

Partition of unity: a formal definition

DEFINITION: Let M be a smooth manifold and let $\{U_{\alpha}\}$ a locally finite cover of M. A **partition of unity** subordinate to the cover $\{U_{\alpha}\}$ is a family of smooth functions $f_i : M \to [0, 1]$ with compact support indexed by the same indices as the U_i 's and satisfying the following conditions. (a) Every function f_i vanishes outside U_i (b) $\sum_i f_i = 1$

The argument of previous page proves the following theorem.

THEOREM: Let $\{U_{\alpha}\}$ be a countable, locally finite cover of a manifold M, with all U_{α} diffeomorphic to \mathbb{R}^n . Then there exists a partition of unity subordinate to $\{U_{\alpha}\}$.

Whitney's theorem for compact manifolds

THEOREM: Let M be a compact smooth manifold. Then M admits a closed smooth embedding to \mathbb{R}^N .

Proof. Step 1: Choose a finite atlas $\{V_i, \varphi_i : V_i \longrightarrow \mathbb{R}^n, i = 1, 2, ..., m\}$, and subordinate partution of unity $\mu_i : M \longrightarrow [0, 1]$. Let $\alpha : [0, 1] \longrightarrow [0, 1]$ be a smooth, monotonous function mapping 0 to 0 and [1/2m, 1] to 1, and $\nu_i := \alpha(\mu_i)$.

Step 2: Denote by W_i the set of interior points of $\overline{W}_i := \{z \mid \nu_i(z) = 1\} = \{z \mid \mu_i(z) \ge \frac{1}{2m}\}$. Since $\sum_{i=1}^m \mu_i = 1$, the set $\{W_i\}$ is a cover of M.

Step 3: For each *i*, the map $\Phi_i(z) := \frac{(\nu_i \varphi_i(z), 1 - \nu_i(z))}{|(\nu_i \varphi_i(z), 1 - \nu_i(z))|}$ is smooth and induces a diffeomorphism of W_i and an open subset of $S^n \subset \mathbb{R}^{n+1}$.

Step 4: The product map

$$\Psi := \prod_{i=1}^{m} : \Phi_i : M \longrightarrow \underbrace{S^n \times S^n \times \ldots \times S^n}_{m \text{ times}}$$

is an injective, continuous map from a compact, hence it is a homeomorphism to its image. It is a smooth embedding, because its differential is injective. ■

Embedding to \mathbb{R}^∞

QUESTION: What if *M* is non-compact?

DEFINITION: Define \mathbb{R}_f^I as a direct sum of several copies of \mathbb{R} indexed by a set I, that is, the set of points in a product where only finitely meny of coordinates can be non-zero. The set \mathbb{R}_f^I has metric

$$d((x_1, ..., x_n, ...), (y_1, ..., y_n, ...)) := \sqrt{|x_1 - y_1|^2 + |x_2 - y_2|^2 + ... + |x_n - y_n| +}$$

It is well-defined, because only finitely many of x_i, y_i are non-zero.

THEOREM: Let M be a compact smooth manifold, $\{V_i, \varphi_i : V_i \longrightarrow \mathbb{R}^n, i \in I\}$ be a locally finite atlas, and $\mu_i : M \longrightarrow [0, 1]$ a subordinate partition of unity. Define $\nu_i := \alpha(\mu_i)$ and Φ_i as above, and let

$$\Psi := \prod_{I} : \Phi_i : M \longrightarrow \underbrace{S^n \times S^n \times \dots \times S^n}_{I \text{ times}} \subset (\mathbb{R}^{n+1})^I$$

be the corresponding product map. Then Ψ is a homeomorphism to its image.

Embedding to \mathbb{R}^{∞} (cont.)

THEOREM: Let M be a compact smooth manifold, $\{V_i, \varphi_i : V_i \longrightarrow \mathbb{R}^n, i \in I\}$ be a locally finite atlas, and $\mu_i : M \longrightarrow [0, 1]$ a subordinate partition of unity. Define $\nu_i := \alpha(\mu_i)$ and Φ_i as above, and let

$$\Psi := \prod_{I} : \Phi_i : M \longrightarrow \underbrace{S^n \times S^n \times \dots \times S^n}_{I \text{ times}} \subset (\mathbb{R}^{n+1})^I$$

be the corresponding product map. Then Ψ is a homeomorphism to its image.

