
Geometry of manifolds, lecture 4 M. Verbitsky

Geometry of manifolds
Lecture 4: Hausdorff measure and Whitney’s theorem

Misha Verbitsky

Math in Moscow and HSE

February 25, 2013

1



Geometry of manifolds, lecture 4 M. Verbitsky

Sheaves of functions (reminder)

DEFINITION: An open cover of a topological space X is a family of open
sets {Ui} such that

⋃
iUi = X.

DEFINITION: A presheaf of functions on a topological space M is a
collection of subrings F(U) ⊂ C(U) in the ring C(U) of all functions on U , for
each open subset U ⊂ M , such that the restriction of every γ ∈ F(U) to an
open subset U1 ⊂ U belongs to F(U1).

DEFINITION: A presheaf of functions F is called a sheaf of functions if
these subrings satisfy the following condition. Let {Ui} be a cover of an open
subset U ⊂ M (possibly infinite) and fi ∈ F(Ui) a family of functions defined
on the open sets of the cover and compatible on the pairwise intersections:

fi|Ui∩Uj = fj|Ui∩Uj
for every pair of members of the cover. Then there exists f ∈ F(U) such
that fi is the restriction of f to Ui for all i.

REMARK: A presheaf of functions is a collection of subrings of functions
on open subsets, compatible with restrictions. A sheaf of fuctions is a
presheaf allowing “gluing” a function on a bigger open set if its restrictions
to smaller open sets are compatible.
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Ringed spaces (reminder)

A ringed space (M,F) is a topological space equipped with a sheaf of func-

tions. A morphism (M,F)
Ψ−→ (N,F ′) of ringed spaces is a continuous map

M
Ψ−→ N such that, for every open subset U ⊂ N and every function f ∈ F ′(U),

the function ψ∗f := f ◦Ψ belongs to the ring F
(
Ψ−1(U)

)
. An isomorphism

of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ−1 are morphisms

of ringed spaces.

DEFINITION: Let (M,F) be a topological manifold equipped with a sheaf

of functions. It is said to be a smooth manifold of class C∞ or Ci if every

point in (M,F) has an open neighborhood isomorphic to the ringed space

(Bn,F ′), where Bn ⊂ Rn is an open ball and F ′ is a ring of functions on an

open ball Bn of this class.

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism

ϕ which induces an isomorphims of ringed spaces, that is, ϕ and ϕ−1 map

(locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class C∞.
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Partition of unity: a formal definition (reminder)

DEFINITION: Let M be a smooth manifold and let {Uα} a locally finite

cover of M . A partition of unity subordinate to the cover {Uα} is a family of

smooth functions fi : M → [0,1] with compact support indexed by the same

indices as the Ui’s and satisfying the following conditions.

(a) Every function fi vanishes outside Ui
(b)

∑
i fi = 1

The argument of previous page proves the following theorem.

THEOREM: Let {Uα} be a countable, locally finite cover of a manifold M ,

with all Uα diffeomorphic to Rn. Then there exists a partition of unity

subordinate to {Uα}.
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Embedding to R∞ (reminder)

DEFINITION: Define RIf as a direct sum of several copies of R indexed by

a set I, that is, the set of points in a product where only finitely meny of

coordinates can be non-zero. The set RIf has metric

d((x1, ..., xn, ...), (y1, ..., yn, ...)) :=
√
|x1 − y1|2 + |x2 − y2|2 + ...+ |xn − yn|+ ....

It is well-defined, because only finitely many of xi, yi are non-zero.

THEOREM: Let M be a compact smooth manifold, {Vi, ϕi : Vi −→ Rn, i ∈ I}
be a locally finite atlas, and µi : M −→ [0,1] a subordinate partition of unity.

Define νi := α(µi) and Φi as above, and let

Ψ :=
∏
I

: Φi : M −→ Sn × Sn × ...× Sn︸ ︷︷ ︸
I times

⊂ (Rn+1)I

be the corresponding product map. Then Ψ is a homeomorphism to its

image.

5



Geometry of manifolds, lecture 4 M. Verbitsky

Borel measure

DEFINITION: Let C be a cube in Rn with edges parallel to coordinate axes

of length r. Such a cube is called normal. Its volume is rn.

DEFINITION: Let S ⊂ Rn be a closed subset. The volume, or Borel

measure of S is an infimum of
∑
iVol(Si) for all (possibly, infinite) covers of

S by normal cubes.

CLAIM: A subset Z ⊂ Rn has measure zero if for every ε > 0 there exists a

countable cover of Z by cubes Ci such that
∑
iVolCi < ε.

REMARK: Borel measure is a weaker form of Lebesgue measure, defined on

closed subsets of Rn, and equal to Lebesgue measure on those subsets.
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Borel measure: axiomatic definition

THEOREM: (Properties of the volume)

Let µ(S) denote the measure of S. Then

(a) µ(
⋃
Si) 6

∑
i µ(Si).

(b) Measure is monotonous: for any A ⊂ B, µ(A) 6 µ(B).

(c) Let A =
⋃
Ai be an intersection of closed sets A0 ⊃ A1 ⊃ ....

