Geometry of manifolds

Lecture 4: Hausdorff measure and Whitney's theorem

Misha Verbitsky

Math in Moscow and HSE

February 25, 2013

Sheaves of functions (reminder)

DEFINITION: An open cover of a topological space X is a family of open sets $\{U_i\}$ such that $\bigcup_i U_i = X$.

DEFINITION: A presheaf of functions on a topological space M is a collection of subrings $\mathcal{F}(U) \subset C(U)$ in the ring C(U) of all functions on U, for each open subset $U \subset M$, such that the restriction of every $\gamma \in \mathcal{F}(U)$ to an open subset $U_1 \subset U$ belongs to $\mathcal{F}(U_1)$.

DEFINITION: A presheaf of functions \mathcal{F} is called a sheaf of functions if these subrings satisfy the following condition. Let $\{U_i\}$ be a cover of an open subset $U \subset M$ (possibly infinite) and $f_i \in \mathcal{F}(U_i)$ a family of functions defined on the open sets of the cover and compatible on the pairwise intersections:

$$f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$$

for every pair of members of the cover. Then there exists $f \in \mathcal{F}(U)$ such that f_i is the restriction of f to U_i for all i.

REMARK: A presheaf of functions is a collection of subrings of functions on open subsets, compatible with restrictions. **A sheaf of fuctions is a presheaf allowing "gluing"** a function on a bigger open set if its restrictions to smaller open sets are compatible.

Ringed spaces (reminder)

A ringed space (M, \mathcal{F}) is a topological space equipped with a sheaf of functions. A morphism $(M, \mathcal{F}) \xrightarrow{\Psi} (N, \mathcal{F}')$ of ringed spaces is a continuous map $M \xrightarrow{\Psi} N$ such that, for every open subset $U \subset N$ and every function $f \in \mathcal{F}'(U)$, the function $\psi^* f := f \circ \Psi$ belongs to the ring $\mathcal{F}(\Psi^{-1}(U))$. An isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ^{-1} are morphisms of ringed spaces.

DEFINITION: Let (M, \mathcal{F}) be a topological manifold equipped with a sheaf of functions. It is said to be a **smooth manifold of class** C^{∞} or C^i if every point in (M, \mathcal{F}) has an open neighborhood isomorphic to the ringed space $(\mathbb{B}^n, \mathcal{F}')$, where $\mathbb{B}^n \subset \mathbb{R}^n$ is an open ball and \mathcal{F}' is a ring of functions on an open ball \mathbb{B}^n of this class.

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism φ which induces an isomorphims of ringed spaces, that is, φ and φ^{-1} map (locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class C^{∞} .

Partition of unity: a formal definition (reminder)

DEFINITION: Let M be a smooth manifold and let $\{U_{\alpha}\}$ a locally finite cover of M. A **partition of unity** subordinate to the cover $\{U_{\alpha}\}$ is a family of smooth functions $f_i : M \to [0, 1]$ with compact support indexed by the same indices as the U_i 's and satisfying the following conditions. (a) Every function f_i vanishes outside U_i (b) $\sum_i f_i = 1$

The argument of previous page proves the following theorem.

THEOREM: Let $\{U_{\alpha}\}$ be a countable, locally finite cover of a manifold M, with all U_{α} diffeomorphic to \mathbb{R}^n . Then there exists a partition of unity subordinate to $\{U_{\alpha}\}$.

Embedding to \mathbb{R}^{∞} (reminder)

DEFINITION: Define \mathbb{R}_f^I as a direct sum of several copies of \mathbb{R} indexed by a set I, that is, the set of points in a product where only finitely meny of coordinates can be non-zero. The set \mathbb{R}_f^I has metric

$$d((x_1, ..., x_n, ...), (y_1, ..., y_n, ...)) := \sqrt{|x_1 - y_1|^2 + |x_2 - y_2|^2 + ... + |x_n - y_n| + ...}$$

It is well-defined, because only finitely many of x_i, y_i are non-zero.

THEOREM: Let M be a compact smooth manifold, $\{V_i, \varphi_i : V_i \longrightarrow \mathbb{R}^n, i \in I\}$ be a locally finite atlas, and $\mu_i : M \longrightarrow [0, 1]$ a subordinate partition of unity. Define $\nu_i := \alpha(\mu_i)$ and Φ_i as above, and let

$$\Psi := \prod_{I} : \Phi_i : M \longrightarrow \underbrace{S^n \times S^n \times \dots \times S^n}_{I \text{ times}} \subset (\mathbb{R}^{n+1})^I$$

be the corresponding product map. Then Ψ is a homeomorphism to its image.

Borel measure

DEFINITION: Let C be a cube in \mathbb{R}^n with edges parallel to coordinate axes of length r. Such a cube is called **normal**. Its **volume** is r^n .

