Geometry of manifolds

Lecture 4: Hausdorff measure and Whitney’s theorem

Misha Verbitsky

Math in Moscow and HSE

February 25, 2013
Sheaves of functions (reminder)

DEFINITION: An open cover of a topological space X is a family of open sets $\{U_i\}$ such that $\bigcup_i U_i = X$.

DEFINITION: A presheaf of functions on a topological space M is a collection of subrings $\mathcal{F}(U) \subset C(U)$ in the ring $C(U)$ of all functions on U, for each open subset $U \subset M$, such that the restriction of every $\gamma \in \mathcal{F}(U)$ to an open subset $U_1 \subset U$ belongs to $\mathcal{F}(U_1)$.

DEFINITION: A presheaf of functions \mathcal{F} is called a sheaf of functions if these subrings satisfy the following condition. Let $\{U_i\}$ be a cover of an open subset $U \subset M$ (possibly infinite) and $f_i \in \mathcal{F}(U_i)$ a family of functions defined on the open sets of the cover and compatible on the pairwise intersections:

$$f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$$

for every pair of members of the cover. Then there exists $f \in \mathcal{F}(U)$ such that f_i is the restriction of f to U_i for all i.

REMARK: A presheaf of functions is a collection of subrings of functions on open subsets, compatible with restrictions. A sheaf of functions is a presheaf allowing “gluing” a function on a bigger open set if its restrictions to smaller open sets are compatible.
Ringed spaces (reminder)

A **ringed space** \((M, \mathcal{F})\) is a topological space equipped with a sheaf of functions. A **morphism** \(\Psi: (M, \mathcal{F}) \to (N, \mathcal{F}')\) of ringed spaces is a continuous map \(M \to N\) such that, for every open subset \(U \subset N\) and every function \(f \in \mathcal{F}'(U)\), the function \(\psi^* f := f \circ \Psi\) belongs to the ring \(\mathcal{F}(\Psi^{-1}(U))\). An **isomorphism** of ringed spaces is a homeomorphism \(\Psi\) such that \(\Psi\) and \(\Psi^{-1}\) are morphisms of ringed spaces.

DEFINITION: Let \((M, \mathcal{F})\) be a topological manifold equipped with a sheaf of functions. It is said to be a **smooth manifold of class** \(C^\infty\) or \(C^i\) if every point in \((M, \mathcal{F})\) has an open neighborhood isomorphic to the ringed space \((\mathbb{B}^n, \mathcal{F}')\), where \(\mathbb{B}^n \subset \mathbb{R}^n\) is an open ball and \(\mathcal{F}'\) is a ring of functions on an open ball \(\mathbb{B}^n\) of this class.

DEFINITION: **Diffeomorphism** of smooth manifolds is a homeomorphism \(\varphi\) which induces an isomorphisms of ringed spaces, that is, \(\varphi\) and \(\varphi^{-1}\) map (locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class \(C^\infty\).
Partition of unity: a formal definition (reminder)

DEFINITION: Let M be a smooth manifold and let $\{U_\alpha\}$ a locally finite cover of M. A partition of unity subordinate to the cover $\{U_\alpha\}$ is a family of smooth functions $f_i : M \to [0,1]$ with compact support indexed by the same indices as the U_i’s and satisfying the following conditions.

(a) Every function f_i vanishes outside U_i
(b) $\sum_i f_i = 1$

The argument of previous page proves the following theorem.

THEOREM: Let $\{U_\alpha\}$ be a countable, locally finite cover of a manifold M, with all U_α diffeomorphic to \mathbb{R}^n. Then there exists a partition of unity subordinate to $\{U_\alpha\}$. ■
Embedding to \mathbb{R}^∞ (reminder)

DEFINITION: Define \mathbb{R}^I_f as a direct sum of several copies of \mathbb{R} indexed by a set I, that is, the set of points in a product where only finitely many of coordinates can be non-zero. **The set \mathbb{R}^I_f has metric**

$$d((x_1, \ldots, x_n, \ldots), (y_1, \ldots, y_n, \ldots)) := \sqrt{|x_1 - y_1|^2 + |x_2 - y_2|^2 + \ldots + |x_n - y_n| + \ldots}.$$

It is well-defined, because only finitely many of x_i, y_i are non-zero.

