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Sheaves of functions (reminder)

DEFINITION: An open cover of a topological space X is a family of open
sets {U;} such that U; U; = X.

DEFINITION: A presheaf of functions on a topological space M is a
collection of subrings F(U) C C(U) in the ring C(U) of all functions on U, for
each open subset U C M, such that the restriction of every v € F(U) to an
open subset U7 C U belongs to F(Uy).

DEFINITION: A presheaf of functions F is called a sheaf of functions if
these subrings satisfy the following condition. Let {U;} be a cover of an open
subset U C M (possibly infinite) and f; € F(U;) a family of functions defined
on the open sets of the cover and compatible on the pairwise intersections:

filUiﬂUj — fleiﬂUj
for every pair of members of the cover. Then there exists f ¢ F(U) such
that f; is the restriction of f to U, for all :.

REMARK: A presheaf of functions is a collection of subrings of functions
on open subsets, compatible with restrictions. A sheaf of fuctions is a
presheaf allowing “gluing” a function on a bigger open set if its restrictions
to smaller open sets are compatible.
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Ringed spaces (reminder)

A ringed space (M, F) is a topological space equipped with a sheaf of func-
tions. A morphism (M, F) v, (N, F") of ringed spaces is a continuous map
M i> N such that, for every open subset U C N and every function f € F(U),
the function *f := f o W belongs to the ring ]—"(\lf_l(U)). An isomorphism
of ringed spaces is a homeomorphism W such that W and w1 are morphisms
of ringed spaces.

DEFINITION: Let (M, F) be a topological manifold equipped with a sheaf
of functions. It is said to be a smooth manifold of class C>® or C" if every
point in (M,F) has an open neighborhood isomorphic to the ringed space
(B", F), where B™ C R"™ is an open ball and F’ is a ring of functions on an
open ball B™ of this class.

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism
@ which induces an isomorphims of ringed spaces, that is, ¢ and go_l map
(locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class (°°.
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Partition of unity: a formal definition (reminder)

DEFINITION: Let M be a smooth manifold and let {U,} a locally finite
cover of M. A partition of unity subordinate to the cover {U,} is a family of
smooth functions f; : M — [0, 1] with compact support indexed by the same
indices as the U;'s and satisfying the following conditions.

(a) Every function f; vanishes outside U;

(b) > fi=1
The argument of previous page proves the following theorem.

THEOREM: Let {U,} be a countable, locally finite cover of a manifold M,
with all U, diffeomorphic to R™. Then there exists a partition of unity
subordinate to {U,}. =
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Embedding to R*° (reminder)

DEFINITION: Define pr as a direct sum of several copies of R indexed by
a set I, that is, the set of points in a product where only finitely meny of
coordinates can be non-zero. The set R§ has metric

(@1, s Ty 22y (Y1, s Yy ) 1= V|21 — 1%+ w2 — yol® + o = [0 — yn| + ...
It is well-defined, because only finitely many of x;,y; are non-zero.

THEOREM: Let M be a compact smooth manifold, {V;,p; : V; — R" i € I}
be a locally finite atlas, and u; : M — [0,1] a subordinate partition of unity.
Define v; := a(u;) and &, as above, and let

Vi=]]: &;: M—>§”><S”><...><S71C(R”+1)I
I I times
be the corresponding product map. Then W is a homeomorphism to its
image.
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Borel measure

DEFINITION: Let C be a cube in R™ with edges parallel to coordinate axes
of length r. Such a cube is called normal. Its volume is r™.

DEFINITION: Let S C R"™ be a closed subset. The volume, or Borel
measure of S is an infimum of >, Vol(S;) for all (possibly, infinite) covers of
S by normal cubes.

CLAIM: A subset Z C R™ has measure zero if for every € > 0 there exists a
countable cover of Z by cubes C; such that >, Vol (j; < e.

REMARK: Borel measure is a weaker form of Lebesgue measure, defined on
closed subsets of R"™, and equal to Lebesgue measure on those subsets.
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Borel measure: axiomatic definition

THEOREM: (Properties of the volume)
Let u(S) denote the measure of S. Then
(@) n(US;) <22 u(S;).
(b) Measure is monotonous: for any A C B, u(A) < u(B).
(c) Let A= A; be an intersection of closed sets Ag D A1 D ....
Then u(A) =limu(A;).
(d) Measure is additive. Let S = |J;S; and u(S;NS;) = 0 for all ¢ # j.
Then u(S) =3 u(S;).
(e) Measure of a normal cube is I, where [ is a length of its side.

Moreover, for any closed set, its measure is determined uniquely by
these properties.

EXERCISE: Prove this theorem, using the following lemma.

