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Sheaves of functions (reminder)

DEFINITION: An open cover of a topological space X is a family of open
sets {Ui} such that

⋃
iUi = X.

DEFINITION: A presheaf of functions on a topological space M is a
collection of subrings F(U) ⊂ C(U) in the ring C(U) of all functions on U , for
each open subset U ⊂ M , such that the restriction of every γ ∈ F(U) to an
open subset U1 ⊂ U belongs to F(U1).

DEFINITION: A presheaf of functions F is called a sheaf of functions if
these subrings satisfy the following condition. Let {Ui} be a cover of an open
subset U ⊂ M (possibly infinite) and fi ∈ F(Ui) a family of functions defined
on the open sets of the cover and compatible on the pairwise intersections:

fi|Ui∩Uj = fj|Ui∩Uj
for every pair of members of the cover. Then there exists f ∈ F(U) such
that fi is the restriction of f to Ui for all i.

REMARK: A presheaf of functions is a collection of subrings of functions
on open subsets, compatible with restrictions. A sheaf of fuctions is a
presheaf allowing “gluing” a function on a bigger open set if its restrictions
to smaller open sets are compatible.
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Ringed spaces (reminder)

A ringed space (M,F) is a topological space equipped with a sheaf of func-

tions. A morphism (M,F)
Ψ−→ (N,F ′) of ringed spaces is a continuous map

M
Ψ−→ N such that, for every open subset U ⊂ N and every function f ∈ F ′(U),

the function ψ∗f := f ◦Ψ belongs to the ring F
(
Ψ−1(U)

)
. An isomorphism

of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ−1 are morphisms

of ringed spaces.

DEFINITION: Let (M,F) be a topological manifold equipped with a sheaf

of functions. It is said to be a smooth manifold of class C∞ or Ci if every

point in (M,F) has an open neighborhood isomorphic to the ringed space

(Bn,F ′), where Bn ⊂ Rn is an open ball and F ′ is a ring of functions on an

open ball Bn of this class.

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism

ϕ which induces an isomorphims of ringed spaces, that is, ϕ and ϕ−1 map

(locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class C∞.
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Charts and coordinates (reminder)

DEFINITION: Coordinate system on a manifold M is an open subset V ⊂
M equipped with an isomorphism of ringed spaces (V,C∞V ) ∼= (Bn, C∞Bn)

per definition of a manifold.

DEFINITION: A chart on a smooth manifold (M,C∞M) is an open subset

U ⊂ M together with an embedding ψ : U −→ Rn given by smooth func-

tions ϕ1, ..., ϕn ∈ C∞M inducing a diffeomorphism on any open subset V ⊂ U
equipped with a coordinate system (V,C∞V ) ∼= (Bn, C∞Bn).

DEFINITION: Transition map between two charts ψ1 : U1 −→ Rn and

ψ2 : U2 −→ Rn is a map Ψij : ψ1(U1∩U2)−→ ψ2(U1∩U2) defined as Ψij(x) =

ψ2(ψ−1
1 (x)).

CLAIM: Transition maps are smooth.

Proof: In local coordinates all functions ϕ1, ..., ϕn used in the definition of the

transition map are smooth.
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Atlases on manifolds (reminder)

DEFINITION: An atlas on a smooth manifold is a collection of charts

{Ui, ψi : Ui −→ Rn} satisfying
⋃
Ui = M together with their transition maps.

REMARK: In such a situation, the charts Ui are usually identified with

their images ψ(Ui) ⊂ Rn.

REMARK: The sheaf C∞M can be reconstructed from an atlas as

follows: a function f on U ⊂ M is smooth if and only if its restrictions to

U ∩ Ui are smooth on all charts.
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Locally finite covers (reminder)

DEFINITION: An open cover {Uα} of a topological space M is called locally
finite if every point in M has a neighborhood intersecting only a finite number
of Uα.

CLAIM: Let {Uα} be a locally finite atlas on a manifold M . Then there
exists a refinement {Vβ} of {Uα} such that a closure of each Vβ is
compact in M.

