Geometry of manifolds

Lecture 5: Derivations in rings

Misha Verbitsky

Math in Moscow and HSE

March 4, 2013

Rings and derivations

REMARK: All rings in these handouts are assumed to be commutative and with unit. Algebras are associative, but not necessarily commutative (such as the matrix algebra). Rings over a field k are rings containing a field k. We assume that k has characteristic 0.

DEFINITION: Let R be a ring over a field k. A k-linear map $D \xrightarrow{R} R \longrightarrow R$ is called a derivation if it satisfies the Leibnitz equation D(fg) = D(f)g + gD(f). The space of derivations is denoted as $\text{Der}_k(R)$.

EXAMPLE: $\frac{d}{dt}$: $\mathbb{C}[t] \longrightarrow \mathbb{C}[t]$. $\frac{d}{dt}$: $C^{\infty}\mathbb{R} \longrightarrow C^{\infty}\mathbb{R}$.

REMARK: Any derivation $\delta \in \text{Der}_k(R)$ vanishes on $k \subset R$. Indeed, $\delta(1) = \delta(1 \cdot 1) = 2\delta(1)$.

CLAIM: Let K be a finite extension of a field k, that is, a field containing k and finite-dimensional as a K-linear space. Then $\text{Der}_k(K) = 0$.

Proof: Indeed, any $x \in K$ satisfies a non-trivial polynomial equation P(x) = 0 with coefficients in k. Chose P(t) of smallest degree possible. For any $\delta \in \text{Der}_k(R)$, we have $0 = \delta(P(x)) = P'(x)\delta(x)$, and unless $\delta(x) = 0$, one has P'(x) = 0, giving a contradiction.

Modules over a ring

DEFINITION: Let *R* be a ring over a field *k*. An *R*-module is a vector space *V* over *k*, equipped with an algebra homomorphism $R \rightarrow \text{End}(V)$, where End(V) denotes the endomorphism algebra of *V*, that is, the matrix algebra.

REMARK: Let R be a field. Then R-modules are the same as vector spaces over R.

DEFINITION: Homomorphisms, isomorphisms, submodules, quotient modules, direct sums of modules are defined in the same way as for the vector spaces. A ring R is itself an R-module. A direct sum of n copies of R is denoted R^n . Such R-module is called a free R-module.

EXAMPLE: R-submodules in R are the same as ideals in R.

DEFINITION: Finitely generated R-module is a quotient module of R^n .

Noetherian rings

DEFINITION: A Noetherian ring is a ring *R* with all ideals finitely generated as *R*-modules.

THEOREM: Let *R* be a Noetherian ring. Then any submodule of a finitely generated *R*-module is finitely generated.

Proof. Step 1: Consider an exact sequence of *R*-modules $0 \longrightarrow M_1 \longrightarrow M \longrightarrow M_2 \longrightarrow 0$. Then *M* is called **an extension** of M_1 and M_2 . An extension of finitely-generated modules is finitely generated. Indeed, take a finite set of generators in M_2 , and let $\{\xi_i\}$ be preimages of these generators in *M*. Let $\{\zeta_j\}$ be a finite set of generators in $M_1 \subset M$. Then $\{\zeta_j + \xi_i\}$ generate *M*.

Step 2: A filtration on a module M as a sequence of submodules $0 = M_0 \subset M_1 \subset ... \subset M_n = M$. From Step 1 and induction it follows that any M admitting a filtration with finitely-generated M_i/M_{i-1} is also finitelygenerated.

Step 3: Let $M \subset R^n = W$. Consider a filtration $W_0 \subset W_1 \subset ... \subset W_n = W$, with $W_i = R^i$, and let $M_i = M \cap W_i$. Then M_i/M_{i-1} is a submodule of $W_i/W_{i-1} = R$, hence finitely-generated.

Ring of smooth functions

THEOREM: Let R be a ring of smooth real functions on \mathbb{R}^n . Then R is not Noetherian. Moreover, the ideal I of all functions with all derivatives vanishing at 0 is not finitely generated.