LEMMA: Let S C R" be a closed subset. Then § =NS5;, where Sog D S1 D
So D ..., and each §; is a countable union of normal cubes, intersecting only
in their faces.

-
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Hausdorff measure and Hausdorff dimension

DEFINITION: Let M be a metric space. The diameter diamM < [0, oo] is

the number sup d(z,vy).
x,yeM

DEFINITION: In a metric space, a ball B:(x) of radius ¢ centered at z is
defined as the set of all points y satisfying d(x,vy) < «.

DEFINITION: Let {S;} be a cover of a metric space M by balls of radius
r with » <e. Define ug,. € [0,00] as pg (M) 1= infrga 5. (diamS;)%, where the
infimum is taken over all such covers. The limit pgM = suplim._q pq (M)
is called d-dimensional Hausdorff measure of M.

EXAMPLE: Let M = R"™ with a metric dx given by the norm |(z1,...,zn)| :=
max |z;|. The balls in this metric are cubical, and the (usual) volume of
such a ball B is equal to (diamB)™. This gives un,(S) = Vol S for each cube
with sides parallel to coordinate planes.

COROLLARY: For M = R™ with the metric described above, Hausdorff
measure is equal to the Borel measure.
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Lipschitz maps

DEFINITION: A map f: M — N of metric spaces is called Lipschitz with
constant C if d(z,y) > C - d(f(a;),f(y)) for all z,y € M. A map is called
bi-Lipschitz if it is bijective and the inverse map is also Lipschitz.

EXAMPLE: A differentiable map f : R"™ — R"™ is Lipschitz on each
compact set B. Indeed, d(z,y) > Cd(f(z), f(y)), where C = supg|Df|.

EXAMPLE: Let vq,vp be norms on a vector space V, and dj,do the cor-
responding metrics. The identity map (V,d;) — (V,d>) is C-Lipschitz if
and only if the unit ball B{(xz,d;) belongs to Bq(z,d>).

CLAIM: Let f: M — N be a C-Lipschitz map. Then the corresponding
Hausdorff measures are related as u,(S) > C"un(f(S)).

Proof: Let {S; = B¢;(x;)} be a cover of S. Then {Bc. (f(x;))} is a cover of
f(S). =

COROLLARY.:
Let f: M — N be a C-Lipschitz map. Then dimg(M) >dimg(f(M)). =
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Equivalent norms and Hausdorff measure

DEFINITION: Two norms on a vector space V are called equivalent if the
identity map (V,d1) — (V,d») is bi-Lipschitz.

EXAMPLE: Since a unit cube in R™ contains a ball of radius 1, and is
contained in a ball of radius y/n, one has |z|;2 > |z|fc > \/F|a;|L2, where L2
is the usual norm, and L*° the norm |(x1,...,xn)| := max|z;|. Therefore, the
norms L2 and L are equivalent.

COROLLARY: Let M%Q denote the Hausdorff measure associated with the
Euclidean metric on R", and p the usual (Borel) measure. Then MQQ(S) >

u(S) = Vn uk?(S).

Proof: See the Claim above. =
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Hausdorff dimension

THEOREM: Let M be a metric space. Consider uy(M) as a function of d.
Then there exists a number dg € [0,00] such that u,;(M) = oo for d < dp,
and u (M) =0 for d > dg.

Proof: Whenever d’ > d, one has
o : Nd : Nd g Nd'—d
pa (M) = %gﬁZ(dlamSZ) = {Igf}Z(dlamSZ) (diamS;) <

< d—d ng} S (diamS;)4 = e~y (M)
(S

Passing to the limit ¢ — 0, we obtain that puy(M) < Oug(M). Therefore,
py (M) =0 whenever p; (M) is finite, and py (M) = co whenever p (M) >
0. m

DEFINITION: Hausdorff dimension dimg(M) of a metric space is the
number supgso{pq(M) = oo}.

EXERCISE: Prove that set M has Hausdorff dimension O iff it is finite.
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Lipschitz maps and Hausdorff dimension
CLAIM: Let f be a Lipschitz map. Then dimg(f(M)) <dmg(M). =
COROLLARY: A cube C in R"™ has Hausdorff dimension n.

Proof: Indeed, C is bi-Lipschitz equivalent to the cube in L°-metric, but
the Hausdorff measure associated with the L°-metric is equal to the usual
volume. m

CLAIM: Let ¢ = ()} be a union of a countably many sets with u;C; = 0.
Then ,LLdC = 0.