THEOREM: Let {Uα} be a countable locally finite cover of a Hausdorff
topological space, such that a closure of each Uα is compact. Then there
exists another cover {Vα} indexed by the same set, such that Vα b Uα.

REMARK: If all Uα are diffeomorphic to Rn, all Vα can be chosen diffeo-
morphic to an open ball. Indeed, any compact set is contained in an open
ball.

COROLLARY: Let M be a manifold admitting a locally finite countable
cover {Vα}, with ϕα : Vα −→ Rn diffeomorphisms. Then there exists another
atlas {Uα, ϕ′α : Uα −→ Rn}, such that ϕ′α(B) is also a cover of M, and
B ⊂ Rn a unit ball.
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Construction of a partition of unity

CLAIM: There exists a smooth function ν : Rn −→ [0,1] which vanishes

outside of a unit ball B ⊂ Rn and is positive on B.

Proof. Step 1: There exists a smooth function a : R−→ R which is

positive on R>0 and 0 on R60. Take a = e−x
−2

on R>0 and a = 0 on R60.

Step 2: There exists a smooth function b : R−→ R vanishing outside of

[0,1] and positive on the open interval ]0,1[. Take b(x) = a(x)a(1− x).

Step 3: There exists a smooth function c : R−→ R equal to 0 on ]1,∞[

and equal to 1 on ] −∞,0[. Take c(x) = 1 − λ−1 ∫ x
−∞ b(x)dx, where λ :=∫∞

−∞ b(x)dx.

Step 4: Now, let ν(z) := c(|z|2). This function is smooth, vanishes on |z| > 1,

and positive on |z| < 1.

REMARK: In assumptions of Corollary, let να(z) := ν(ϕ′α), and µi := νi∑
α να

.

Then µα : M −→ [0,1] are smooth functions with support in Uα satisfying∑
α µα = 1. Such a set of functions is called a partition of unity.
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Partition of unity: a formal definition

DEFINITION: Let M be a smooth manifold and let {Uα} a locally finite

cover of M . A partition of unity subordinate to the cover {Uα} is a family of

smooth functions fi : M → [0,1] with compact support indexed by the same

indices as the Ui’s and satisfying the following conditions.

(a) Every function fi vanishes outside Ui
(b)

∑
i fi = 1

The argument of previous page proves the following theorem.

THEOREM: Let {Uα} be a countable, locally finite cover of a manifold M ,

with all Uα diffeomorphic to Rn. Then there exists a partition of unity

subordinate to {Uα}.
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Whitney’s theorem for compact manifolds

THEOREM: Let M be a compact smooth manifold. Then M admits a
closed smooth embedding to RN.

Proof. Step 1: Choose a finite atlas {Vi, ϕi : Vi −→ Rn, i = 1,2, ...,m}, and
subordinate partution of unity µi : M −→ [0,1]. Let α : [0,1]−→ [0,1] be
a smooth, monotonous function mapping 0 to 0 and [1/2m,1] to 1, and
νi := α(µi).

Step 2: Denote by Wi the set of interior points of W i := {z | νi(z) = 1} =
{z | µi(z) > 1

2m}. Since
∑m
i=1 µi = 1, the set {Wi} is a cover of M.

Step 3: For each i, the map Φi(z) := (νiϕi(z),1−νi(z))
|(νiϕi(z),1−νi(z))| is smooth and induces

a diffeomorphism of Wi and an open subset of Sn ⊂ Rn+1.

Step 4: The product map

Ψ :=
m∏
i=1

: Φi : M −→ Sn × Sn × ...× Sn︸ ︷︷ ︸
m times

is an injective, continuous map from a compact, hence it is a homeomor-
phism to its image. It is a smooth embedding, because its differential is
injective.
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Embedding to R∞

QUESTION: What if M is non-compact?

DEFINITION: Define RIf as a direct sum of several copies of R indexed by

a set I, that is, the set of points in a product where only finitely meny of

coordinates can be non-zero. The set RIf has metric

d((x1, ..., xn, ...), (y1, ..., yn, ...)) :=
√
|x1 − y1|2 + |x2 − y2|2 + ...+ |xn − yn|+ ....