DEFINITION: Let $S \subset \mathbb{R}^n$ be a closed subset. The volume, or Borel measure of S is an infimum of $\sum_i Vol(S_i)$ for all (possibly, infinite) covers of S by normal cubes.

CLAIM: A subset $Z \subset \mathbb{R}^n$ has **measure zero** if for every $\varepsilon > 0$ there exists a countable cover of Z by cubes C_i such that $\sum_i \text{Vol} C_i < \varepsilon$.

REMARK: Borel measure is a weaker form of Lebesgue measure, defined on closed subsets of \mathbb{R}^n , and equal to Lebesgue measure on those subsets.

Borel measure: axiomatic definition

THEOREM: (Properties of the volume)

Let $\mu(S)$ denote the measure of S. Then

(a) $\mu(\bigcup S_i) \leq \sum_i \mu(S_i)$.

(b) Measure is **monotonous:** for any $A \subset B$, $\mu(A) \leq \mu(B)$.

(c) Let $A = \bigcup A_i$ be an intersection of closed sets $A_0 \supset A_1 \supset \dots$

Then $\mu(A) = \lim \mu(A_i)$.

(d) Measure is additive. Let $S = \bigcup_i S_i$ and $\mu(S_i \cap S_j) = 0$ for all $i \neq j$. Then $\mu(S) = \sum_i \mu(S_i)$.

(e) Measure of a normal cube is l^n , where l is a length of its side.

Moreover, for any closed set, its measure is determined uniquely by these properties.

EXERCISE: Prove this theorem, using the following lemma.

LEMMA: Let $S \subset \mathbb{R}^n$ be a closed subset. Then $S = \bigcap S_i$, where $S_0 \supset S_1 \supset S_2 \supset ...$, and each S_i is a countable union of normal cubes, intersecting only in their faces.

Hausdorff measure and Hausdorff dimension

DEFINITION: Let M be a metric space. The diameter diam $M \in [0, \infty]$ is the number $\sup_{x,y \in M} d(x,y)$.

DEFINITION: In a metric space, **a ball** $B_{\varepsilon}(x)$ of radius ε centered at x is defined as the set of all points y satisfying $d(x, y) < \varepsilon$.

DEFINITION: Let $\{S_i\}$ be a cover of a metric space M by balls of radius r with $r < \varepsilon$. Define $\mu_{d,\varepsilon} \in [0,\infty]$ as $\mu_{d,\varepsilon}(M) := \inf_{\{S_i\}} \sum_i (\operatorname{diam} S_i)^d$, where the infimum is taken over all such covers. The limit $\mu_d M := \operatorname{sup} \lim_{\varepsilon \to 0} \mu_{d,\varepsilon}(M)$ is called *d*-dimensional Hausdorff measure of M.

EXAMPLE: Let $M = \mathbb{R}^n$ with a metric d_∞ given by the norm $|(x_1, \ldots, x_n)| := \max |x_i|$. The balls in this metric are cubical, and the (usual) volume of such a ball B is equal to $(\operatorname{diam} B)^n$. This gives $\mu_n(S) = \operatorname{Vol} S$ for each cube with sides parallel to coordinate planes.

COROLLARY: For $M = \mathbb{R}^n$ with the metric described above, Hausdorff measure is equal to the Borel measure.

M. Verbitsky

Lipschitz maps

DEFINITION: A map $f: M \to N$ of metric spaces is called **Lipschitz with constant** C if $d(x,y) \ge C \cdot d(f(x), f(y))$ for all $x, y \in M$. A map is called **bi-Lipschitz** if it is bijective and the inverse map is also Lipschitz.

EXAMPLE: A differentiable map $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is Lipschitz on each compact set *B*. Indeed, $d(x, y) \ge Cd(f(x), f(y))$, where $C = \sup_B |Df|$.

EXAMPLE: Let ν_1, ν_2 be norms on a vector space V, and d_1, d_2 the corresponding metrics. The identity map $(V, d_1) \longrightarrow (V, d_2)$ is *C*-Lipschitz if and only if the unit ball $B_1(x, d_1)$ belongs to $B_C(x, d_2)$.

CLAIM: Let $f : M \to N$ be a *C*-Lipschitz map. Then the corresponding Hausdorff measures are related as $\mu_n(S) \ge C^n \mu_n(f(S))$.

Proof: Let $\{S_i = B_{\varepsilon_i}(x_i)\}$ be a cover of S. Then $\{B_{C\varepsilon_i}(f(x_i))\}$ is a cover of f(S).

COROLLARY:

Let $f: M \to N$ be a C-Lipschitz map. Then $\dim_H(M) \ge \dim_H(f(M))$.

Equivalent norms and Hausdorff measure

DEFINITION: Two norms on a vector space V are called **equivalent** if the identity map $(V, d_1) \longrightarrow (V, d_2)$ is bi-Lipschitz.