Proof. Step 1: If *I* is generated by $f_1, ..., f_n$, then for each $g \in I$, one can express *g* as $g = \sum g_i f_i$. Then

$$\lim_{x \to 0} \sup \frac{g}{\sum f_i^2} \leqslant \sum |g_i| \frac{f_1}{\sum f_i^2} < \infty.$$

Step 2: Let x_i be coordinate functions. The function $F := \frac{\sum f_i^2}{\sum x_i^2}$ is smooth, and all its derivatives vanish at 0, however,

$$\lim_{x \to 0} \sup \frac{F}{\sum f_i^2} = \lim_{x \to 0} \sup \frac{1}{\sum x_i^2} = \infty.$$

Derivations as an *R***-module**

REMARK: Let *R* be a ring over *k*. The space $Der_k(R)$ of derivations is also an *R*-module, with multiplicative action of *R* given by rD(f) = rD(f).

CLAIM: Let $R = k[t_1, .., t_k]$ be a polynomial ring. Then $\text{Der}_k(R)$ is a free *R*-module isomorphic to R^n , with generators $\frac{d}{dt_1}, \frac{d}{dt_2}, ..., \frac{d}{dt_n}$.

Proof: Consider a map $Der_k(R) \longrightarrow R^n$,

 $D \longrightarrow (D(t_1), D(t_2), ..., D(t_n))$

It is surjective, because it maps each $\frac{d}{dt_i}$ to (0, ..., 0, 1, 0, ..., 0), and injective, because each derivation which vanishes on t_i , vanishes on the whole polynomial ring.

Now we prove a similar result for $C^{\infty}\mathbb{R}^n$.

Hadamard's Lemma

LEMMA: (Hadamard's Lemma)

Let f be a smooth function f on \mathbb{R}^n , and x_i the coordinate functions. Then $f(x) = f(0) + \sum_{i=1}^n x_i g_i(x)$, for some smooth $g_i \in C^{\infty} \mathbb{R}^n$.

Proof: Let $t \in \mathbb{R}^n$. Consider a function $h(t) \in C^{\infty}\mathbb{R}^n$, h(t) = f(tx). Then $\frac{dh}{dt} = \sum \frac{df(tx)}{dx_i}(tx)x_i$, giving

$$f(x) - f(0) = \int_0^1 \frac{dh}{dt} dt = \sum_i x_i \int_0^1 \frac{df(tx)}{dx_i} (tx) dt.$$

COROLLARY: Let \mathfrak{m}_0 be an ideal of all smooth functions on \mathbb{R}^n vanishing in 0. Then \mathfrak{m}_0 is generated by coordinate functions.

COROLLARY: Let f be a smooth function on \mathbb{R}^n satisfying f(x) = 0 and f'(x) = 0. Then $f \in \mathfrak{m}_x^2$.

Proof: $f(x) = \sum_{i=1}^{n} x_i g_i(x)$, where all g_i vanish in 0.

Derivations of $C^{\infty}\mathbb{R}^n$

THEOREM: Let $x_1, ..., x_n$ be coordinates on \mathbb{R}^n , $R = C^{\infty} \mathbb{R}^n$, and $\text{Der}(R) \xrightarrow{\Pi} (C^{\infty} \mathbb{R}^n)^n$ map D to $(D(x_1), D(x_2), ..., D(x_n))$. Then D: $\text{Der}(C^{\infty} \mathbb{R}^n) \longrightarrow R^n$ is an isomorphism.

Proof. Step 1: Since Π maps each $\frac{d}{dt_i}$ to (0, ..., 0, 1, 0, ..., 0), it is surjective.

Step 2: Let \mathfrak{m}_0 be an ideal of 0, and $D \subset \ker \Pi$. Then $\Pi(x_i) = 0$, where x_i are coordinate functions. By Hadamard's Lemma, $f(x) = f(0) + \sum_{i=1}^n x_i g_i(x)$, hence $D(f) = \sum_{i=1}^n x_i D(g_i)$. Therefore, D(f) lies in \mathfrak{m}_0 .