THEOREM: Let M be a compact smooth manifold, $\{V_i, \varphi_i : V_i \rightarrow \mathbb{R}^n, i \in I\}$ be a locally finite atlas, and $\mu_i : M \rightarrow [0,1]$ a subordinate partition of unity. Define $\nu_i := \alpha(\mu_i)$ and Φ_i as above, and let

$$\Psi := \prod_I: \Phi_i : M \rightarrow S^n \times S^n \times \ldots \times S^n \subset (\mathbb{R}^{n+1})^I$$

be the corresponding product map. Then Ψ is a homeomorphism to its image.
Borel measure

DEFINITION: Let C be a cube in \mathbb{R}^n with edges parallel to coordinate axes of length r. Such a cube is called normal. Its volume is r^n.

DEFINITION: Let $S \subset \mathbb{R}^n$ be a closed subset. The volume, or Borel measure of S is an infimum of $\sum_i \text{Vol}(S_i)$ for all (possibly, infinite) covers of S by normal cubes.

CLAIM: A subset $Z \subset \mathbb{R}^n$ has measure zero if for every $\varepsilon > 0$ there exists a countable cover of Z by cubes C_i such that $\sum_i \text{Vol} C_i < \varepsilon$.

REMARK: Borel measure is a weaker form of Lebesgue measure, defined on closed subsets of \mathbb{R}^n, and equal to Lebesgue measure on those subsets.
Borel measure: axiomatic definition

THEOREM: (Properties of the volume)
Let $\mu(S)$ denote the measure of S. Then

(a) $\mu(\bigcup S_i) \leq \sum_i \mu(S_i)$.

(b) Measure is **monotonous**: for any $A \subset B$, $\mu(A) \leq \mu(B)$.

(c) Let $A = \bigcup A_i$ be an intersection of closed sets $A_0 \supset A_1 \supset \ldots$. Then $\mu(A) = \lim \mu(A_i)$.

(d) Measure is **additive**. Let $S = \bigcup_i S_i$ and $\mu(S_i \cap S_j) = 0$ for all $i \neq j$. Then $\mu(S) = \sum_i \mu(S_i)$.

(e) Measure of a normal cube is l^n, where l is a length of its side.

Moreover, for any closed set, its measure is determined uniquely by these properties.

EXERCISE: Prove this theorem, using the following lemma.

LEMMA: Let $S \subset \mathbb{R}^n$ be a closed subset. Then $S = \bigcap S_i$, where $S_0 \supset S_1 \supset S_2 \supset \ldots$, and each S_i is a countable union of normal cubes, intersecting only in their faces.
Hausdorff measure and Hausdorff dimension

DEFINITION: Let M be a metric space. The **diameter** $\text{diam} M \in [0, \infty]$ is the number $\sup_{x,y \in M} d(x, y)$.

DEFINITION: In a metric space, a **ball** $B_\varepsilon(x)$ of radius ε centered at x is defined as the set of all points y satisfying $d(x, y) < \varepsilon$.

DEFINITION: Let $\{S_i\}$ be a cover of a metric space M by balls of radius r with $r < \varepsilon$. Define $\mu_{d,\varepsilon} \in [0, \infty]$ as $\mu_{d,\varepsilon}(M) := \inf \{ \sum_i (\text{diam} S_i)^d \}$, where the infimum is taken over all such covers. The limit $\mu_d M := \sup \lim_{\varepsilon \to 0} \mu_{d,\varepsilon}(M)$ is called the **d-dimensional Hausdorff measure** of M.

EXAMPLE: Let $M = \mathbb{R}^n$ with a metric d_∞ given by the norm $|(x_1, \ldots, x_n)| := \max |x_i|$. The balls in this metric are cubical, and the (usual) volume of such a ball B is equal to $(\text{diam} B)^n$. This gives $\mu_n(S) = \text{Vol} S$ for each cube with sides parallel to coordinate planes.