Then µ(A) = limµ(Ai).

(d) Measure is additive. Let S =
⋃
i Si and µ(Si ∩ Sj) = 0 for all i 6= j.

Then µ(S) =
∑
i µ(Si).

(e) Measure of a normal cube is ln, where l is a length of its side.

Moreover, for any closed set, its measure is determined uniquely by

these properties.

EXERCISE: Prove this theorem, using the following lemma.

LEMMA: Let S ⊂ Rn be a closed subset. Then S =
⋂
Si, where S0 ⊃ S1 ⊃

S2 ⊃ ..., and each Si is a countable union of normal cubes, intersecting only

in their faces.
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Hausdorff measure and Hausdorff dimension

DEFINITION: Let M be a metric space. The diameter diamM ∈ [0,∞] is

the number sup
x,y∈M

d(x, y).

DEFINITION: In a metric space, a ball Bε(x) of radius ε centered at x is

defined as the set of all points y satisfying d(x, y) < ε.

DEFINITION: Let {Si} be a cover of a metric space M by balls of radius

r with r < ε. Define µd,ε ∈ [0,∞] as µd,ε(M) := inf{Si}
∑
i(diamSi)

d, where the

infimum is taken over all such covers. The limit µdM := sup limε→0 µd,ε(M)

is called d-dimensional Hausdorff measure of M .

EXAMPLE: Let M = Rn with a metric d∞ given by the norm |(x1, . . . , xn)| :=
max |xi|. The balls in this metric are cubical, and the (usual) volume of

such a ball B is equal to (diamB)n. This gives µn(S) = VolS for each cube

with sides parallel to coordinate planes.

COROLLARY: For M = Rn with the metric described above, Hausdorff

measure is equal to the Borel measure.
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Lipschitz maps

DEFINITION: A map f : M → N of metric spaces is called Lipschitz with

constant C if d(x, y) ≥ C · d
(
f(x), f(y)

)
for all x, y ∈ M . A map is called

bi-Lipschitz if it is bijective and the inverse map is also Lipschitz.

EXAMPLE: A differentiable map f : Rn −→ Rm is Lipschitz on each

compact set B. Indeed, d(x, y) > Cd(f(x), f(y)), where C = supB |Df |.

EXAMPLE: Let ν1, ν2 be norms on a vector space V , and d1, d2 the cor-

responding metrics. The identity map (V, d1)−→ (V, d2) is C-Lipschitz if

and only if the unit ball B1(x, d1) belongs to BC(x, d2).

CLAIM: Let f : M → N be a C-Lipschitz map. Then the corresponding

Hausdorff measures are related as µn(S) > Cnµn(f(S)).

Proof: Let {Si = Bεi(xi)} be a cover of S. Then {BCεi(f(xi))} is a cover of

f(S).

COROLLARY:

Let f : M → N be a C-Lipschitz map. Then dimH(M) > dimH(f(M)).
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Equivalent norms and Hausdorff measure

DEFINITION: Two norms on a vector space V are called equivalent if the

identity map (V, d1)−→ (V, d2) is bi-Lipschitz.

EXAMPLE: Since a unit cube in Rn contains a ball of radius 1, and is

contained in a ball of radius
√
n, one has |x|L2 > |x|L∞ >

√
n−1|x|L2, where L2

is the usual norm, and L∞ the norm |(x1, . . . , xn)| := max |xi|. Therefore, the

norms L2 and L∞ are equivalent.

COROLLARY: Let µL
2

n denote the Hausdorff measure associated with the

Euclidean metric on Rn, and µ the usual (Borel) measure. Then µL
2

n (S) >

µ(S) >
√
n−nµL

2
n (S).

Proof: See the Claim above.
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Hausdorff dimension

THEOREM: Let M be a metric space. Consider µd(M) as a function of d.

Then there exists a number d0 ∈ [0,∞] such that µd(M) =∞ for d < d0,

and µd(M) = 0 for d > d0.

Proof: Whenever d′ > d, one has

µd′,ε(M) = inf
{Si}

∑
i

(diamSi)
d′ = inf

{Si}

∑
i

(diamSi)
d(diamSi)

d′−d <

< εd
′−d inf
{Si}

∑
i

(diamSi)
d = εd

′−dµd,ε(M)

Passing to the limit ε → 0, we obtain that µd′(M) 6 0µd(M). Therefore,

µd′(M) = 0 whenever µd(M) is finite, and µd(M) =∞ whenever µd′(M) >

0.

DEFINITION: Hausdorff dimension dimH(M) of a metric space is the

number supd>0{µd(M) =∞}.

EXERCISE: Prove that set M has Hausdorff dimension 0 iff it is finite.
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Lipschitz maps and Hausdorff dimension

CLAIM: Let f be a Lipschitz map. Then dimH(f(M)) 6 dimH(M).

COROLLARY: A cube C in Rn has Hausdorff dimension n.

Proof: Indeed, C is bi-Lipschitz equivalent to the cube in L∞-metric, but

the Hausdorff measure associated with the L∞-metric is equal to the usual

volume.

CLAIM: Let C =
⋃
Ci be a union of a countably many sets with µdCi = 0.

