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Rings and derivations

REMARK: All rings in these handouts are assumed to be commutative and
with unit. Algebras are associative, but not necessarily commutative (such as
the matrix algebra). Rings over a field k£ are rings containing a field k. We
assume that k£ has characteristic O.

DEFINITION: Let R be a ring over a field k. A k-linear map D R— R is
called a derivation if it satisfies the Leibnitz equation D(fg) = D(f)g +
gD(f). The space of derivations is denoted as Der,(R).

EXAMPLE: & : C[t] —C[t]. & : C®R— C*®R.

REMARK: Any derivation § € Der,(R) vanishes on k C R. Indeed, 6(1) =
6(1-1) =26(1).

CLAIM: Let K be a finite extension of a field k, that is, a field containing
k and finite-dimensional as a K-linear space. Then Der,(K) = 0.

Proof: Indeed, any z € K satisfies a non-trivial polynomial equation P(x) =0
with coefficients in k. Chose P(t) of smallest degree possible. For any
§ € Der,(R), we have 0 = §(P(x)) = P'(z)5(x), and unless §(z) = 0, one has
P'(z) = 0, giving a contradiction. =
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Modules over a ring

DEFINITION: Let R be a ring over a field k. An R-module is a vector space
V over k, equipped with an algebra homomorphism R — End(V), where
End(V) denotes the endomorphism algebra of V, that is, the matrix algebra.

REMARK: Let R be a field. Then R-modules are the same as vector spaces
over R.

DEFINITION: Homomorphisms, isomorphisms, submodules, quotient mod-
ules, direct sums of modules are defined in the same way as for the vector
spaces. A ring R is itself an R-module. A direct sum of n copies of R is
denoted R™. Such R-module is called a free R-module.

EXAMPLE: R-submodules in R are the same as ideals in R.

DEFINITION: Finitely generated R-module is a quotient module of R™.
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Noetherian rings

DEFINITION: A Noetherian ring is a ring R with all ideals finitely generated
as R-modules.

THEOREM: Let R be a Noetherian ring. Then any submodule of a
finitely generated R-module is finitely generated.

Proof. Step 1: Consider an exact sequence of R-modules

O— My — M — M>— 0. Then M is called an extension of M1 and Mo>.
An extension of finitely-generated modules is finitely generated. Indeed, take
a finite set of generators in M5, and let {§;} be preimages of these generators
in M. Let {(;} be a finite set of generators in My C M. Then {(; + &}
generate M.

Step 2: A filtration on a module M as a sequence of submodules
O=MogC M C..CMp,=M. From Step 1 and induction it follows that any
M admitting a filtration with finitely-generated M;/M;_1 is also finitely-
generated.

Step 3: Let .M C R™ = W. Consider a filtration Wo Cc W7 C ... C W,, = W,
with W, = R', and let M; = M NnW;. Then M;/M; 1 is a submodule of
W;/W;_1 = R, hence finitely-generated. =
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Ring of smooth functions

THEOREM: Let R be a ring of smooth real functions on R™. Then R is
not Noetherian. Moreover, the ideal I of all functions with all derivatives
vanishing at 0 is not finitely generated.

Proof. Step 1: If I is generated by f1,..., fn, then for each g € I, one can
express g as g = > g;f;- Then

x—0

lim supiQ\Zl gil f2<oo

Zf2

is smooth,
e

Step 2: Let z; be coordinate functions. The function F':
and all its derivatives vanish at 0, however,

F 1
lim sup ——= = |lim su = 0Q.
xz—0 P ZfZQ x—0 DZ:UQ >
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Derivations as an R-module

REMARK: Let R be a ring over k. The space Der,(R) of derivations is
also an R-module, with multiplicative action of R given by rD(f) = rD(f).

CLAIM: Let R = k[t1,..,t] be a polynomial ring. Then Der,(R) is a free

_ i : Wi d _d d
R-module isomorphic to R", with generators diy dis’ 0 dt

Proof: Consider a map Der,(R) — R",

D — (D(t1),D(t3),..., D(tn))

It is surjective, because it maps each % to (0,...,0,1,0,...,0), and injective,
because each derivation which vanishes on t;, vanishes on the whole polyno-
mial ring. =

Now we prove a similar result for C°°R".
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Hadamard’s Lemma

LEMMA: (Hadamard’s Lemma)
Let f be a smooth function f on R", and z; the coordinate functions. Then
f(x) = f(O0) + X1 x;9;(x), for some smooth g; € C°°R".

Proof: Let t € R". Consider a function h(t) € C*°R", h(t) = f(tx). Then
% =3 dfd(xtf) (tx)x;, 9iving

. df(ta:)
F@) — £0) = [ M = e Tt (it

COROLLARY: Let mg be an ideal of all smooth functions on R™ vanishing
in 0. Then mp iIs generated by coordinate functions. =

COROLLARY: Let f be a smooth function on R" satisfying f(x) = 0 and
f'(x) =0. Then f c m2.