COROLLARY: For $M = \mathbb{R}^n$ with the metric described above, Hausdorff measure is equal to the Borel measure.
Lipschitz maps

DEFINITION: A map \(f : M \to N \) of metric spaces is called **Lipschitz with constant** \(C \) if \(d(x, y) \geq C \cdot d(f(x), f(y)) \) for all \(x, y \in M \). A map is called **bi-Lipschitz** if it is bijective and the inverse map is also Lipschitz.

EXAMPLE: A differentiable map \(f : \mathbb{R}^n \to \mathbb{R}^m \) is Lipschitz on each compact set \(B \). Indeed, \(d(x, y) \geq C d(f(x), f(y)) \), where \(C = \sup_B |Df| \).

EXAMPLE: Let \(\nu_1, \nu_2 \) be norms on a vector space \(V \), and \(d_1, d_2 \) the corresponding metrics. The identity map \((V, d_1) \to (V, d_2) \) is \(C \)-Lipschitz if and only if the unit ball \(B_1(x, d_1) \) belongs to \(B_C(x, d_2) \).

CLAIM: Let \(f : M \to N \) be a \(C \)-Lipschitz map. Then the corresponding Hausdorff measures are related as \(\mu_n(S) \geq C^n \mu_n(f(S)) \).

Proof: Let \(\{S_i = B_{\varepsilon_i}(x_i)\} \) be a cover of \(S \). Then \(\{B_{C\varepsilon_i}(f(x_i))\} \) is a cover of \(f(S) \). ■

COROLLARY: Let \(f : M \to N \) be a \(C \)-Lipschitz map. Then \(\dim_H(M) \geq \dim_H(f(M)) \). ■
Equivalent norms and Hausdorff measure

DEFINITION: Two norms on a vector space V are called equivalent if the identity map $(V,d_1) \to (V,d_2)$ is bi-Lipschitz.

EXAMPLE: Since a unit cube in \mathbb{R}^n contains a ball of radius 1, and is contained in a ball of radius \sqrt{n}, one has $|x|_{L^2} \geq |x|_{L^\infty} \geq \sqrt{n-1}|x|_{L^2}$, where L^2 is the usual norm, and L^∞ the norm $|(x_1,\ldots,x_n)| := \max |x_i|$. Therefore, the norms L^2 and L^∞ are equivalent.

COROLLARY: Let $\mu_n^{L^2}$ denote the Hausdorff measure associated with the Euclidean metric on \mathbb{R}^n, and μ the usual (Borel) measure. Then $\mu_n^{L^2}(S) \geq \mu(S) \geq \sqrt{n-n} \mu_n^{L^2}(S)$.

Proof: See the Claim above. ■
Hausdorff dimension

THEOREM: Let M be a metric space. Consider $\mu_d(M)$ as a function of d. Then there exists a number $d_0 \in [0, \infty]$ such that $\mu_d(M) = \infty$ for $d < d_0$, and $\mu_d(M) = 0$ for $d > d_0$.

Proof: Whenever $d' > d$, one has

$$
\mu_{d',\varepsilon}(M) = \inf_{\{S_i\}} \sum_i (\text{diam}S_i)^{d'} = \inf_{\{S_i\}} \sum_i (\text{diam}S_i)^d(\text{diam}S_i)^{d'-d} <
$$

$$
< \varepsilon^{d'-d} \inf_{\{S_i\}} \sum_i (\text{diam}S_i)^d = \varepsilon^{d'-d} \mu_{d,\varepsilon}(M)
$$

Passing to the limit $\varepsilon \to 0$, we obtain that $\mu_{d'}(M) \leq 0 \mu_d(M)$. Therefore, $\mu_{d'}(M) = 0$ whenever $\mu_d(M)$ is finite, and $\mu_d(M) = \infty$ whenever $\mu_{d'}(M) > 0$. ■

DEFINITION: **Hausdorff dimension** $\dim_H(M)$ of a metric space is the number $\sup_{d \geq 0} \{\mu_d(M) = \infty\}$.

