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Rings and derivations

REMARK: All rings in these handouts are assumed to be commutative and
with unit. Algebras are associative, but not necessarily commutative (such as
the matrix algebra). Rings over a field k are rings containing a field k. We
assume that k has characteristic 0.

DEFINITION: Let R be a ring over a field k. A k-linear map D R−→R is
called a derivation if it satisfies the Leibnitz equation D(fg) = D(f)g +
gD(f). The space of derivations is denoted as Derk(R).

EXAMPLE: d
dt : C[t]−→ C[t]. d

dt : C∞R−→ C∞R.

REMARK: Any derivation δ ∈ Derk(R) vanishes on k ⊂ R. Indeed, δ(1) =
δ(1 · 1) = 2δ(1).

CLAIM: Let K be a finite extension of a field k, that is, a field containing
k and finite-dimensional as a K-linear space. Then Derk(K) = 0.

Proof: Indeed, any x ∈ K satisfies a non-trivial polynomial equation P (x) = 0
with coefficients in k. Chose P (t) of smallest degree possible. For any
δ ∈ Derk(R), we have 0 = δ(P (x)) = P ′(x)δ(x), and unless δ(x) = 0, one has
P ′(x) = 0, giving a contradiction.
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Modules over a ring

DEFINITION: Let R be a ring over a field k. An R-module is a vector space

V over k, equipped with an algebra homomorphism R−→ End(V ), where

End(V ) denotes the endomorphism algebra of V , that is, the matrix algebra.

REMARK: Let R be a field. Then R-modules are the same as vector spaces

over R.

DEFINITION: Homomorphisms, isomorphisms, submodules, quotient mod-

ules, direct sums of modules are defined in the same way as for the vector

spaces. A ring R is itself an R-module. A direct sum of n copies of R is

denoted Rn. Such R-module is called a free R-module.

EXAMPLE: R-submodules in R are the same as ideals in R.

DEFINITION: Finitely generated R-module is a quotient module of Rn.
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Noetherian rings

DEFINITION: A Noetherian ring is a ring R with all ideals finitely generated
as R-modules.

THEOREM: Let R be a Noetherian ring. Then any submodule of a
finitely generated R-module is finitely generated.

Proof. Step 1: Consider an exact sequence of R-modules
0−→M1 −→M −→M2 −→ 0. Then M is called an extension of M1 and M2.
An extension of finitely-generated modules is finitely generated. Indeed, take
a finite set of generators in M2, and let {ξi} be preimages of these generators
in M . Let {ζj} be a finite set of generators in M1 ⊂ M . Then {ζj + ξi}
generate M.

Step 2: A filtration on a module M as a sequence of submodules
0 = M0 ⊂M1 ⊂ ... ⊂Mn = M . From Step 1 and induction it follows that any
M admitting a filtration with finitely-generated Mi/Mi−1 is also finitely-
generated.

Step 3: Let M ⊂ Rn = W . Consider a filtration W0 ⊂ W1 ⊂ ... ⊂ Wn = W ,
with Wi = Ri, and let Mi = M ∩ Wi. Then Mi/Mi−1 is a submodule of
Wi/Wi−1 = R, hence finitely-generated.
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Ring of smooth functions

THEOREM: Let R be a ring of smooth real functions on Rn. Then R is

not Noetherian. Moreover, the ideal I of all functions with all derivatives

vanishing at 0 is not finitely generated.

Proof. Step 1: If I is generated by f1, ..., fn, then for each g ∈ I, one can

express g as g =
∑
gifi. Then

lim
x→0

sup
g∑
f2
i

6
∑
|gi|

f1∑
f2
i

<∞.

Step 2: Let xi be coordinate functions. The function F :=
∑
f2
i∑
x2
i

is smooth,

and all its derivatives vanish at 0, however,

lim
x→0

sup
F∑
f2
i

= lim
x→0

sup
1∑
x2
i

=∞.
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Derivations as an R-module

REMARK: Let R be a ring over k. The space Derk(R) of derivations is

also an R-module, with multiplicative action of R given by rD(f) = rD(f).