Then µdC = 0.

Proof: Take a cover Sj(i) of Ci with
∑
j(diamSj(i))d < δi+1. Then {Sj(i)} is

a cover of C with
∑
j,i(diamSj(i))d < δ.

COROLLARY: Rn with the usual metric has Hausdorff dimension n.

Proof: Take a cover of Rn by coutably many unit cubes Ci. For d > n,

µd(Ci) = 0, hence µd(Rn) = 0. Since µn(Ci) > 0, µn(Rn) is also positive.
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Hausdorff dimension of a manifold

THEOREM: Let f : M −→ Rn be a smooth map from a manifold, dimM < n.
Suppose that M admits a countable cover by open balls with compact
closure. Then µnf(M) = 0.

Proof: Let B ⊂ Rm be a closed ball, and ϕ : B −→ Rn a differentiable map.
Then ϕ is Lipschitz, with the Lipschitz constant C 6 sup |Dϕ|. The set M is
covered by closed balls Bi, and µn(f(Bi)) = 0, because f |Bi is Lipschitz, and
dimH Bi < n. Using the Claim above, we obtain that µn(f(M)) = 0.

DEFINITION: Hausdorff dimension of a subset Z ⊂M of a manifold is
supremum of dimh(Z ∪ B) for all subsets B ⊂ M equipped with a coordinate
system.

COROLLARY: Let f : M −→N be a differentiable map of smooth mani-
folds, dimM < dimN . Suppose that M is covered by a countable number of
open balls with compact closure. Then µn(f(M)) = 0.

COROLLARY: (a version of Sard’s lemma) Under these assumptions,
f(M) is nowhere dense.

Proof: Indeed, were it dense in an open ball B, one would have µn(f(M)) >
µn(B) > 0, giving dimH(f(M)) > n, in contradiction to the corollary above.
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Whitney’s theorem (with a bound on dimension): strategy of the proof

THEOREM: Let M be a smooth n-manifold. Then M admits a closed

embedding to R2n+2.

Strategy of the proof:

1. M is embedded to R∞.

2. We find a linear projection R∞ π−→ R2n+2 such that π|M is a closed

embedding of manifolds.

LEMMA: Let M ⊂ RI be a subset, and π : RI −→ RJ a linear projection.

Consider the set W of all vectors R(x− y), where x, y ∈M are distinct points.

Then π|M is injective if and only if ker π ∩W = 0.

Proof: π|M is not injective if and only if π(x) = π(y), which is equivalent to

π(x− y) = 0.
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Whitney’s theorem: injectivity of projections

REMARK: Let M ⊂ RI be a submanifold, and W ⊂ RI the set of all vectors

R(x−y), where x, y ∈M are distinct points. Then W is an image of a 2m+1-

dimensional manifold, hence (by Sard’s Lemma) for any projection of RI

to a (2m+ 2)-dimensional space, image of W has measure 0.

COROLLARY: Let M ⊂ RI be an m-dimensional submanifold, and S ⊂ RI

a maximal linear subspace not intersecting W . Then the projection of W

to RI/S is surjective.

Proof: Suppose it’s not surjective: v /∈ S. Then S ⊕ Rv satisfies assumptions

of lemma, hence M −→ RI/(S + Rv) is also injective.

THEOREM: Let M be a smooth n-manifold, M ↪→ RI an embedding con-

structed earlier. Then there exists a projection π : RI −→ R2n+2 which is

injective on M.

Proof: Let S be the maximal linear subspace such that the restriction of

π : RI −→ RI/S to M is injective. Then the 2m + 1-dimensional manifold W

is mapped surjectively to RI/S, hence dimRi/S 6 2m+ 1 by Sard’s lemma.
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Tangent space to an embedded manifold

DEFINITION: Let M ↪→ Rn be a smooth m-submanifold. The tangent
plane at p ∈ M is the plane in Rn tangent to M (i.e, the plane lying in the
image of the differential given in local coordinates). A tangent vector is an
arbitrary vector in this plane with the origin at p. The space of all tangent
vectors at p is denoted by TpM . Given a metric on Rn, we can define the
space of unit tangent vectors Sm−1M as the set of all pairs (p, v), where
p ∈M , v ∈ TpM , and |v| = 1.

REMARK: Sm−1M is a smooth manifold, projected to M with fibers isomor-
phic to m− 1-spheres, hence Sm−1M is (2m− 1)-dimensional.

LEMMA: Let M ⊂ RI be a subset, and π : RI −→ RJ a linear projection.
Consider the set W ′ of all vectors Rt, where t ∈ TxM Then the differential
Dπ|M is injective if and only if ker π ∩W ′ = 0.

Now the above argument is repeated: we take a maximal space S ⊃ RI such
that the restriction of π : RI −→ RI/S to M is injective and has injective
differential, and the projection of W ∪W ′ to RI/S has to be surjective. How-
ever, W ′ is an image of an 2m-dimensional manifold Sm−1M × R, hence the
projection of W ∪W ′ to RI/S can be surjective only if dimRI/S 6 2m+ 2.

This proves Whitney’s theorem.
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