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Sheaves of functions (reminder)

DEFINITION: An open cover of a topological space X is a family of open
sets {U;} such that U; U; = X.

DEFINITION: A presheaf of functions on a topological space M is a
collection of subrings F(U) C C(U) in the ring C(U) of all functions on U, for
each open subset U C M, such that the restriction of every v € F(U) to an
open subset U7 C U belongs to F(Uy).

DEFINITION: A presheaf of functions F is called a sheaf of functions if
these subrings satisfy the following condition. Let {U;} be a cover of an open
subset U C M (possibly infinite) and f; € F(U;) a family of functions defined
on the open sets of the cover and compatible on the pairwise intersections:

filUiﬂUj — fleiﬂUj
for every pair of members of the cover. Then there exists f ¢ F(U) such
that f; is the restriction of f to U, for all :.

REMARK: A presheaf of functions is a collection of subrings of functions
on open subsets, compatible with restrictions. A sheaf of fuctions is a
presheaf allowing “gluing” a function on a bigger open set if its restrictions
to smaller open sets are compatible.
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Ringed spaces (reminder)

A ringed space (M, F) is a topological space equipped with a sheaf of func-
tions. A morphism (M, F) v, (N, F") of ringed spaces is a continuous map
M i> N such that, for every open subset U C N and every function f € F(U),
the function *f := f o W belongs to the ring ]—"(\lf_l(U)). An isomorphism
of ringed spaces is a homeomorphism W such that W and w1 are morphisms
of ringed spaces.

DEFINITION: Let (M, F) be a topological manifold equipped with a sheaf
of functions. It is said to be a smooth manifold of class C>® or C" if every
point in (M,F) has an open neighborhood isomorphic to the ringed space
(B", F), where B™ C R"™ is an open ball and F’ is a ring of functions on an
open ball B™ of this class.

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism
@ which induces an isomorphims of ringed spaces, that is, ¢ and go_l map
(locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class (°°.
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Charts and coordinates (reminder)

DEFINITION: Coordinate system on a manifold M is an open subset V C
M equipped with an isomorphism of ringed spaces (V,C*®V) = (B", C°°B")
per definition of a manifold.

DEFINITION: A chart on a smooth manifold (M,C®M) is an open subset
U C M together with an embedding v . U — R" given by smooth func-
tions ¢q,...,on € C°°M inducing a diffeomorphism on any open subset V C U
equipped with a coordinate system (V,C*°V) = (B", C°°B").

DEFINITION: Transition map between two charts 1 : U; — R"™ and
Yo 1 Uy — R"is a map W;; . Y1 (U1 NU2) — ¥2(U1 NU2) defined as W;,(x) =
o (11 ().

CLAIM: Transition maps are smooth.

Proof: In local coordinates all functions ¢4, ..., on used in the definition of the
transition map are smooth. m
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Atlases on manifolds (reminder)

DEFINITION: An atlas on a smooth manifold is a collection of charts
{U;,v; : U; — R™} satisfying JU; = M together with their transition maps.

REMARK: In such a situation, the charts U; are usually identified with
their images ' (U;) C R™.

REMARK: The sheaf C°°M can be reconstructed from an atlas as
follows: a function f on U C M is smooth if and only if its restrictions to
U NU; are smooth on all charts.
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Locally finite covers (reminder)

DEFINITION: An open cover {U,} of a topological space M is called locally
finite if every point in M has a neighborhood intersecting only a finite number
of Ug,.

CLAIM: Let {U,} be a locally finite atlas on a manifold M. Then there
exists a refinement {Vz} of {U,} such that a closure of each Vj is
compact in M.

THEOREM: Let {U,} be a countable locally finite cover of a Hausdorff
topological space, such that a closure of each U, is compact. Then there
exists another cover {V,} indexed by the same set, such that V, € U,.

REMARK: If all U, are diffeomorphic to R", all V, can be chosen diffeo-
morphic to an open ball. Indeed, any compact set is contained in an open
ball.

COROLLARY: Let M be a manifold admitting a locally finite countable
cover {V,}, with ¢ : Vo — R™ diffeomorphisms. Then there exists another
atlas {U,, ., : Uy — R"}, such that ¢/ (B) is also a cover of M, and
B C R"™ a unit ball. =
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Construction of a partition of unity

CLAIM: There exists a smooth function v : R"™ — [0, 1] which vanishes
outside of a unit ball B C R" and is positive on B.

Proof. Step 1: There exists a smooth function ¢« : R — R which is
positive on R>% and 0 on R<O, Take a = e~% ~ on R>% and ¢ = 0 on R<O,

Step 2: There exists a smooth function v : R — R vanishing outside of
[0,1] and positive on the open interval ]0,1[. Take b(x) = a(x)a(l — x).

Step 3: There exists a smooth function ¢: R— R equal to 0 on |1, o0
and equal to 1 on ] —co0,0[. Take c(z) = 1 — A1 [*__b(z)dx, where \ :=
22, b(x)de.