It is well-defined, because only finitely many of xi, yi are non-zero.

THEOREM: Let M be a compact smooth manifold, {Vi, ϕi : Vi −→ Rn, i ∈ I}
be a locally finite atlas, and µi : M −→ [0,1] a subordinate partition of unity.

Define νi := α(µi) and Φi as above, and let

Ψ :=
∏
I

: Φi : M −→ Sn × Sn × ...× Sn︸ ︷︷ ︸
I times

⊂ (Rn+1)I

be the corresponding product map. Then Ψ is a homeomorphism to its

image.
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Embedding to R∞ (cont.)

THEOREM: Let M be a compact smooth manifold, {Vi, ϕi : Vi −→ Rn, i ∈ I}
be a locally finite atlas, and µi : M −→ [0,1] a subordinate partition of unity.
Define νi := α(µi) and Φi as above, and let

Ψ :=
∏
I

: Φi : M −→ Sn × Sn × ...× Sn︸ ︷︷ ︸
I times

⊂ (Rn+1)I

be the corresponding product map. Then Ψ is a homeomorphism to its
image.

Proof. Step 1: Ψ is injective by construction. To prove that it is a home-
omorphism, it suffices to check that an image of an open set U is open in
Ψ(M), for each U ⊂Wi, for some open cover {Wi}

Step 2: However, the set Ψ(Wi) is determined by νi(z) = 1, that is, by
Φi(z)n+1 = 1, where Φi(z)n+1 is the last coordinate of Φi(z). Therefore, Ψ
maps Wi to an open subset of Ψ(M).

Step 3: Since Φi

∣∣∣W i
(restriction to a closure) is a continuous, bijective map

from a compact, it’s a homeomorphism. Therefore, an image of any open
subset U ⊂Wi is open in Ψ(Wi), which is open in Ψ(M) as follows from
Step 2.
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Paracompactness

DEFINITION: An open cover of a topological space X is a family of open

sets {Ui} such that
⋃
iUi = X. A cover {Vi} is a refinement of a cover {Ui}

if every Vi is contained in some Ui.

DEFINITION: A cover of M is called locally finite if any point x ∈ M has

a neighbourhood intersecting only finitely many of the elements of a cover.

DEFINITION: A topological space is called paracompact if any cover ad-

mits a locally finite refinement.

EXERCISE: Let M be a paracompact topological space, and Z ⊂M a closed

supset. Prove that Z is paracompact.
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Paracompactness and partitions of unity

THEOREM: Let M be a manifold. Then the following conditions are

equivalent:

(i) M is metrizable

(ii) M admits a partition of unity

(iii) M is paracompact.

Proof: Implication (iii) ⇒ (ii) is proven above. Metrizability of M follows

from existence of partition of unity, because M admits a homeomorphism to

a subset of a metric space RI. This proves (ii) ⇒ (i). It remains to prove

that metrizability implies paracompactness.

We don’t need it, but I will give a short sketch of a proof.
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Paracompactness and partitions of unity (cont.)

Step 1: Consider the function ρ : M −→ R>0 mapping x ∈M to a supremum

of all r such that the open ball Br(x) is contained in one of Ui, and its closure

is compact. It is easy to check that ρ is continuous, and, indeed, 1-Lipschitz

(prove it).

Step 2: Now we can replace {Ui} by a cover {Bρ(x)(x) | x ∈ M}, which is

its refinement.

Step 3: Take a maximal subset Z ⊂ M such that for each distinct x, y ∈ Z,

one has d(x, y) > 1/8ρ(x). Such a subset exists by Zorn’s Lemma. Since ρ

is 1-Lipschitz, {Wi} := {B1/2ρ(x)(x) | x ∈ Z} is also a cover of M . It is a

refinement of {Ui}, as follows from Step 2.

Step 4: Now, each Wi = B1/2ρ(zi)
(zi) intersects only those Wj = B1/2ρ(zj)

(zj)

for which d(zi, zj) > 1/8ρ(zi), and there are only finitely many of them, by

compactness of W i.
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Measure 0 subsets and Sard’s theorem

DEFINITION: A subset Z ⊂ Rn has measure zero if, for every ε > 0, there

exists a countable cover of Z by open balls Ui such that
∑
iVolUi < ε.