EXAMPLE: Since a unit cube in \mathbb{R}^n contains a ball of radius 1, and is contained in a ball of radius \sqrt{n} , one has $|x|_{L^2} \ge |x|_{L^{\infty}} \ge \sqrt{n^{-1}}|x|_{L^2}$, where L^2 is the usual norm, and L^{∞} the norm $|(x_1, \ldots, x_n)| := \max |x_i|$. Therefore, **the norms** L^2 and L^{∞} are equivalent.

COROLLARY: Let $\mu_n^{L^2}$ denote the Hausdorff measure associated with the Euclidean metric on \mathbb{R}^n , and μ the usual (Borel) measure. Then $\mu_n^{L^2}(S) \ge \mu(S) \ge \sqrt{n^{-n}} \mu_n^{L^2}(S)$.

Proof: See the Claim above.

Hausdorff dimension

THEOREM: Let M be a metric space. Consider $\mu_d(M)$ as a function of d. **Then there exists a number** $d_0 \in [0, \infty]$ **such that** $\mu_d(M) = \infty$ **for** $d < d_0$, **and** $\mu_d(M) = 0$ **for** $d > d_0$.

Proof: Whenever d' > d, one has

$$\mu_{d',\varepsilon}(M) = \inf_{\{S_i\}} \sum_{i} (\operatorname{diam} S_i)^{d'} = \inf_{\{S_i\}} \sum_{i} (\operatorname{diam} S_i)^d (\operatorname{diam} S_i)^{d'-d} < \varepsilon^{d'-d} \inf_{\{S_i\}} \sum_{i} (\operatorname{diam} S_i)^d = \varepsilon^{d'-d} \mu_{d,\varepsilon}(M)$$

Passing to the limit $\varepsilon \to 0$, we obtain that $\mu_{d'}(M) \leq 0\mu_d(M)$. Therefore, $\mu_{d'}(M) = 0$ whenever $\mu_d(M)$ is finite, and $\mu_d(M) = \infty$ whenever $\mu_{d'}(M) > 0$.

DEFINITION: Hausdorff dimension $\dim_H(M)$ of a metric space is the number $\sup_{d \ge 0} \{\mu_d(M) = \infty\}$.

EXERCISE: Prove that set *M* has Hausdorff dimension 0 iff it is finite.

Lipschitz maps and Hausdorff dimension

CLAIM: Let f be a Lipschitz map. Then $\dim_H(f(M)) \leq \dim_H(M)$.

COROLLARY: A cube C in \mathbb{R}^n has Hausdorff dimension n.

Proof: Indeed, *C* is bi-Lipschitz equivalent to the cube in L^{∞} -metric, but the Hausdorff measure associated with the L^{∞} -metric is equal to the usual volume.

CLAIM: Let $C = \bigcup C_i$ be a union of a countably many sets with $\mu_d C_i = 0$. **Then** $\mu_d C = 0$.

Proof: Take a cover $S_j(i)$ of C_i with $\sum_j (\operatorname{diam} S_j(i))^d < \delta^{i+1}$. Then $\{S_j(i)\}$ is a cover of C with $\sum_{j,i} (\operatorname{diam} S_j(i))^d < \delta$.

COROLLARY: \mathbb{R}^n with the usual metric has Hausdorff dimension *n*.

Proof: Take a cover of \mathbb{R}^n by coutably many unit cubes C_i . For d > n, $\mu_d(C_i) = 0$, hence $\mu_d(\mathbb{R}^n) = 0$. Since $\mu_n(C_i) > 0$, $\mu_n(\mathbb{R}^n)$ is also positive.

Hausdorff dimension of a manifold

THEOREM: Let $f : M \longrightarrow \mathbb{R}^n$ be a smooth map from a manifold, dim M < n. Suppose that M admits a countable cover by open balls with compact closure. Then $\mu_n f(M) = 0$.

Proof: Let $B \subset \mathbb{R}^m$ be a closed ball, and $\varphi : B \longrightarrow \mathbb{R}^n$ a differentiable map. Then φ is Lipschitz, with the Lipschitz constant $C \leq \sup |D\varphi|$. The set M is covered by closed balls B_i , and $\mu_n(f(B_i)) = 0$, because $f|_{B_i}$ is Lipschitz, and $\dim_H B_i < n$. Using the Claim above, we obtain that $\mu_n(f(M)) = 0$.

DEFINITION: Hausdorff dimension of a subset $Z \subset M$ of a manifold is supremum of dim_h($Z \cup B$) for all subsets $B \subset M$ equipped with a coordinate system.

COROLLARY: Let $f: M \longrightarrow N$ be a differentiable map of smooth manifolds, dim $M < \dim N$. Suppose that M is covered by a countable number of open balls with compact closure. Then $\mu_n(f(M)) = 0$.