Step 4: Now, let v(z) := ¢(]z|?). This function is smooth, vanishes on |z| > 1,
and positive on |z| < 1. =

Vi

REMARK: In assumptions of Corollary, let vo(2) :=v(y,), and p; = DT

Then po : M —[0,1] are smooth functions with support in U, satisfying
> ala = 1. Such a set of functions is called a partition of unity.

-



Geometry of manifolds, lecture 3 M. Verbitsky

Partition of unity: a formal definition

DEFINITION: Let M be a smooth manifold and let {U,} a locally finite
cover of M. A partition of unity subordinate to the cover {U,} is a family of
smooth functions f; : M — [0, 1] with compact support indexed by the same
indices as the U;'s and satisfying the following conditions.

(a) Every function f; vanishes outside U;

(b) > fi=1
The argument of previous page proves the following theorem.

THEOREM: Let {U,} be a countable, locally finite cover of a manifold M,
with all U, diffeomorphic to R™. Then there exists a partition of unity
subordinate to {U,}. =
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Whitney’s theorem for compact manifolds

THEOREM: Let M be a compact smooth manifold. Then M admits a
closed smooth embedding to R¥.

Proof. Step 1: Choose a finite atlas {V;,p; : V;, —R" i = 1,2, ...,m}, and
subordinate partution of unity p; : M —[0,1]. Let o« : [0,1] — [0, 1] be
a smooth, monotonous function mapping O to 0 and [1/2m,1] to 1, and
vi = a(py).

Step 2: Denote by W; the set of interior points of W; :={z | y;(2) =1} =
{z | p(z)> 5=} Since Y, u; =1, the set {W;} is a cover of M.

Step 3: For each ¢, the map ®,(z) = &Z?i?g%’%:jg%%‘ is smooth and induces

a diffeomorphism of W, and an open subset of S c R*t1,

Step 4: The product map

m
Vi=]][:®;: M— S"xS"x..x5"
i=1 m times
IS an injective, continuous map from a compact, hence it iIs a homeomor-
phism to its image. It is a smooth embedding, because its differential is
injective. m
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Embedding to R*°
QUESTION: What if M is non-compact?

DEFINITION: Define Rfc as a direct sum of several copies of R indexed by
a set I, that is, the set of points in a product where only finitely meny of
coordinates can be non-zero. The set Rff has metric

A1y oo Ty o)y YLy oo Yy ) 1= |21 — 2] + |22 — 92| + oo+ |20 — ] + ...

It is well-defined, because only finitely many of x;,y; are non-zero.

THEOREM: Let M be a compact smooth manifold, {V,,¢; : V; — R™ i€ I}
be a locally finite atlas, and u; : M — [0, 1] a subordinate partition of unity.
Define v; := a(u;) and &, as above, and let

Vi=]]: ®;: M— S"x 8" x..xS"c (R*TH!
I I times
be the corresponding product map. Then W is a homeomorphism to its
image.
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Embedding to R*° (cont.)

THEOREM: Let M be a compact smooth manifold, {V,,p; : V; — R"™ i€ I}
be a locally finite atlas, and u; : M — [0, 1] a subordinate partition of unity.
Define v; := a(u;) and @; as above, and let

wo=]]: ®: M-— S"x8"x..x8"c R
I I times
be the corresponding product map. Then W is a homeomorphism to its
image.

Proof. Step 1: W is injective by construction. To prove that it is a home-
omorphism, it suffices to check that an image of an open set U is open in
W (M), for each U C W;, for some open cover {W;}

Step 2: However, the set W(W;) is determined by v;(z) = 1, that is, by
®;(2)p+1 = 1, where ®;(2),,41 is the last coordinate of ®;(z). Therefore, W
maps W; to an open subset of W(M).

Step 3: Since ®;|3. (restriction to a closure) is a continuous, bijective map
from a compact, it's a homeomorphism. Therefore, an image of any open
subset U C W; is open in W(W;), which is open in W (M) as follows from
Step 2. m
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Paracompactness

DEFINITION: An open cover of a topological space X is a family of open
sets {U;} such that J;U; = X. A cover {V;} is a refinement of a cover {U;}
if every V; is contained in some U;.

DEFINITION: A cover of M is called locally finite if any point z € M has
a neighbourhood intersecting only finitely many of the elements of a cover.

DEFINITION: A topological space is called paracompact if any cover ad-
mits a locally finite refinement.

EXERCISE: Let M be a paracompact topological space, and Z C M a closed
supset. Prove that 7 is paracompact.
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Paracompactness and partitions of unity

THEOREM: Let M be a manifold. Then the following conditions are
equivalent:

(i) M is metrizable

(ii) M admits a partition of unity

(iif) M is paracompact.

Proof: Implication (iii) = (ii) is proven above. Metrizability of M follows
from existence of partition of unity, because M admits a homeomorphism to
a subset of a metric space R!. This proves (ii) = (i). It remains to prove

that metrizability implies paracompactness.