Step 3: Same argument proves that D(f) vanishes everywhere, for all $f \in C^{\infty}M$.

Sheaves

DEFINITION: An open cover of a topological space X is a family of open sets $\{U_i\}$ such that $\bigcup_i U_i = X$.

REMARK: The definition of a sheaf below is a more abstract version of the notion of "sheaf of functions" defined previously.

DEFINITION: A presheaf on a topological space M is a collection of vector spaces $\mathcal{F}(U)$, for each open subset $U \subset M$, together with restriction maps $R_{UW}\mathcal{F}(U) \longrightarrow \mathcal{F}(W)$ defined for each $W \subset U$, such that for any three open sets $W \subset V \subset U$, $\Psi_{UW} = \Psi_{UV} \circ \Psi_{VW}$. Elements of $\mathcal{F}(U)$ are called sections of \mathcal{F} over U, and restriction map often denoted $f|_W$

DEFINITION: A presheaf \mathcal{F} is called a sheaf if for any open set U and any cover $U = \bigcup U_I$ the following two conditions are satisfied.

1. Let $f \in \mathcal{F}(U)$ be a section of \mathcal{F} on U such that its restriction to each U_i vanishes. Then f = 0.

2. Let $f_i \in \mathcal{F}(U_i)$ be a family of sections compatible on the pairwise intersections: $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ for every pair of members of the cover. Then there exists $f \in \mathcal{F}(U)$ such that f_i is the restriction of f to U_i for all i.

Sheaves and exact sequences

DEFINITION: A sequence $A_1 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow ...$ of homomorphisms of abelian groups or vector spaces is called **exact** if the image of each map is the kernel of the next one.

CLAIM: A presheaf \mathcal{F} is a sheaf if and only if for every cover $\{U_i\}$ of an open subset $U \subset M$, the sequence of restriction maps

$$0 \to \mathcal{F}(U) \to \prod_i \mathcal{F}(U_i) \to \prod_{i \neq j} \mathcal{F}(U_i \cap U_j)$$

is exact, with $\eta \in \mathcal{F}(U_i)$ mapped to $\eta |_{U_i \cap U_j}$ and $-\eta |_{U_j \cap U_i}$.

Ringed spaces (reminder)

DEFINITION: A sheaf of rings is a sheaf \mathcal{F} such that all the spaces $\mathcal{F}(U)$ are rings, and all restriction maps are ring homomorphisms.

DEFINITION: A sheaf of functions is a subsheaf in a sheaf of all functions, closed under multiplication.

For simplicity, I assume now that a sheaf of rings is a subsheaf in a sheaf of all functions.

DEFINITION: A ringed space (M, \mathcal{F}) is a topological space equipped with a sheaf of rings. A morphism $(M, \mathcal{F}) \xrightarrow{\Psi} (N, \mathcal{F}')$ of ringed spaces is a continuous map $M \xrightarrow{\Psi} N$ such that, for every open subset $U \subset N$ and every function $f \in \mathcal{F}'(U)$, the function $\psi^* f := f \circ \Psi$ belongs to the ring $\mathcal{F}(\Psi^{-1}(U))$. An isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ^{-1} are morphisms of ringed spaces.

Smooth manifold (reminder)

DEFINITION: Let (M, \mathcal{F}) be a topological manifold equipped with a sheaf of functions. It is said to be a **smooth manifold of class** C^{∞} or C^i if every point in (M, \mathcal{F}) has an open neighborhood isomorphic to the ringed space $(\mathbb{B}^n, \mathcal{F}')$, where $\mathbb{B}^n \subset \mathbb{R}^n$ is an open ball and \mathcal{F}' is a ring of functions on an open ball \mathbb{B}^n of this class.

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism φ which induces an isomorphims of ringed spaces, that is, φ and φ^{-1} map (locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class C^{∞} .