DEFINITION: A subset Z ⊂M of a manifold M has measure 0 if intersec-

tion of M with each chart Ui ↪→ Rn has measure 0.

Properties of measure 0 subsets.

A countable union of measure 0 subsets has measure 0. A

measure 0 subset Z ⊂ M is nowhere dense, that is, (M\Z) ∩ U 6= ∅ for any

non-empty open subset U ⊂M .

THEOREM: (a special case of Sard’s Lemma) Let f : M −→N be a

smooth map of manifolds, dimM < dimN . Then f(M) has measure zero

in N.

Its proof will be given in the next lecture (if needed).
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Whitney’s theorem (with a bound on dimension): strategy of the proof

THEOREM: Let M be a smooth n-manifold. Then M admits a closed

embedding to R2n+2.

Strategy of the proof:

1. M is embedded to R∞.

2. We find a linear projection R∞ π−→ R2n+2 such that π|M is a closed

embedding of manifolds.

LEMMA: Let M ⊂ RI be a subset, and π : RI −→ RJ a linear projection.

Consider the set W of all vectors R(x− y), where x, y ∈M are distinct points.

Then π|M is injective if and only if ker π ∩W = 0.

Proof: π|M is not injective if and only if π(x) = π(y), which is equivalent to

π(x− y) = 0.
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Whitney’s theorem: injectivity of projections

REMARK: Let M ⊂ RI be a submanifold, and W ⊂ RI the set of all vectors

R(x−y), where x, y ∈M are distinct points. Then W is an image of a 2m+1-

dimensional manifold, hence (by Sard’s Lemma) for any projection of RI

to a (2m+ 2)-dimensional space, image of W has measure 0.

COROLLARY: Let M ⊂ RI be an m-dimensional submanifold, and S ⊂ RI

a maximal linear subspace not intersecting W . Then the projection of W

to RI/S is surjective.

Proof: Suppose it’s not surjective: v /∈ S. Then S ⊕ Rv satisfies assumptions

of lemma, hence M −→ RI/(S + Rv) is also injective.

THEOREM: Let M be a smooth n-manifold, M ↪→ RI an embedding con-

structed earlier. Then there exists a projection π : RI −→ R2n+2 which is

injective on M.

Proof: Let S be the maximal linear subspace such that the restriction of

π : RI −→ RI/S to M is injective. Then the 2m + 1-dimensional manifold W

surjects to RI/S, hence dimRi/S 6 2m+ 1 by Sard’s lemma.
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Tangent space to an embedded manifold

DEFINITION: Let M ↪→ Rn be a smooth m-submanifold. The tangent
plane at p ∈ M is the plane in Rn tangent to M (i.e, the plane lying in the
image of the differential given in local coordinates). A tangent vector is an
arbitrary vector in this plane with the origin at p. The space of all tangent
vectors at p is denoted by TpM . Given a metric on Rn, we can define the
space of unit tangent vectors Sm−1M as the set of all pairs (p, v), where
p ∈M , v ∈ TpM , and |v| = 1.

REMARK: Sm−1M is a smooth manifold, projected to M with fibers isomor-
phic to m− 1-spheres, hence Sm−1M is (2m− 1)-dimensional.

LEMMA: Let M ⊂ RI be a subset, and π : RI −→ RJ a linear projection.
Consider the set W ′ of all vectors Rt, where t ∈ TxM Then the differential
Dπ|M is injective if and only if ker π ∩W ′ = 0.

Now the above argument is repeated: we take a maximal space S ⊃ RI such
that the restriction of π : RI −→ RI/S to M is injective and has injective
differential, and the projection of W ∪W ′ to RI/S has to be surjective. How-
ever, W ′ is an image of an 2m-dimensional manifold Sm−1M × R, hence the
projection of W ∪W ′ to RI/S can be surjective only if dimRI/S 6 2m+ 2.

This proves Whitney’s theorem.
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