Proof. Step 1: Ψ is injective by construction. To prove that it is a homeomorphism, it suffices to check that an image of an open set U is open in $\Psi(M)$, for each $U \subset W_i$, for some open cover $\{W_i\}$

Step 2: However, the set $\Psi(W_i)$ is determined by $\nu_i(z) = 1$, that is, by $\Phi_i(z)_{n+1} = 1$, where $\Phi_i(z)_{n+1}$ is the last coordinate of $\Phi_i(z)$. Therefore, Ψ maps W_i to an open subset of $\Psi(M)$.

Step 3: Since $\Phi_i|_{\overline{W}_i}$ (restriction to a closure) is a continuous, bijective map from a compact, it's a homeomorphism. Therefore, **an image of any open subset** $U \subset W_i$ **is open in** $\Psi(W_i)$, which is open in $\Psi(M)$ as follows from **Step 2.**

Paracompactness

DEFINITION: An open cover of a topological space X is a family of open sets $\{U_i\}$ such that $\bigcup_i U_i = X$. A cover $\{V_i\}$ is a refinement of a cover $\{U_i\}$ if every V_i is contained in some U_i .

DEFINITION: A cover of M is called **locally finite** if any point $x \in M$ has a neighbourhood intersecting only finitely many of the elements of a cover.

DEFINITION: A topological space is called **paracompact** if any cover admits a locally finite refinement.

EXERCISE: Let *M* be a paracompact topological space, and $Z \subset M$ a closed supset. **Prove that** *Z* **is paracompact.**

Paracompactness and partitions of unity

THEOREM: Let *M* be a manifold. Then the following conditions are equivalent:

- (i) *M* is metrizable
- (ii) *M* admits a partition of unity
- (iii) *M* is paracompact.

Proof: Implication (iii) \Rightarrow (ii) is proven above. Metrizability of M follows from existence of partition of unity, because M admits a homeomorphism to a subset of a metric space \mathbb{R}^{I} . This proves (ii) \Rightarrow (i). It remains to prove that metrizability implies paracompactness.

We don't need it, but I will give a short sketch of a proof.

Paracompactness and partitions of unity (cont.)

Step 1: Consider the function $\rho : M \longrightarrow \mathbb{R}^{\geq 0}$ mapping $x \in M$ to a supremum of all r such that the open ball $B_r(x)$ is contained in one of U_i , and its closure is compact. It is easy to check that ρ is continuous, and, indeed, 1-Lipschitz (prove it).

Step 2: Now we can replace $\{U_i\}$ by a cover $\{B_{\rho(x)}(x) \mid x \in M\}$, which is its refinement.

Step 3: Take a maximal subset $Z \subset M$ such that for each distinct $x, y \in Z$, one has $d(x,y) \ge 1/8\rho(x)$. Such a subset exists by Zorn's Lemma. Since ρ is 1-Lipschitz, $\{W_i\} := \{B_{1/2\rho(x)}(x) \mid x \in Z\}$ is also a cover of M. It is a refinement of $\{U_i\}$, as follows from Step 2.

Step 4: Now, each $W_i = B_{1/2\rho(z_i)}(z_i)$ intersects only those $W_j = B_{1/2\rho(z_j)}(z_j)$ for which $d(z_i, z_j) \ge 1/8\rho(z_i)$, and there are only finitely many of them, by compactness of \overline{W}_i .

Measure 0 subsets and Sard's theorem

DEFINITION: A subset $Z \subset \mathbb{R}^n$ has measure zero if, for every $\varepsilon > 0$, there exists a countable cover of Z by open balls U_i such that $\sum_i \text{Vol } U_i < \varepsilon$.

DEFINITION: A subset $Z \subset M$ of a manifold M has measure 0 if intersection of M with each chart $U_i \hookrightarrow \mathbb{R}^n$ has measure 0.

Properties of measure 0 subsets.

A countable union of measure 0 subsets has measure 0. A measure 0 subset $Z \subset M$ is nowhere dense, that is, $(M \setminus Z) \cap U \neq \emptyset$ for any non-empty open subset $U \subset M$.

THEOREM: (a special case of Sard's Lemma) Let $f : M \rightarrow N$ be a smooth map of manifolds, dim $M < \dim N$. Then f(M) has measure zero in N.

Its proof will be given in the next lecture (if needed).

Whitney's theorem (with a bound on dimension): strategy of the proof

THEOREM: Let *M* be a smooth *n*-manifold. Then *M* admits a closed embedding to \mathbb{R}^{2n+2} .

