Geometry of manifolds

Lecture 5: Derivations in rings

Misha Verbitsky

Math in Moscow and HSE
March 4, 2013

Rings and derivations

REMARK: All rings in these handouts are assumed to be commutative and with unit. Algebras are associative, but not necessarily commutative (such as the matrix algebra). Rings over a field k are rings containing a field k. We assume that k has characteristic 0 .

DEFINITION: Let R be a ring over a field k. A k-linear map $D R \longrightarrow R$ is called a derivation if it satisfies the Leibnitz equation $D(f g)=D(f) g+$ $g D(f)$. The space of derivations is denoted as $\operatorname{Der}_{k}(R)$.

EXAMPLE: $\frac{d}{d t}: \mathbb{C}[t] \longrightarrow \mathbb{C}[t] . \quad \frac{d}{d t}: C^{\infty} \mathbb{R} \longrightarrow C^{\infty} \mathbb{R}$.
REMARK: Any derivation $\delta \in \operatorname{Der}_{k}(R)$ vanishes on $k \subset R$. Indeed, $\delta(1)=$ $\delta(1 \cdot 1)=2 \delta(1)$.

CLAIM: Let K be a finite extension of a field k, that is, a field containing k and finite-dimensional as a K-linear space. Then $^{\operatorname{Der}_{k}}(K)=0$.

Proof: Indeed, any $x \in K$ satisfies a non-trivial polynomial equation $P(x)=0$ with coefficients in k. Chose $P(t)$ of smallest degree possible. For any $\delta \in \operatorname{Der}_{k}(R)$, we have $0=\delta(P(x))=P^{\prime}(x) \delta(x)$, and unless $\delta(x)=0$, one has $P^{\prime}(x)=0$, giving a contradiction.

Modules over a ring

DEFINITION: Let R be a ring over a field k. An R-module is a vector space V over k, equipped with an algebra homomorphism $R \longrightarrow$ End (V), where End (V) denotes the endomorphism algebra of V, that is, the matrix algebra.

REMARK: Let R be a field. Then R-modules are the same as vector spaces over R.

DEFINITION: Homomorphisms, isomorphisms, submodules, quotient modules, direct sums of modules are defined in the same way as for the vector spaces. A ring R is itself an R-module. A direct sum of n copies of R is denoted R^{n}. Such R-module is called a free R-module.

EXAMPLE: R-submodules in R are the same as ideals in R.

DEFINITION: Finitely generated R-module is a quotient module of R^{n}.

Noetherian rings

DEFINITION: A Noetherian ring is a ring R with all ideals finitely generated as R-modules.

THEOREM: Let R be a Noetherian ring. Then any submodule of a finitely generated R-module is finitely generated.

Proof. Step 1: Consider an exact sequence of R-modules $0 \longrightarrow M_{1} \longrightarrow M \longrightarrow M_{2} \longrightarrow 0$. Then M is called an extension of M_{1} and M_{2}. An extension of finitely-generated modules is finitely generated. Indeed, take a finite set of generators in M_{2}, and let $\left\{\xi_{i}\right\}$ be preimages of these generators in M. Let $\left\{\zeta_{j}\right\}$ be a finite set of generators in $M_{1} \subset M$. Then $\left\{\zeta_{j}+\xi_{i}\right\}$ generate M.

Step 2: A filtration on a module M as a sequence of submodules $0=M_{0} \subset M_{1} \subset \ldots \subset M_{n}=M$. From Step 1 and induction it follows that any M admitting a filtration with finitely-generated M_{i} / M_{i-1} is also finitelygenerated.

Step 3: Let $M \subset R^{n}=W$. Consider a filtration $W_{0} \subset W_{1} \subset \ldots \subset W_{n}=W$, with $W_{i}=R^{i}$, and let $M_{i}=M \cap W_{i}$. Then M_{i} / M_{i-1} is a submodule of $W_{i} / W_{i-1}=R$, hence finitely-generated.

Ring of smooth functions

THEOREM: Let R be a ring of smooth real functions on \mathbb{R}^{n}. Then R is not Noetherian. Moreover, the ideal I of all functions with all derivatives vanishing at 0 is not finitely generated.