Proof: Take a cover S;(i) of C; with ¥ ;(diamS;(i))? < §'t1. Then {S;(i)} is
a cover of C' with ¥, ;(diamS;(i))¢ < 5. m

COROLLARY: R"™ with the usual metric has Hausdorff dimension n.
Proof: Take a cover of R™ by coutably many unit cubes C;. For d > n,

ng(C;) = 0, hence uy(R™) = 0. Since un(C;) > 0, up(R™) is also positive. =
12



Geometry of manifolds, lecture 4 M. Verbitsky
Hausdorff dimension of a manifold

THEOREM: Let f: M — R" be a smooth map from a manifold, dim M < n.
Suppose that M admits a countable cover by open balls with compact
closure. Then u,f(M) = 0.

Proof: Let B C R™ be a closed ball, and ¢ : B — R"™ a differentiable map.
Then ¢ is Lipschitz, with the Lipschitz constant C < sup|D¢|. The set M is
covered by closed balls B;, and un(f(B;)) = 0, because f|g, is Lipschitz, and
dimy B; < n. Using the Claim above, we obtain that un(f(M)) =0. =

DEFINITION: Hausdorff dimension of a subset 7 C M of a manifold is
supremum of dim,(Z U B) for all subsets B C M equipped with a coordinate
system.

COROLLARY: Let f: M — N be a differentiable map of smooth mani-
folds, dim M < dim N. Suppose that M is covered by a countable number of
open balls with compact closure. Then u,(f(M)) =0. =

COROLLARY: (a version of Sard’s lemma) Under these assumptions,
f(M) is nowhere dense.

Proof: Indeed, were it dense in an open ball B, one would have un(f(M)) >
un(B) > 0, giving dimg(f(M)) > n, in contradiction to the corollary above. =
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Whitney’s theorem (with a bound on dimension): strategy of the proof

THEOREM: Let M be a smooth n-manifold. Then M admits a closed
embedding to R2"+2,

Strategy of the proof:

1. M is embedded to R*°.

2. We find a linear projection R® - R27t2 sych that =], is a closed
embedding of manifolds.

LEMMA: Let M C R! be a subset, and = : R — RY a linear projection.
Consider the set W of all vectors R(z —y), where x,y € M are distinct points.
Then x|,; is injective if and only if kerrNW = 0.

Proof: x|y, is not injective if and only if n(x) = n(y), which is equivalent to

m(zr—y)=0. =
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Whitney’'s theorem: injectivity of projections

REMARK: Let M c R! be a submanifold, and W c R! the set of all vectors
R(z—vy), where xz,y € M are distinct points. Then W is an image of a 2m+1-
dimensional manifold, hence (by Sard’'s Lemma) for any projection of R/
to a (2m + 2)-dimensional space, image of W has measure O.

COROLLARY: Let M c R! be an m-dimensional submanifold, and S c R{
a maximal linear subspace not intersecting W. Then the projection of W
to R!/S is surjective.

Proof: Suppose it's not surjective: v ¢ S. Then S @® Rv satisfies assumptions
of lemma, hence M — R!/(S 4 Rv) is also injective. m

THEOREM: Let M be a smooth n-manifold, M — RI an embedding con-
structed earlier. Then there exists a projection = : R! — R2"*T2 which is
injective on M.

Proof: Let S be the maximal linear subspace such that the restriction of
m: Rl — R!/S to M is injective. Then the 2m + 1-dimensional manifold W
IS mapped surjectively to RI/S, hence dim R’i/S <2m -+ 1 by Sard’s lemma. =
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Tangent space to an embedded manifold

DEFINITION: Let M — R™ be a smooth m-submanifold. The tangent
plane at p € M is the plane in R"™ tangent to M (i.e, the plane lying in the
image of the differential given in local coordinates). A tangent vector is an
arbitrary vector in this plane with the origin at p. The space of all tangent
vectors at p is denoted by TpM. Given a metric on R"™, we can define the
space of unit tangent vectors S™ 1M as the set of all pairs (p,v), where
peE M, velIpM, and |v| = 1.

REMARK: S™ 1)/ is a smooth manifold, projected to M with fibers isomor-
phic to m — 1-spheres, hence S 1M\ is (2m — 1)-dimensional.

LEMMA: Let M C R! be a subset, and = : R! —s R’ a linear projection.
Consider the set W’ of all vectors Rt, where t € T,M Then the differential
D[y is injective if and only if kermrNW/ = 0. m

Now the above argument is repeated: we take a maximal space S D R such
that the restriction of =« : R[—>R[/S to M is injective and has injective
differential, and the projection of W U W’ to R!/S has to be surjective. How-
ever, W' is an image of an 2m-dimensional manifold Sm—1pr x R, hence the
projection of WUW’ to IR%I/S can be surjective only if dim RI/S < 2m—+ 2.

This proves Whitney’'s theorem.
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