We don’'t need it, but I will give a short sketch of a proof.
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Paracompactness and partitions of unity (cont.)

Step 1: Consider the function p: M — s+ R>0 mapping x € M to a supremum
of all r such that the open ball B,(x) is contained in one of U;, and its closure
iIs compact. It is easy to check that p is continuous, and, indeed, 1-Lipschitz
(prove it).

Step 2: Now we can replace {U;} by a cover {B,y(z) | x € M}, which is
its refinement.

Step 3: Take a maximal subset Z C M such that for each distinct z,y € Z,
one has d(x,y) > 1/8p(x). Such a subset exists by Zorn's Lemma. Since p
is 1-Lipschitz, {W;} ‘= {Byo,)(z) | = € Z} is also a cover of M. It is a
refinement of {U,}, as follows from Step 2.

Step 4: Now, each W; = By j5,(,,)(2i) intersects only those W; = Bl/Qp(zj)(zj)

for which d(z;,z;) > 1/8p(2;), and there are only finitely many of them, by
compactness of W,. =
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Measure 0 subsets and Sard’s theorem

DEFINITION: A subset Z C R™ has measure zero if, for every € > 0, there
exists a countable cover of Z by open balls U; such that >, VolU; < €.

DEFINITION: A subset Z C M of a manifold M has measure 0O if intersec-
tion of M with each chart U; — R"™ has measure O.

Properties of measure 0 subsets.

A countable union of measure 0 subsets has measure O. A
measure 0 subset Z C M is nowhere dense, that is, (M\Z)NU # ) for any
non-empty open subset U C M.

THEOREM: (a special case of Sard’'s Lemma) Let f: M — N be a
smooth map of manifolds, dm M < dimN. Then f(M) has measure zero

in V.

Its proof will be given in the next lecture (if needed).
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Whitney’s theorem (with a bound on dimension): strategy of the proof

THEOREM: Let M be a smooth n-manifold. Then M admits a closed
embedding to R2"+2,

Strategy of the proof:

1. M is embedded to R*°.

2. We find a linear projection R® - R27t2 sych that =], is a closed
embedding of manifolds.

LEMMA: Let M C R! be a subset, and = : R — RY a linear projection.
Consider the set W of all vectors R(z —y), where x,y € M are distinct points.
Then x|,; is injective if and only if kerrNW = 0.

Proof: x|y, is not injective if and only if n(x) = n(y), which is equivalent to

m(zr—y)=0. =
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Whitney’'s theorem: injectivity of projections

REMARK: Let M c R! be a submanifold, and W c R! the set of all vectors
R(z—vy), where xz,y € M are distinct points. Then W is an image of a 2m+1-
dimensional manifold, hence (by Sard’'s Lemma) for any projection of R/
to a (2m + 2)-dimensional space, image of W has measure O.

COROLLARY: Let M c R! be an m-dimensional submanifold, and S c R{
a maximal linear subspace not intersecting W. Then the projection of W
to R!/S is surjective.

Proof: Suppose it's not surjective: v ¢ S. Then S @® Rv satisfies assumptions
of lemma, hence M — R!/(S 4 Rv) is also injective. m

THEOREM: Let M be a smooth n-manifold, M — RI an embedding con-
structed earlier. Then there exists a projection = : R! — R2"*T2 which is
injective on M.

Proof: Let S be the maximal linear subspace such that the restriction of
m: Rl — R!/S to M is injective. Then the 2m + 1-dimensional manifold W
surjects to RY/S, hence dimR?/S < 2m + 1 by Sard’s lemma. =
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Tangent space to an embedded manifold

DEFINITION: Let M — R™ be a smooth m-submanifold. The tangent
plane at p € M is the plane in R"™ tangent to M (i.e, the plane lying in the
image of the differential given in local coordinates). A tangent vector is an
arbitrary vector in this plane with the origin at p. The space of all tangent
vectors at p is denoted by TpM. Given a metric on R"™, we can define the
space of unit tangent vectors S™ 1M as the set of all pairs (p,v), where
peE M, velIpM, and |v| = 1.

REMARK: S™ 1)/ is a smooth manifold, projected to M with fibers isomor-
phic to m — 1-spheres, hence S 1M\ is (2m — 1)-dimensional.

LEMMA: Let M C R! be a subset, and = : R! —s R’ a linear projection.
Consider the set W’ of all vectors Rt, where t € T,M Then the differential
D[y is injective if and only if kermrNW/ = 0. m

Now the above argument is repeated: we take a maximal space S D R such
that the restriction of =« : R[—>R[/S to M is injective and has injective
differential, and the projection of W U W’ to R!/S has to be surjective. How-
ever, W' is an image of an 2m-dimensional manifold Sm—1pr x R, hence the
projection of WUW’ to IR%I/S can be surjective only if dim RI/S < 2m—+ 2.

This proves Whitney’'s theorem.
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