Proof: f(z) = > x;9;(x), where all g; vanish in 0. =

-
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Derivations of (°°R"

THEOREM: Let 21, ...,z be coordinates on R”, R = C°°R", and Der(R) l>
(C°R™™ map D to (D(x1),D(x5),..., D(xn)). Then D : Der(C°R") — R"
IS an isomorphism.

Proof. Step 1: Since N maps each % to (0,...,0,1,0,...,0), it is surjective.
Step 2: Let mg be an ideal of 0, and D C ker[ll. Then MN(x;) = 0, where z;
are coordinate functions. By Hadamard's Lemma, f(z) = f(0)+>7" 1 z;9;(x),

hence D(f) = Y, z;D(g;). Therefore, D(f) lies in mg.

Step 3: Same argument proves that D(f) vanishes everywhere, for all
feC>®M. m
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Sheaves

DEFINITION: An open cover of a topological space X is a family of open
sets {U;} such that U; U; = X.

REMARK: The definition of a sheaf below is a more abstract version of the
notion of ‘sheaf of functions” defined previously.

DEFINITION: A presheaf on a topological space M is a collection of vector
spaces F(U), for each open subset U C M, together with restriction maps
Ryw F(U) — F(W) defined for each W C U, such that for any three open
sets W CV CU, Vygw = Vyy o Vyw. Elements of F(U) are called sections
of F over U, and restriction map often denoted f|y

DEFINITION: A presheaf F is called a sheaf if for any open set U and any
cover U = |J Uy the following two conditions are satisfied.

1. Let f € F(U) be a section of F on U such that its restriction to each
U; vanishes. Then f = 0.

2. Let f; € F(U;) be a family of sections compatible on the pairwise

intersections: fz'|U,L~mUj = fj|UimUj for every pair of members of the cover.
Then there exists f € F(U) such that f; is the restriction of f to U; for
all <.
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Sheaves and exact sequences

DEFINITION: A sequence A1 — Ao — Az — ... of homomorphisms of
abelian groups or vector spaces is called exact if the image of each map
is the kernel of the next one.

CLAIM: A presheaf F is a sheaf if and only if for every cover {U;} of an open
subset U C M, the sequence of restriction maps

0 — FU) — [[FWU) — [[ FU;nU,)
i ]
Is exact, with n € F(U;) mapped to n‘UZﬂUj and _77|UjﬂUz"
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Ringed spaces (reminder)

DEFINITION: A sheaf of rings is a sheaf F such that all the spaces F(U)
are rings, and all restriction maps are ring homomorphisms.

DEFINITION: A sheaf of functions is a subsheaf in a sheaf of all functions,
closed under multiplication.

For simplicity, I assume now that a sheaf of rings is a subsheaf in a
sheaf of all functions.

DEFINITION: A ringed space (M, F) is a topological space equipped with
a sheaf of rings. A morphism (M, F) v, (N, F") of ringed spaces is a con-
tinuous map M i> N such that, for every open subset U C N and every
function f € F'(U), the function ¢*f := foW belongs to the ring ]—"(\U—l(U)).
An isomorphism of ringed spaces is a homeomorphism W such that W and
w1 are morphisms of ringed spaces.

11
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Smooth manifold (reminder)

DEFINITION: Let (M,F) be a topological manifold equipped with a sheaf
of functions. It is said to be a smooth manifold of class C>® or C" if every
point in (M,F) has an open neighborhood isomorphic to the ringed space
(B", F), where B™ C R"™ is an open ball and F’ is a ring of functions on an
open ball B™ of this class.

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism
@ which induces an isomorphims of ringed spaces, that is, ¢ and go_l map

(locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class (°°.
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Partition of unity (reminder)

DEFINITION: Let M be a smooth manifold and let {Uy} a locally finite
cover of M. A partition of unity subordinate to the cover {U,} is a family of
smooth functions f; : M — [0, 1] with compact support indexed by the same
indices as the U;'s and satisfying the following conditions.

(a) Every function f; vanishes outside U;

(b) > fi=1

THEOREM: Let {U,} be a countable, locally finite cover of a manifold M,
with all U, diffeomorphic to R™. Then there exists a partition of unity
subordinate to {U,}.

DEFINITION: Let U C V be open subsets in M. We write U € V if the
closure of U is contained in V.

DEFINITION: Let f € F(M) be a section of a sheaf F on M. A pointxz e M
does not lie in the support Sup(f) of f if fl|y = 0 for some neighbourhood
U>zx.

REMARK: Support of a section is obviously closed.
13
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Smooth functions with prescribed support

EXERCISE: Let X,Y C M be non-intersecting closed subsets in a metric
space. Find non-intersecting open neighbourhoods U; D X and U, D U.