Partition of unity (reminder)

DEFINITION: Let M be a smooth manifold and let $\{U_{\alpha}\}$ a locally finite cover of M. A **partition of unity** subordinate to the cover $\{U_{\alpha}\}$ is a family of smooth functions $f_i : M \to [0, 1]$ with compact support indexed by the same indices as the U_i 's and satisfying the following conditions. (a) Every function f_i vanishes outside U_i (b) $\sum_i f_i = 1$

THEOREM: Let $\{U_{\alpha}\}$ be a countable, locally finite cover of a manifold M, with all U_{α} diffeomorphic to \mathbb{R}^n . Then there exists a partition of unity subordinate to $\{U_{\alpha}\}$.

DEFINITION: Let $U \subset V$ be open subsets in M. We write $U \Subset V$ if the closure of U is contained in V.

DEFINITION: Let $f \in \mathcal{F}(M)$ be a section of a sheaf \mathcal{F} on M. A point $x \in M$ does not lie in the **support** Sup(f) of f if $f|_U = 0$ for some neighbourhood $U \ni x$.

REMARK: Support of a section is obviously closed.

Smooth functions with prescribed support

EXERCISE: Let $X, Y \subset M$ be non-intersecting closed subsets in a metric space. Find non-intersecting open neighbourhoods $U_1 \supset X$ and $U_2 \supset U$.

CLAIM: Let $U \in V$ – open subsets in a smooth metrizable manifold. Then there exists a smooth function $\Phi_{U,V} \in C^{\infty}M$, supported on V, and equal to 1 on U.

Proof. Step 1: Find non-intersecting open neighbourhoods U_1 and U_2 of \overline{U} and $M \setminus V$, and choose a partition of unity $\{V_i, \varphi_i\}$ subordinate to the cover $U_1, U_2, U_3 = V \setminus \overline{U}$. Then for each *i*, either $Sup(\varphi_i) \cap U_1 = \emptyset$, or $Sup(\varphi_i) \cap U_2 = \emptyset$.

Step 2: Let $\Phi_{U,V} := \sum_{S} \varphi_i$, where the sum is taken over the set S all φ_i satisfying $\text{Sup}(\varphi_i) \cap U_1 \neq \emptyset$. Since support of all such φ_i lies in $M \setminus U_2 \subset V$, one has $\text{Sup}(\Phi_{U,V}) \subset V$. Also, for each $x \in U_1$, one has $\sum_{i \in S} \varphi_i(x) = 1$, hence $\Phi_{U,V} = 1$ on $U_1 \supset U$.

Vector fields as derivations

DEFINITION: Let *M* be a smooth manifold. A vector field on *M* is an element in $Der(C^{\infty}M)$.

EXAMPLE: For $M = \mathbb{R}^n$, the space $Der(C^{\infty}M)$ is a free module generated by $\frac{d}{dx_i}$, i = 1, ..., n.

REMARK: We want to prove that vector fields form a sheaf. However, it is not immediately clear how to restrict a vector field from U to $W \subset U$.

THEOREM: Let $U \in V$ be open subset of a smooth metrizable manifold, and $D \in (C^{\infty}M)$ a derivation. Consider a smooth function $\Phi_{U,V} \in C^{\infty}M$ supported on V, and equal to 1 on U. Given $f \in C^{\infty}V$, define $D(f)|_U := D(\Phi_{U,V}f)$. Choosing a cover of such U_i , we can glue together a section D(f) of $C^{\infty}V$ from such $D(f)|_{U_i}$ This operation is independent of all choices we made and gives an element $D|_V \in Der(V)$. Moreover, this restriction maps define a structure of a sheaf on Der(M).

Proof: next lecture. The proof uses germs.

Whitney's theorem (with a bound on dimension): strategy of the proof

THEOREM: Let *M* be a smooth *n*-manifold. Then *M* admits a closed embedding to \mathbb{R}^{2n+2} .

Strategy of the proof:

1. *M* is embedded to \mathbb{R}^{∞} .

2. We find a linear projection $\mathbb{R}^{\infty} \xrightarrow{\pi} \mathbb{R}^{2n+2}$ such that $\pi|_M$ is a closed embedding of manifolds.