CLAIM: Let R = k[t1, .., tk] be a polynomial ring. Then Derk(R) is a free

R-module isomorphic to Rn, with generators d
dt1
, d
dt2
, ..., d

dtn
.

Proof: Consider a map Derk(R)−→Rn,

D −→ (D(t1), D(t2), ..., D(tn))

It is surjective, because it maps each d
dti

to (0, ...,0,1,0, ...,0), and injective,

because each derivation which vanishes on ti, vanishes on the whole polyno-

mial ring.

Now we prove a similar result for C∞Rn.
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Hadamard’s Lemma

LEMMA: (Hadamard’s Lemma)

Let f be a smooth function f on Rn, and xi the coordinate functions. Then

f(x) = f(0) +
∑n
i=1 xigi(x), for some smooth gi ∈ C∞Rn.

Proof: Let t ∈ Rn. Consider a function h(t) ∈ C∞Rn, h(t) = f(tx). Then
dh
dt =

∑ df(tx)
dxi

(tx)xi, giving

f(x)− f(0) =
∫ 1

0

dh

dt
dt =

∑
i

xi

∫ 1

0

df(tx)

dxi
(tx)dt.

COROLLARY: Let m0 be an ideal of all smooth functions on Rn vanishing

in 0. Then m0 is generated by coordinate functions.

COROLLARY: Let f be a smooth function on Rn satisfying f(x) = 0 and

f ′(x) = 0. Then f ∈ m2
x.

Proof: f(x) =
∑n
i=1 xigi(x), where all gi vanish in 0.
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Derivations of C∞Rn

THEOREM: Let x1, ..., xn be coordinates on Rn, R = C∞Rn, and Der(R)
Π−→

(C∞Rn)n map D to (D(x1), D(x2), ..., D(xn)). Then D : Der(C∞Rn)−→Rn

is an isomorphism.

Proof. Step 1: Since Π maps each d
dti

to (0, ...,0,1,0, ...,0), it is surjective.

Step 2: Let m0 be an ideal of 0, and D ⊂ ker Π. Then Π(xi) = 0, where xi
are coordinate functions. By Hadamard’s Lemma, f(x) = f(0)+

∑n
i=1 xigi(x),

hence D(f) =
∑n
i=1 xiD(gi). Therefore, D(f) lies in m0.

Step 3: Same argument proves that D(f) vanishes everywhere, for all

f ∈ C∞M .
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Sheaves

DEFINITION: An open cover of a topological space X is a family of open
sets {Ui} such that

⋃
iUi = X.

REMARK: The definition of a sheaf below is a more abstract version of the
notion of “sheaf of functions” defined previously.

DEFINITION: A presheaf on a topological space M is a collection of vector
spaces F(U), for each open subset U ⊂ M , together with restriction maps
RUWF(U)−→F(W ) defined for each W ⊂ U , such that for any three open
sets W ⊂ V ⊂ U , ΨUW = ΨUV ◦ΨVW . Elements of F(U) are called sections
of F over U , and restriction map often denoted f |W

DEFINITION: A presheaf F is called a sheaf if for any open set U and any
cover U =

⋃
UI the following two conditions are satisfied.

1. Let f ∈ F(U) be a section of F on U such that its restriction to each
Ui vanishes. Then f = 0.

2. Let fi ∈ F(Ui) be a family of sections compatible on the pairwise
intersections: fi|Ui∩Uj = fj|Ui∩Uj for every pair of members of the cover.
Then there exists f ∈ F(U) such that fi is the restriction of f to Ui for
all i.
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Sheaves and exact sequences

DEFINITION: A sequence A1 −→A2 −→A3 −→ ... of homomorphisms of

abelian groups or vector spaces is called exact if the image of each map

is the kernel of the next one.