Proof. Step 1: If I is generated by f_{1}, \ldots, f_{n}, then for each $g \in I$, one can express g as $g=\sum g_{i} f_{i}$. Then

$$
\lim _{x \rightarrow 0} \sup \frac{g}{\sum f_{i}^{2}} \leqslant \sum\left|g_{i}\right| \frac{f_{1}}{\sum f_{i}^{2}}<\infty
$$

Step 2: Let x_{i} be coordinate functions. The function $F:=\frac{\sum f_{i}^{2}}{\sum x_{i}^{2}}$ is smooth, and all its derivatives vanish at 0, however,

$$
\lim _{x \rightarrow 0} \sup \frac{F}{\sum f_{i}^{2}}=\lim _{x \rightarrow 0} \sup \frac{1}{\sum x_{i}^{2}}=\infty .
$$

Derivations as an R-module

REMARK: Let R be a ring over k. The space $\operatorname{Der}_{k}(R)$ of derivations is also an R-module, with multiplicative action of R given by $r D(f)=r D(f)$.

CLAIM: Let $R=k\left[t_{1}, . ., t_{k}\right]$ be a polynomial ring. Then $\operatorname{Der}_{k}(R)$ is a free R-module isomorphic to R^{n}, with generators $\frac{d}{d t_{1}}, \frac{d}{d t_{2}}, \ldots, \frac{d}{d t_{n}}$.

Proof: Consider a map $\operatorname{Der}_{k}(R) \longrightarrow R^{n}$,

$$
D \longrightarrow\left(D\left(t_{1}\right), D\left(t_{2}\right), \ldots, D\left(t_{n}\right)\right)
$$

It is surjective, because it maps each $\frac{d}{d t_{i}}$ to $(0, \ldots, 0,1,0, \ldots, 0)$, and injective, because each derivation which vanishes on t_{i}, vanishes on the whole polynomial ring.

Now we prove a similar result for $C^{\infty} \mathbb{R}^{n}$.

Hadamard's Lemma

LEMMA: (Hadamard's Lemma)

Let f be a smooth function f on \mathbb{R}^{n}, and x_{i} the coordinate functions. Then $f(x)=f(0)+\sum_{i=1}^{n} x_{i} g_{i}(x)$, for some smooth $g_{i} \in C^{\infty} \mathbb{R}^{n}$.

Proof: Let $t \in \mathbb{R}^{n}$. Consider a function $h(t) \in C^{\infty} \mathbb{R}^{n}, h(t)=f(t x)$. Then $\frac{d h}{d t}=\sum \frac{d f(t x)}{d x_{i}}(t x) x_{i}$, giving

$$
f(x)-f(0)=\int_{0}^{1} \frac{d h}{d t} d t=\sum_{i} x_{i} \int_{0}^{1} \frac{d f(t x)}{d x_{i}}(t x) d t
$$

COROLLARY: Let \mathfrak{m}_{0} be an ideal of all smooth functions on \mathbb{R}^{n} vanishing in 0 . Then \mathfrak{m}_{0} is generated by coordinate functions.

COROLLARY: Let f be a smooth function on \mathbb{R}^{n} satisfying $f(x)=0$ and $f^{\prime}(x)=0$. Then $f \in \mathfrak{m}_{x}^{2}$.

Proof: $f(x)=\sum_{i=1}^{n} x_{i} g_{i}(x)$, where all g_{i} vanish in 0 .

Derivations of $C^{\infty} \mathbb{R}^{n}$
THEOREM: Let x_{1}, \ldots, x_{n} be coordinates on $\mathbb{R}^{n}, R=C^{\infty} \mathbb{R}^{n}$, and $\operatorname{Der}(R) \xrightarrow{\Pi}$ $\left(C^{\infty} \mathbb{R}^{n}\right)^{n}$ map D to $\left(D\left(x_{1}\right), D\left(x_{2}\right), \ldots, D\left(x_{n}\right)\right)$. Then $D: \operatorname{Der}\left(C^{\infty} \mathbb{R}^{n}\right) \longrightarrow R^{n}$ is an isomorphism.

Proof. Step 1: Since Π maps each $\frac{d}{d t_{i}}$ to ($0, \ldots, 0,1,0, \ldots, 0$), it is surjective.
Step 2: Let \mathfrak{m}_{0} be an ideal of 0 , and $D \subset \operatorname{ker} \Pi$. Then $\Pi\left(x_{i}\right)=0$, where x_{i} are coordinate functions. By Hadamard's Lemma, $f(x)=f(0)+\sum_{i=1}^{n} x_{i} g_{i}(x)$, hence $D(f)=\sum_{i=1}^{n} x_{i} D\left(g_{i}\right)$. Therefore, $D(f)$ lies in \mathfrak{m}_{0}.