EXERCISE: Prove that set M has Hausdorff dimension 0 iff it is finite.
Lipschitz maps and Hausdorff dimension

CLAIM: Let \(f \) be a Lipschitz map. Then \(\dim_H(f(M)) \leq \dim_H(M) \). ■

COROLLARY: A cube \(C \) in \(\mathbb{R}^n \) has Hausdorff dimension \(n \).

Proof: Indeed, \(C \) is bi-Lipschitz equivalent to the cube in \(L^\infty \)-metric, but
the Hausdorff measure associated with the \(L^\infty \)-metric is equal to the usual
volume. ■

CLAIM: Let \(C = \bigcup C_i \) be a union of a countably many sets with \(\mu_d C_i = 0 \).
Then \(\mu_d C = 0 \).

Proof: Take a cover \(S_j(i) \) of \(C_i \) with \(\sum_j (\text{diam} S_j(i))^d < \delta^{i+1} \). Then \(\{ S_j(i) \} \) is
a cover of \(C \) with \(\sum_{j,i} (\text{diam} S_j(i))^d < \delta \). ■

COROLLARY: \(\mathbb{R}^n \) with the usual metric has Hausdorff dimension \(n \).

Proof: Take a cover of \(\mathbb{R}^n \) by countably many unit cubes \(C_i \). For \(d > n \),
\(\mu_d(C_i) = 0 \), hence \(\mu_d(\mathbb{R}^n) = 0 \). Since \(\mu_n(C_i) > 0 \), \(\mu_n(\mathbb{R}^n) \) is also positive. ■
Hausdorff dimension of a manifold

THEOREM: Let \(f : M \rightarrow \mathbb{R}^n \) be a smooth map from a manifold, \(\dim M < n \). Suppose that \(M \) admits a countable cover by open balls with compact closure. Then \(\mu_n f(M) = 0 \).

Proof: Let \(B \subset \mathbb{R}^m \) be a closed ball, and \(\varphi : B \rightarrow \mathbb{R}^n \) a differentiable map. Then \(\varphi \) is Lipschitz, with the Lipschitz constant \(C \leq \sup |D\varphi| \). The set \(M \) is covered by closed balls \(B_i \), and \(\mu_n(f(B_i)) = 0 \), because \(f|_{B_i} \) is Lipschitz, and \(\dim_H B_i < n \). Using the Claim above, we obtain that \(\mu_n(f(M)) = 0 \).

DEFINITION: Hausdorff dimension of a subset \(Z \subset M \) of a manifold is supremum of \(\dim_h(Z \cup B) \) for all subsets \(B \subset M \) equipped with a coordinate system.

COROLLARY: Let \(f : M \rightarrow N \) be a differentiable map of smooth manifolds, \(\dim M < \dim N \). Suppose that \(M \) is covered by a countable number of open balls with compact closure. Then \(\mu_n(f(M)) = 0 \).

COROLLARY: (a version of Sard’s lemma) Under these assumptions, \(f(M) \) is nowhere dense.

Proof: Indeed, were it dense in an open ball \(B \), one would have \(\mu_n(f(M)) \geq \mu_n(B) > 0 \), giving \(\dim_H(f(M)) \geq n \), in contradiction to the corollary above.
Whitney's theorem (with a bound on dimension): strategy of the proof

THEOREM: Let M be a smooth n-manifold. Then M admits a closed embedding to \mathbb{R}^{2n+2}.

Strategy of the proof:
1. M is embedded to \mathbb{R}^∞.
2. We find a linear projection $\mathbb{R}^\infty \xrightarrow{\pi} \mathbb{R}^{2n+2}$ such that $\pi|_M$ is a closed embedding of manifolds.