CLAIM: Let U € V — open subsets in a smooth metrizable manifold. Then
there exists a smooth function o, € C*°M, supported on V, and equal
to 1 on U.

Proof. Step 1: Find non-intersecting open neighbourhoods Uy and U,
of U and M\V, and choose a partition of unity {V;,;} subordinate to the
cover Uy,Us, Uz = V\U. Then for each i, either Sup(p;) NU; = 0, or
Sup(p;) NUz = 0.

Step 2: Let dyy = > gp;, Where the sum is taken over the set S all ;
satisfying Sup(y;) NU7 #= 0. Since support of all such ; lies in M\U, C V,
one has Sup(®;y) C V. Also, for each x € Uy, one has Y ;cqpi(x) = 1,
hence &y =10onU; DU. =

14
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Vector fields as derivations

DEFINITION: Let M be a smooth manifold. A vector field on M is an
element in Der(C*®°M).

EXAMPLE: For M = R", the space Der(C°°M) is a free module gener-
ated by 1, i=1,..,n.

REMARK: We want to prove that vector fields form a sheaf. However, it
IS not immediately clear how to restrict a vector field from U to W C U.

THEOREM: Let U € V be open subset of a smooth metrizable manifold, and
D € (C°°M) a derivation. Consider a smooth function &y, € C*°M supported
on V, and equal to 1 on U. Given f € C®V, define D(f)|y := D(®yyf).
Choosing a cover of such U;, we can glue together a section D(f) of C°®°V
from such D(f)|Ui This operation is independent of all choices we made
and gives an element D|y, € Der(V). Moreover, this restriction maps
define a structure of a sheaf on Der(M).

Proof: next lecture. The proof uses germs.
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Whitney’s theorem (with a bound on dimension): strategy of the proof

THEOREM: Let M be a smooth n-manifold. Then M admits a closed
embedding to R2"+2,

Strategy of the proof:

1. M is embedded to R*°.

2. We find a linear projection R® - R27t2 sych that =], is a closed
embedding of manifolds.

LEMMA: Let M C R! be a subset, and = : R — RY a linear projection.
Consider the set W of all vectors R(z —y), where x,y € M are distinct points.
Then x|,; is injective if and only if kerrNW = 0.

Proof: x|y, is not injective if and only if n(x) = n(y), which is equivalent to

m(zr—y)=0. =
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Whitney’'s theorem: injectivity of projections

REMARK: Let M c R! be a submanifold, and W c R! the set of all vectors
R(z—vy), where xz,y € M are distinct points. Then W is an image of a 2m+1-
dimensional manifold, hence (by Sard’'s Lemma) for any projection of R/
to a (2m + 2)-dimensional space, image of W has measure O.

COROLLARY: Let M c R! be an m-dimensional submanifold, and S c R{
a maximal linear subspace not intersecting W. Then the projection of W
to R!/S is surjective.

Proof: Suppose it's not surjective: v ¢ S. Then S @® Rv satisfies assumptions
of lemma, hence M — R!/(S 4 Rv) is also injective. m

THEOREM: Let M be a smooth n-manifold, M — RI an embedding con-
structed earlier. Then there exists a projection = : R! — R2"*T2 which is
injective on M.

Proof: Let S be the maximal linear subspace such that the restriction of
m: Rl — R!/S to M is injective. Then the 2m + 1-dimensional manifold W
IS mapped surjectively to RI/S, hence dim R’i/S <2m -+ 1 by Sard’s lemma. =
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Tangent space to an embedded manifold

DEFINITION: Let M — R™ be a smooth m-submanifold. The tangent
plane at p € M is the plane in R"™ tangent to M (i.e, the plane lying in the
image of the differential given in local coordinates). A tangent vector is an
arbitrary vector in this plane with the origin at p. The space of all tangent
vectors at p is denoted by TpM. Given a metric on R"™, we can define the
space of unit tangent vectors S™ 1M as the set of all pairs (p,v), where
peE M, velIpM, and |v| = 1.

REMARK: S™ 1)/ is a smooth manifold, projected to M with fibers isomor-
phic to m — 1-spheres, hence S 1M\ is (2m — 1)-dimensional.

LEMMA: Let M C R! be a subset, and = : R! —s R’ a linear projection.
Consider the set W’ of all vectors Rt, where t € T,M Then the differential
D[y is injective if and only if kermrNW/ = 0. m

Now the above argument is repeated: we take a maximal space S D R such
that the restriction of =« : R[—>R[/S to M is injective and has injective
differential, and the projection of W U W’ to R!/S has to be surjective. How-
ever, W' is an image of an 2m-dimensional manifold Sm—1pr x R, hence the
projection of WUW’ to IR%I/S can be surjective only if dim RI/S < 2m—+ 2.

This proves Whitney’'s theorem.
18