Step 3: Same argument proves that $D(f)$ vanishes everywhere, for all $f \in C^{\infty} M$.

Sheaves

DEFINITION: An open cover of a topological space X is a family of open sets $\left\{U_{i}\right\}$ such that $\bigcup_{i} U_{i}=X$.

REMARK: The definition of a sheaf below is a more abstract version of the notion of "sheaf of functions" defined previously.

DEFINITION: A presheaf on a topological space M is a collection of vector spaces $\mathcal{F}(U)$, for each open subset $U \subset M$, together with restriction maps $R_{U W} \mathcal{F}(U) \longrightarrow \mathcal{F}(W)$ defined for each $W \subset U$, such that for any three open sets $W \subset V \subset U, \Psi_{U W}=\Psi_{U V} \circ \Psi_{V W}$. Elements of $\mathcal{F}(U)$ are called sections of \mathcal{F} over U, and restriction map often denoted $\left.f\right|_{W}$

DEFINITION: A presheaf \mathcal{F} is called a sheaf if for any open set U and any cover $U=U U_{I}$ the following two conditions are satisfied.

1. Let $f \in \mathcal{F}(U)$ be a section of \mathcal{F} on U such that its restriction to each U_{i} vanishes. Then $f=0$.
2. Let $f_{i} \in \mathcal{F}\left(U_{i}\right)$ be a family of sections compatible on the pairwise intersections: $\left.f_{i}\right|_{U_{i} \cap U_{j}}=\left.f_{j}\right|_{U_{i} \cap U_{j}}$ for every pair of members of the cover. Then there exists $f \in \mathcal{F}(U)$ such that f_{i} is the restriction of f to U_{i} for all i.

Sheaves and exact sequences

DEFINITION: A sequence $A_{1} \longrightarrow A_{2} \longrightarrow A_{3} \longrightarrow \ldots$ of homomorphisms of abelian groups or vector spaces is called exact if the image of each map is the kernel of the next one.

CLAIM: A presheaf \mathcal{F} is a sheaf if and only if for every cover $\left\{U_{i}\right\}$ of an open subset $U \subset M$, the sequence of restriction maps

$$
0 \rightarrow \mathcal{F}(U) \rightarrow \prod_{i} \mathcal{F}\left(U_{i}\right) \rightarrow \prod_{i \neq j} \mathcal{F}\left(U_{i} \cap U_{j}\right)
$$

is exact, with $\eta \in \mathcal{F}\left(U_{i}\right)$ mapped to $\left.\eta\right|_{U_{i} \cap U_{j}}$ and $-\left.\eta\right|_{U_{j} \cap U_{i}}$.

Ringed spaces (reminder)

DEFINITION: A sheaf of rings is a sheaf \mathcal{F} such that all the spaces $\mathcal{F}(U)$ are rings, and all restriction maps are ring homomorphisms.

DEFINITION: A sheaf of functions is a subsheaf in a sheaf of all functions, closed under multiplication.

For simplicity, I assume now that a sheaf of rings is a subsheaf in a sheaf of all functions.

DEFINITION: A ringed space (M, \mathcal{F}) is a topological space equipped with a sheaf of rings. A morphism $(M, \mathcal{F}) \xrightarrow{\Psi}\left(N, \mathcal{F}^{\prime}\right)$ of ringed spaces is a continuous map $M \xrightarrow{\Psi} N$ such that, for every open subset $U \subset N$ and every function $f \in \mathcal{F}^{\prime}(U)$, the function $\psi^{*} f:=f \circ \Psi$ belongs to the ring $\mathcal{F}\left(\Psi^{-1}(U)\right)$. An isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ^{-1} are morphisms of ringed spaces.

Smooth manifold (reminder)

DEFINITION: Let (M, \mathcal{F}) be a topological manifold equipped with a sheaf of functions. It is said to be a smooth manifold of class C^{∞} or C^{i} if every point in (M, \mathcal{F}) has an open neighborhood isomorphic to the ringed space $\left(\mathbb{B}^{n}, \mathcal{F}^{\prime}\right)$, where $\mathbb{B}^{n} \subset \mathbb{R}^{n}$ is an open ball and \mathcal{F}^{\prime} is a ring of functions on an open ball \mathbb{B}^{n} of this class.

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism φ which induces an isomorphims of ringed spaces, that is, φ and φ^{-1} map (locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class C^{∞}.