LEMMA: Let $M \subset \mathbb{R}^I$ be a subset, and $\pi : \mathbb{R}^I \to \mathbb{R}^J$ a linear projection. Consider the set W of all vectors $\mathbb{R}(x - y)$, where $x, y \in M$ are distinct points. Then $\pi|_M$ is injective if and only if $\ker \pi \cap W = 0$.

Proof: $\pi|_M$ is not injective if and only if $\pi(x) = \pi(y)$, which is equivalent to $\pi(x - y) = 0$. □
Whitney's theorem: injectivity of projections

REMARK: Let \(M \subset \mathbb{R}^I \) be a submanifold, and \(W \subset \mathbb{R}^I \) the set of all vectors \(\mathbb{R}(x-y) \), where \(x, y \in M \) are distinct points. Then \(W \) is an image of a \(2m+1 \)-dimensional manifold, hence (by Sard's Lemma) for any projection of \(\mathbb{R}^I \) to a \((2m+2)\)-dimensional space, image of \(W \) has measure 0.

COROLLARY: Let \(M \subset \mathbb{R}^I \) be an \(m \)-dimensional submanifold, and \(S \subset \mathbb{R}^I \) a maximal linear subspace not intersecting \(W \). Then the projection of \(W \) to \(\mathbb{R}^I/S \) is surjective.

Proof: Suppose it's not surjective: \(v \notin S \). Then \(S \oplus \mathbb{R}v \) satisfies assumptions of lemma, hence \(M \rightarrow \mathbb{R}^I/(S + \mathbb{R}v) \) is also injective. ■

THEOREM: Let \(M \) be a smooth \(n \)-manifold, \(M \hookrightarrow \mathbb{R}^I \) an embedding constructed earlier. Then there exists a projection \(\pi : \mathbb{R}^I \rightarrow \mathbb{R}^{2n+2} \) which is injective on \(M \).

Proof: Let \(S \) be the maximal linear subspace such that the restriction of \(\pi : \mathbb{R}^I \rightarrow \mathbb{R}^I/S \) to \(M \) is injective. Then the \(2m+1 \)-dimensional manifold \(W \) is mapped surjectively to \(\mathbb{R}^I/S \), hence \(\dim \mathbb{R}^i/S \leq 2m+1 \) by Sard's lemma. ■
Tangent space to an embedded manifold

DEFINITION: Let $M \hookrightarrow \mathbb{R}^n$ be a smooth m-submanifold. The **tangent plane** at $p \in M$ is the plane in \mathbb{R}^n tangent to M (i.e., the plane lying in the image of the differential given in local coordinates). A **tangent vector** is an arbitrary vector in this plane with the origin at p. The space of all tangent vectors at p is denoted by $T_p M$. Given a metric on \mathbb{R}^n, we can define the space of **unit tangent vectors** $S^{m-1} M$ as the set of all pairs (p, v), where $p \in M$, $v \in T_p M$, and $|v| = 1$.

REMARK: $S^{m-1} M$ is a smooth manifold, projected to M with fibers isomorphic to $m-1$-spheres, hence $S^{m-1} M$ is $(2m - 1)$-dimensional.

LEMMA: Let $M \subset \mathbb{R}^I$ be a subset, and $\pi : \mathbb{R}^I \rightarrow \mathbb{R}^J$ a linear projection. Consider the set W' of all vectors $\mathbb{R} t$, where $t \in T_x M$ Then the differential $D\pi|_M$ is injective if and only if $\ker \pi \cap W' = 0$. ■

Now the above argument is repeated: we take a maximal space $S \supset \mathbb{R}^I$ such that the restriction of $\pi : \mathbb{R}^I \rightarrow \mathbb{R}^I/S$ to M is injective and has injective differential, and the projection of $W \cup W'$ to \mathbb{R}^I/S has to be surjective. However, W' is an image of an $2m$-dimensional manifold $S^{m-1} M \times \mathbb{R}$, hence the projection of $W \cup W'$ to \mathbb{R}^I/S can be surjective only if $\dim \mathbb{R}^I/S \leq 2m + 2$.

This proves Whitney’s theorem.