CLAIM: A presheaf F is a sheaf if and only if for every cover {Ui} of an open

subset U ⊂M , the sequence of restriction maps

0→ F(U)→
∏
i

F(Ui)→
∏
i 6=j

F(Ui ∩ Uj)

is exact, with η ∈ F(Ui) mapped to η
∣∣∣Ui∩Uj and −η

∣∣∣Uj∩Ui .
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Ringed spaces (reminder)

DEFINITION: A sheaf of rings is a sheaf F such that all the spaces F(U)

are rings, and all restriction maps are ring homomorphisms.

DEFINITION: A sheaf of functions is a subsheaf in a sheaf of all functions,

closed under multiplication.

For simplicity, I assume now that a sheaf of rings is a subsheaf in a

sheaf of all functions.

DEFINITION: A ringed space (M,F) is a topological space equipped with

a sheaf of rings. A morphism (M,F)
Ψ−→ (N,F ′) of ringed spaces is a con-

tinuous map M
Ψ−→ N such that, for every open subset U ⊂ N and every

function f ∈ F ′(U), the function ψ∗f := f ◦Ψ belongs to the ring F
(
Ψ−1(U)

)
.

An isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and

Ψ−1 are morphisms of ringed spaces.
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Smooth manifold (reminder)

DEFINITION: Let (M,F) be a topological manifold equipped with a sheaf

of functions. It is said to be a smooth manifold of class C∞ or Ci if every

point in (M,F) has an open neighborhood isomorphic to the ringed space

(Bn,F ′), where Bn ⊂ Rn is an open ball and F ′ is a ring of functions on an

open ball Bn of this class.

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism

ϕ which induces an isomorphims of ringed spaces, that is, ϕ and ϕ−1 map

(locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class C∞.
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Partition of unity (reminder)

DEFINITION: Let M be a smooth manifold and let {Uα} a locally finite

cover of M . A partition of unity subordinate to the cover {Uα} is a family of

smooth functions fi : M → [0,1] with compact support indexed by the same

indices as the Ui’s and satisfying the following conditions.

(a) Every function fi vanishes outside Ui
(b)

∑
i fi = 1

THEOREM: Let {Uα} be a countable, locally finite cover of a manifold M ,

with all Uα diffeomorphic to Rn. Then there exists a partition of unity

subordinate to {Uα}.

DEFINITION: Let U ⊂ V be open subsets in M . We write U b V if the

closure of U is contained in V .

DEFINITION: Let f ∈ F(M) be a section of a sheaf F on M . A point x ∈M
does not lie in the support Sup(f) of f if f |U = 0 for some neighbourhood

U 3 x.

REMARK: Support of a section is obviously closed.
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Smooth functions with prescribed support

EXERCISE: Let X,Y ⊂ M be non-intersecting closed subsets in a metric

space. Find non-intersecting open neighbourhoods U1 ⊃ X and U2 ⊃ U.

CLAIM: Let U b V – open subsets in a smooth metrizable manifold. Then

there exists a smooth function ΦU,V ∈ C∞M, supported on V , and equal

to 1 on U.

Proof. Step 1: Find non-intersecting open neighbourhoods U1 and U2

of U and M\V , and choose a partition of unity {Vi, ϕi} subordinate to the

cover U1, U2, U3 = V \U . Then for each i, either Sup(ϕi) ∩ U1 = ∅, or

Sup(ϕi) ∩ U2 = ∅.

Step 2: Let ΦU,V :=
∑
S ϕi, where the sum is taken over the set S all ϕi

satisfying Sup(ϕi)∩U1 6= ∅. Since support of all such ϕi lies in M\U2 ⊂ V ,

one has Sup(ΦU,V ) ⊂ V . Also, for each x ∈ U1, one has
∑
i∈S ϕi(x) = 1,

hence ΦU,V = 1 on U1 ⊃ U.
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Vector fields as derivations

DEFINITION: Let M be a smooth manifold. A vector field on M is an

element in Der(C∞M).

EXAMPLE: For M = Rn, the space Der(C∞M) is a free module gener-

ated by d
dxi

, i = 1, ..., n.