Partition of unity (reminder)

DEFINITION: Let M be a smooth manifold and let $\left\{U_{\alpha}\right\}$ a locally finite cover of M. A partition of unity subordinate to the cover $\left\{U_{\alpha}\right\}$ is a family of smooth functions $f_{i}: M \rightarrow[0,1]$ with compact support indexed by the same indices as the U_{i} 's and satisfying the following conditions.
(a) Every function f_{i} vanishes outside U_{i}
(b) $\sum_{i} f_{i}=1$

THEOREM: Let $\left\{U_{\alpha}\right\}$ be a countable, locally finite cover of a manifold M, with all U_{α} diffeomorphic to \mathbb{R}^{n}. Then there exists a partition of unity subordinate to $\left\{U_{\alpha}\right\}$.

DEFINITION: Let $U \subset V$ be open subsets in M. We write $U \Subset V$ if the closure of U is contained in V.

DEFINITION: Let $f \in \mathcal{F}(M)$ be a section of a sheaf \mathcal{F} on M. A point $x \in M$ does not lie in the support $\operatorname{Sup}(f)$ of f if $\left.f\right|_{U}=0$ for some neighbourhood $U \ni x$.

REMARK: Support of a section is obviously closed.

Smooth functions with prescribed support

EXERCISE: Let $X, Y \subset M$ be non-intersecting closed subsets in a metric space. Find non-intersecting open neighbourhoods $U_{1} \supset X$ and $U_{2} \supset U$.

CLAIM: Let $U \Subset V$ - open subsets in a smooth metrizable manifold. Then there exists a smooth function $\Phi_{U, V} \in C^{\infty} M$, supported on V, and equal to 1 on U.

Proof. Step 1: Find non-intersecting open neighbourhoods U_{1} and U_{2} of \bar{U} and $M \backslash V$, and choose a partition of unity $\left\{V_{i}, \varphi_{i}\right\}$ subordinate to the cover $U_{1}, U_{2}, U_{3}=V \backslash \bar{U}$. Then for each i, either $\operatorname{Sup}\left(\varphi_{i}\right) \cap U_{1}=\emptyset$, or $\operatorname{Sup}\left(\varphi_{i}\right) \cap U_{2}=\emptyset$.

Step 2: Let $\Phi_{U, V}:=\sum_{S} \varphi_{i}$, where the sum is taken over the set S all φ_{i} satisfying $\operatorname{Sup}\left(\varphi_{i}\right) \cap U_{1} \neq \emptyset$. Since support of all such φ_{i} lies in $M \backslash U_{2} \subset V$, one has $\operatorname{Sup}\left(\Phi_{U, V}\right) \subset V$. Also, for each $x \in U_{1}$, one has $\sum_{i \in S} \varphi_{i}(x)=1$, hence $\Phi_{U, V}=1$ on $U_{1} \supset U$.

Vector fields as derivations

DEFINITION: Let M be a smooth manifold. A vector field on M is an element in $\operatorname{Der}\left(C^{\infty} M\right)$.

EXAMPLE: For $M=\mathbb{R}^{n}$, the space $\operatorname{Der}\left(C^{\infty} M\right)$ is a free module generated by $\frac{d}{d x_{i}}, i=1, \ldots, n$.

REMARK: We want to prove that vector fields form a sheaf. However, it is not immediately clear how to restrict a vector field from U to $W \subset U$.

THEOREM: Let $U \Subset V$ be open subset of a smooth metrizable manifold, and $D \in\left(C^{\infty} M\right)$ a derivation. Consider a smooth function $\Phi_{U, V} \in C^{\infty} M$ supported on V, and equal to 1 on U. Given $f \in C^{\infty} V$, define $\left.D(f)\right|_{U}:=D\left(\Phi_{U, V} f\right)$. Choosing a cover of such U_{i}, we can glue together a section $D(f)$ of $C^{\infty} V$ from such $\left.D(f)\right|_{U_{i}}$ This operation is independent of all choices we made and gives an element $\left.D\right|_{V} \in \operatorname{Der}(V)$. Moreover, this restriction maps define a structure of a sheaf on $\operatorname{Der}(M)$.

Proof: next lecture. The proof uses germs.

Whitney's theorem (with a bound on dimension): strategy of the proof

THEOREM: Let M be a smooth n-manifold. Then M admits a closed embedding to $\mathbb{R}^{2 n+2}$.

Strategy of the proof:

1. M is embedded to \mathbb{R}^{∞}.
2. We find a linear projection $\mathbb{R}^{\infty} \xrightarrow{\pi} \mathbb{R}^{2 n+2}$ such that $\left.\pi\right|_{M}$ is a closed embedding of manifolds.