LEMMA: Let $M \subset \mathbb{R}^I$ be a subset, and $\pi : \mathbb{R}^I \longrightarrow \mathbb{R}^J$ a linear projection. Consider the set W of all vectors $\mathbb{R}(x-y)$, where $x, y \in M$ are distinct points. **Then** $\pi|_M$ **is injective if and only if** ker $\pi \cap W = 0$.

Proof: $\pi|_M$ is not injective if and only if $\pi(x) = \pi(y)$, which is equivalent to $\pi(x-y) = 0$.

Geometry of manifolds, lecture 4

M. Verbitsky

Whitney's theorem: injectivity of projections

REMARK: Let $M \subset \mathbb{R}^I$ be a submanifold, and $W \subset \mathbb{R}^I$ the set of all vectors $\mathbb{R}(x-y)$, where $x, y \in M$ are distinct points. Then W is an image of a 2m+1-dimensional manifold, hence (by Sard's Lemma) for any projection of \mathbb{R}^I to a (2m+2)-dimensional space, image of W has measure 0.

COROLLARY: Let $M \subset \mathbb{R}^I$ be an *m*-dimensional submanifold, and $S \subset \mathbb{R}^I$ a maximal linear subspace not intersecting W. Then the projection of Wto \mathbb{R}^I/S is surjective.

Proof: Suppose it's not surjective: $v \notin S$. Then $S \oplus \mathbb{R}v$ satisfies assumptions of lemma, hence $M \longrightarrow \mathbb{R}^{I}/(S + \mathbb{R}v)$ is also injective.

THEOREM: Let M be a smooth n-manifold, $M \hookrightarrow \mathbb{R}^I$ an embedding constructed earlier. Then there exists a projection $\pi : \mathbb{R}^I \longrightarrow \mathbb{R}^{2n+2}$ which is injective on M.

Proof: Let *S* be the maximal linear subspace such that the restriction of $\pi : \mathbb{R}^I \longrightarrow \mathbb{R}^I / S$ to *M* is injective. Then the 2m + 1-dimensional manifold *W* is mapped surjectively to \mathbb{R}^I / S , hence dim $\mathbb{R}^i / S \leq 2m + 1$ by Sard's lemma.

Tangent space to an embedded manifold

DEFINITION: Let $M \hookrightarrow \mathbb{R}^n$ be a smooth *m*-submanifold. The **tangent** plane at $p \in M$ is the plane in \mathbb{R}^n tangent to M (i.e, the plane lying in the image of the differential given in local coordinates). A **tangent vector** is an arbitrary vector in this plane with the origin at p. The space of all tangent vectors at p is denoted by T_pM . Given a metric on \mathbb{R}^n , we can define the space of **unit tangent vectors** $\mathbb{S}^{m-1}M$ as the set of all pairs (p, v), where $p \in M$, $v \in T_pM$, and |v| = 1.

REMARK: $\mathbb{S}^{m-1}M$ is a smooth manifold, projected to M with fibers isomorphic to m-1-spheres, hence $\mathbb{S}^{m-1}M$ is (2m-1)-dimensional.

LEMMA: Let $M \subset \mathbb{R}^I$ be a subset, and $\pi : \mathbb{R}^I \longrightarrow \mathbb{R}^J$ a linear projection. Consider the set W' of all vectors $\mathbb{R}t$, where $t \in T_x M$ Then the differential $D\pi|_M$ is injective if and only if ker $\pi \cap W' = 0$.

Now the above argument is repeated: we take a maximal space $S \supset \mathbb{R}^I$ such that the restriction of π : $\mathbb{R}^I \longrightarrow \mathbb{R}^I / S$ to M is injective and has injective differential, and the projection of $W \cup W'$ to \mathbb{R}^I / S has to be surjective. However, W' is an image of an 2m-dimensional manifold $\mathbb{S}^{m-1}M \times \mathbb{R}$, hence **the projection of** $W \cup W'$ to \mathbb{R}^I / S can be surjective only if dim $\mathbb{R}^I / S \leq 2m + 2$.

This proves Whitney's theorem.