REMARK: We want to prove that vector fields form a sheaf. However, it

is not immediately clear how to restrict a vector field from U to W ⊂ U.

THEOREM: Let U b V be open subset of a smooth metrizable manifold, and

D ∈ (C∞M) a derivation. Consider a smooth function ΦU,V ∈ C∞M supported

on V , and equal to 1 on U . Given f ∈ C∞V , define D(f)|U := D(ΦU,V f).

Choosing a cover of such Ui, we can glue together a section D(f) of C∞V
from such D(f)

∣∣∣Ui This operation is independent of all choices we made

and gives an element D|V ∈ Der(V ). Moreover, this restriction maps

define a structure of a sheaf on Der(M).

Proof: next lecture. The proof uses germs.
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Whitney’s theorem (with a bound on dimension): strategy of the proof

THEOREM: Let M be a smooth n-manifold. Then M admits a closed

embedding to R2n+2.

Strategy of the proof:

1. M is embedded to R∞.

2. We find a linear projection R∞ π−→ R2n+2 such that π|M is a closed

embedding of manifolds.

LEMMA: Let M ⊂ RI be a subset, and π : RI −→ RJ a linear projection.

Consider the set W of all vectors R(x− y), where x, y ∈M are distinct points.

Then π|M is injective if and only if ker π ∩W = 0.

Proof: π|M is not injective if and only if π(x) = π(y), which is equivalent to

π(x− y) = 0.
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Whitney’s theorem: injectivity of projections

REMARK: Let M ⊂ RI be a submanifold, and W ⊂ RI the set of all vectors

R(x−y), where x, y ∈M are distinct points. Then W is an image of a 2m+1-

dimensional manifold, hence (by Sard’s Lemma) for any projection of RI

to a (2m+ 2)-dimensional space, image of W has measure 0.

COROLLARY: Let M ⊂ RI be an m-dimensional submanifold, and S ⊂ RI

a maximal linear subspace not intersecting W . Then the projection of W

to RI/S is surjective.

Proof: Suppose it’s not surjective: v /∈ S. Then S ⊕ Rv satisfies assumptions

of lemma, hence M −→ RI/(S + Rv) is also injective.

THEOREM: Let M be a smooth n-manifold, M ↪→ RI an embedding con-

structed earlier. Then there exists a projection π : RI −→ R2n+2 which is

injective on M.

Proof: Let S be the maximal linear subspace such that the restriction of

π : RI −→ RI/S to M is injective. Then the 2m + 1-dimensional manifold W

is mapped surjectively to RI/S, hence dimRi/S 6 2m+ 1 by Sard’s lemma.
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Tangent space to an embedded manifold

DEFINITION: Let M ↪→ Rn be a smooth m-submanifold. The tangent
plane at p ∈ M is the plane in Rn tangent to M (i.e, the plane lying in the
image of the differential given in local coordinates). A tangent vector is an
arbitrary vector in this plane with the origin at p. The space of all tangent
vectors at p is denoted by TpM . Given a metric on Rn, we can define the
space of unit tangent vectors Sm−1M as the set of all pairs (p, v), where
p ∈M , v ∈ TpM , and |v| = 1.

REMARK: Sm−1M is a smooth manifold, projected to M with fibers isomor-
phic to m− 1-spheres, hence Sm−1M is (2m− 1)-dimensional.

LEMMA: Let M ⊂ RI be a subset, and π : RI −→ RJ a linear projection.
Consider the set W ′ of all vectors Rt, where t ∈ TxM Then the differential
Dπ|M is injective if and only if ker π ∩W ′ = 0.

Now the above argument is repeated: we take a maximal space S ⊃ RI such
that the restriction of π : RI −→ RI/S to M is injective and has injective
differential, and the projection of W ∪W ′ to RI/S has to be surjective. How-
ever, W ′ is an image of an 2m-dimensional manifold Sm−1M × R, hence the
projection of W ∪W ′ to RI/S can be surjective only if dimRI/S 6 2m+ 2.

This proves Whitney’s theorem.
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