LEMMA: Let $M \subset \mathbb{R}^{I}$ be a subset, and $\pi: \mathbb{R}^{I} \longrightarrow \mathbb{R}^{J}$ a linear projection. Consider the set W of all vectors $\mathbb{R}(x-y)$, where $x, y \in M$ are distinct points. Then $\left.\pi\right|_{M}$ is injective if and only if $\operatorname{ker} \pi \cap W=0$.

Proof: $\left.\pi\right|_{M}$ is not injective if and only if $\pi(x)=\pi(y)$, which is equivalent to $\pi(x-y)=0$.

Whitney's theorem: injectivity of projections

REMARK: Let $M \subset \mathbb{R}^{I}$ be a submanifold, and $W \subset \mathbb{R}^{I}$ the set of all vectors $\mathbb{R}(x-y)$, where $x, y \in M$ are distinct points. Then W is an image of a $2 m+1-$ dimensional manifold, hence (by Sard's Lemma) for any projection of \mathbb{R}^{I} to a $(2 m+2)$-dimensional space, image of W has measure 0 .

COROLLARY: Let $M \subset \mathbb{R}^{I}$ be an m-dimensional submanifold, and $S \subset \mathbb{R}^{I}$ a maximal linear subspace not intersecting W. Then the projection of W to \mathbb{R}^{I} / S is surjective.

Proof: Suppose it's not surjective: $v \notin S$. Then $S \oplus \mathbb{R} v$ satisfies assumptions of lemma, hence $M \longrightarrow \mathbb{R}^{I} /(S+\mathbb{R} v)$ is also injective.

THEOREM: Let M be a smooth n-manifold, $M \hookrightarrow \mathbb{R}^{I}$ an embedding constructed earlier. Then there exists a projection $\pi: \mathbb{R}^{I} \longrightarrow \mathbb{R}^{2 n+2}$ which is injective on M.

Proof: Let S be the maximal linear subspace such that the restriction of $\pi: \mathbb{R}^{I} \longrightarrow \mathbb{R}^{I} / S$ to M is injective. Then the $2 m+1$-dimensional manifold W is mapped surjectively to \mathbb{R}^{I} / S, hence $\operatorname{dim} \mathbb{R}^{i} / S \leqslant 2 m+1$ by Sard's lemma.

Tangent space to an embedded manifold

DEFINITION: Let $M \hookrightarrow \mathbb{R}^{n}$ be a smooth m-submanifold. The tangent plane at $p \in M$ is the plane in \mathbb{R}^{n} tangent to M (i.e, the plane lying in the image of the differential given in local coordinates). A tangent vector is an arbitrary vector in this plane with the origin at p. The space of all tangent vectors at p is denoted by $T_{p} M$. Given a metric on \mathbb{R}^{n}, we can define the space of unit tangent vectors $\mathbb{S}^{m-1} M$ as the set of all pairs (p, v), where $p \in M, v \in T_{p} M$, and $|v|=1$.

REMARK: $\mathbb{S}^{m-1} M$ is a smooth manifold, projected to M with fibers isomorphic to $m-1$-spheres, hence $\mathbb{S}^{m-1} M$ is ($2 m-1$)-dimensional.

LEMMA: Let $M \subset \mathbb{R}^{I}$ be a subset, and $\pi: \mathbb{R}^{I} \longrightarrow \mathbb{R}^{J}$ a linear projection. Consider the set W^{\prime} of all vectors $\mathbb{R} t$, where $t \in T_{x} M$ Then the differential $\left.D \pi\right|_{M}$ is injective if and only if $\operatorname{ker} \pi \cap W^{\prime}=0$.

Now the above argument is repeated: we take a maximal space $S \supset \mathbb{R}^{I}$ such that the restriction of $\pi: \mathbb{R}^{I} \longrightarrow \mathbb{R}^{I} / S$ to M is injective and has injective differential, and the projection of $W \cup W^{\prime}$ to \mathbb{R}^{I} / S has to be surjective. However, W^{\prime} is an image of an $2 m$-dimensional manifold $\mathbb{S}^{m-1} M \times \mathbb{R}$, hence the projection of $W \cup W^{\prime}$ to \mathbb{R}^{I} / S can be surjective only if $\operatorname{dim} \mathbb{R}^{I} / S \leqslant 2 m+2$.

This proves Whitney's theorem.