COROLLARY: (a version of Sard's lemma) Under these assumptions, f(M) is nowhere dense.

Proof: Indeed, were it dense in an open ball B, one would have $\mu_n(f(M)) \ge \mu_n(B) > 0$, giving dim_H(f(M)) $\ge n$, in contradiction to the corollary above.

Whitney's theorem (with a bound on dimension): strategy of the proof

THEOREM: Let *M* be a smooth *n*-manifold. Then *M* admits a closed embedding to \mathbb{R}^{2n+2} .

Strategy of the proof:

1. *M* is embedded to \mathbb{R}^{∞} .

2. We find a linear projection $\mathbb{R}^{\infty} \xrightarrow{\pi} \mathbb{R}^{2n+2}$ such that $\pi|_M$ is a closed embedding of manifolds.

LEMMA: Let $M \subset \mathbb{R}^I$ be a subset, and $\pi : \mathbb{R}^I \longrightarrow \mathbb{R}^J$ a linear projection. Consider the set W of all vectors $\mathbb{R}(x-y)$, where $x, y \in M$ are distinct points. **Then** $\pi|_M$ **is injective if and only if** ker $\pi \cap W = 0$.

Proof: $\pi|_M$ is not injective if and only if $\pi(x) = \pi(y)$, which is equivalent to $\pi(x-y) = 0$.

Geometry of manifolds, lecture 4

M. Verbitsky

Whitney's theorem: injectivity of projections

REMARK: Let $M \subset \mathbb{R}^I$ be a submanifold, and $W \subset \mathbb{R}^I$ the set of all vectors $\mathbb{R}(x-y)$, where $x, y \in M$ are distinct points. Then W is an image of a 2m+1-dimensional manifold, hence (by Sard's Lemma) for any projection of \mathbb{R}^I to a (2m+2)-dimensional space, image of W has measure 0.

COROLLARY: Let $M \subset \mathbb{R}^I$ be an *m*-dimensional submanifold, and $S \subset \mathbb{R}^I$ a maximal linear subspace not intersecting W. Then the projection of Wto \mathbb{R}^I/S is surjective.

Proof: Suppose it's not surjective: $v \notin S$. Then $S \oplus \mathbb{R}v$ satisfies assumptions of lemma, hence $M \longrightarrow \mathbb{R}^{I}/(S + \mathbb{R}v)$ is also injective.

THEOREM: Let M be a smooth n-manifold, $M \hookrightarrow \mathbb{R}^I$ an embedding constructed earlier. Then there exists a projection $\pi : \mathbb{R}^I \longrightarrow \mathbb{R}^{2n+2}$ which is injective on M.

Proof: Let *S* be the maximal linear subspace such that the restriction of $\pi : \mathbb{R}^I \longrightarrow \mathbb{R}^I / S$ to *M* is injective. Then the 2m + 1-dimensional manifold *W* is mapped surjectively to \mathbb{R}^I / S , hence dim $\mathbb{R}^i / S \leq 2m + 1$ by Sard's lemma.

Tangent space to an embedded manifold

DEFINITION: Let $M \hookrightarrow \mathbb{R}^n$ be a smooth *m*-submanifold. The **tangent** plane at $p \in M$ is the plane in \mathbb{R}^n tangent to M (i.e, the plane lying in the image of the differential given in local coordinates). A **tangent vector** is an arbitrary vector in this plane with the origin at p. The space of all tangent vectors at p is denoted by T_pM . Given a metric on \mathbb{R}^n , we can define the space of **unit tangent vectors** $\mathbb{S}^{m-1}M$ as the set of all pairs (p, v), where $p \in M$, $v \in T_pM$, and |v| = 1.

REMARK: $\mathbb{S}^{m-1}M$ is a smooth manifold, projected to M with fibers isomorphic to m-1-spheres, hence $\mathbb{S}^{m-1}M$ is (2m-1)-dimensional.

LEMMA: Let $M \subset \mathbb{R}^I$ be a subset, and $\pi : \mathbb{R}^I \longrightarrow \mathbb{R}^J$ a linear projection. Consider the set W' of all vectors $\mathbb{R}t$, where $t \in T_x M$ Then the differential $D\pi|_M$ is injective if and only if ker $\pi \cap W' = 0$.

Now the above argument is repeated: we take a maximal space $S \supset \mathbb{R}^I$ such that the restriction of π : $\mathbb{R}^I \longrightarrow \mathbb{R}^I / S$ to M is injective and has injective differential, and the projection of $W \cup W'$ to \mathbb{R}^I / S has to be surjective. However, W' is an image of an 2m-dimensional manifold $\mathbb{S}^{m-1}M \times \mathbb{R}$, hence **the projection of** $W \cup W'$ to \mathbb{R}^I / S can be surjective only if dim $\mathbb{R}^I / S \leq 2m + 2$.

This proves Whitney's theorem.