Strategy of the proof:

1. *M* is embedded to \mathbb{R}^{∞} .

2. We find a linear projection $\mathbb{R}^{\infty} \xrightarrow{\pi} \mathbb{R}^{2n+2}$ such that $\pi|_M$ is a closed embedding of manifolds.

LEMMA: Let $M \subset \mathbb{R}^I$ be a subset, and $\pi : \mathbb{R}^I \longrightarrow \mathbb{R}^J$ a linear projection. Consider the set W of all vectors $\mathbb{R}(x-y)$, where $x, y \in M$ are distinct points. **Then** $\pi|_M$ **is injective if and only if** ker $\pi \cap W = 0$.

Proof: $\pi|_M$ is not injective if and only if $\pi(x) = \pi(y)$, which is equivalent to $\pi(x-y) = 0$.

Whitney's theorem: injectivity of projections

REMARK: Let $M \subset \mathbb{R}^{I}$ be a submanifold, and $W \subset \mathbb{R}^{I}$ the set of all vectors $\mathbb{R}(x-y)$, where $x, y \in M$ are distinct points. Then W is an image of a 2m+1-dimensional manifold, hence (by Sard's Lemma) for any projection of \mathbb{R}^{I} to a (2m+2)-dimensional space, image of W has measure 0.

COROLLARY: Let $M \subset \mathbb{R}^I$ be an *m*-dimensional submanifold, and $S \subset \mathbb{R}^I$ a maximal linear subspace not intersecting W. Then the projection of Wto \mathbb{R}^I/S is surjective.

Proof: Suppose it's not surjective: $v \notin S$. Then $S \oplus \mathbb{R}v$ satisfies assumptions of lemma, hence $M \longrightarrow \mathbb{R}^{I}/(S + \mathbb{R}v)$ is also injective.

THEOREM: Let M be a smooth n-manifold, $M \hookrightarrow \mathbb{R}^I$ an embedding constructed earlier. Then there exists a projection $\pi : \mathbb{R}^I \longrightarrow \mathbb{R}^{2n+2}$ which is injective on M.

Proof: Let *S* be the maximal linear subspace such that the restriction of $\pi : \mathbb{R}^I \longrightarrow \mathbb{R}^I / S$ to *M* is injective. Then the 2m + 1-dimensional manifold *W* surjects to \mathbb{R}^I / S , hence dim $\mathbb{R}^i / S \leq 2m + 1$ by Sard's lemma.

Tangent space to an embedded manifold

DEFINITION: Let $M \hookrightarrow \mathbb{R}^n$ be a smooth *m*-submanifold. The **tangent** plane at $p \in M$ is the plane in \mathbb{R}^n tangent to M (i.e, the plane lying in the image of the differential given in local coordinates). A **tangent vector** is an arbitrary vector in this plane with the origin at p. The space of all tangent vectors at p is denoted by T_pM . Given a metric on \mathbb{R}^n , we can define the space of **unit tangent vectors** $\mathbb{S}^{m-1}M$ as the set of all pairs (p, v), where $p \in M$, $v \in T_pM$, and |v| = 1.

REMARK: $\mathbb{S}^{m-1}M$ is a smooth manifold, projected to M with fibers isomorphic to m-1-spheres, hence $\mathbb{S}^{m-1}M$ is (2m-1)-dimensional.

LEMMA: Let $M \subset \mathbb{R}^I$ be a subset, and $\pi : \mathbb{R}^I \longrightarrow \mathbb{R}^J$ a linear projection. Consider the set W' of all vectors $\mathbb{R}t$, where $t \in T_x M$ Then the differential $D\pi|_M$ is injective if and only if ker $\pi \cap W' = 0$.

Now the above argument is repeated: we take a maximal space $S \supset \mathbb{R}^I$ such that the restriction of π : $\mathbb{R}^I \longrightarrow \mathbb{R}^I / S$ to M is injective and has injective differential, and the projection of $W \cup W'$ to \mathbb{R}^I / S has to be surjective. However, W' is an image of an 2m-dimensional manifold $\mathbb{S}^{m-1}M \times \mathbb{R}$, hence **the projection of** $W \cup W'$ to \mathbb{R}^I / S can be surjective only if dim $\mathbb{R}^I / S \leq 2m + 2$.

This proves Whitney's theorem.