Geometry of manifolds

Lecture 6: Germs and duality

Misha Verbitsky

Math in Moscow and HSE

March 11, 2013

Sheaves (reminder)

DEFINITION: An open cover of a topological space X is a family of open sets $\{U_i\}$ such that $\bigcup_i U_i = X$.

REMARK: The definition of a sheaf below is a more abstract version of the notion of "sheaf of functions" defined previously.

DEFINITION: A **presheaf** on a topological space M is a collection of vector spaces $\mathcal{F}(U)$, for each open subset $U \subset M$, together with **restriction maps** $R_{UW}\mathcal{F}(U) \longrightarrow \mathcal{F}(W)$ defined for each $W \subset U$, such that for any three open sets $W \subset V \subset U$, $\Psi_{UW} = \Psi_{UV} \circ \Psi_{VW}$. Elements of $\mathcal{F}(U)$ are called **sections** of \mathcal{F} over U, and restriction map often denoted $f|_W$

DEFINITION: A presheaf \mathcal{F} is called a sheaf if for any open set U and any cover $U = \bigcup U_I$ the following two conditions are satisfied.

- 1. Let $f \in \mathcal{F}(U)$ be a section of \mathcal{F} on U such that its restriction to each U_i vanishes. Then f = 0.
- 2. Let $f_i \in \mathcal{F}(U_i)$ be a family of sections compatible on the pairwise intersections: $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ for every pair of members of the cover. Then there exists $f \in \mathcal{F}(U)$ such that f_i is the restriction of f to U_i for all i.

Sheaves and exact sequences (reminder)

DEFINITION: A sequence $A_1 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow ...$ of homomorphisms of abelian groups or vector spaces is called **exact** if the image of each map is the kernel of the next one.

CLAIM: A presheaf \mathcal{F} is a sheaf if and only if for every cover $\{U_i\}$ of an open subset $U \subset M$, the sequence of restriction maps

$$0 \to \mathcal{F}(U) \to \prod_{i} \mathcal{F}(U_{i}) \to \prod_{i \neq j} \mathcal{F}(U_{i} \cap U_{j})$$

is exact, with $\eta \in \mathcal{F}(U_i)$ mapped to $\eta|_{U_i \cap U_i}$ and $-\eta|_{U_i \cap U_i}$.

Ringed spaces (reminder)

DEFINITION: A sheaf of rings is a sheaf \mathcal{F} such that all the spaces $\mathcal{F}(U)$ are rings, and all restriction maps are ring homomorphisms.

DEFINITION: A sheaf of functions is a subsheaf in a sheaf of all functions, closed under multiplication.

For simplicity, I assume now that a sheaf of rings is a subsheaf in a sheaf of all functions.

DEFINITION: A ringed space (M,\mathcal{F}) is a topological space equipped with a sheaf of rings. A morphism $(M,\mathcal{F}) \xrightarrow{\Psi} (N,\mathcal{F}')$ of ringed spaces is a continuous map $M \xrightarrow{\Psi} N$ such that, for every open subset $U \subset N$ and every function $f \in \mathcal{F}'(U)$, the function $\psi^* f := f \circ \Psi$ belongs to the ring $\mathcal{F}(\Psi^{-1}(U))$. An isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ^{-1} are morphisms of ringed spaces.

Smooth manifolds (reminder)

DEFINITION: Let (M, \mathcal{F}) be a topological manifold equipped with a sheaf of functions. It is said to be a **smooth manifold of class** C^{∞} or C^i if every point in (M, \mathcal{F}) has an open neighborhood isomorphic to the ringed space $(\mathbb{B}^n, \mathcal{F}')$, where $\mathbb{B}^n \subset \mathbb{R}^n$ is an open ball and \mathcal{F}' is a ring of functions on an open ball \mathbb{B}^n of this class.

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism φ which induces an isomorphims of ringed spaces, that is, φ and φ^{-1} map (locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class C^{∞} .

Partition of unity (reminder)

DEFINITION: Let M be a smooth manifold and let $\{U_{\alpha}\}$ a locally finite cover of M. A partition of unity subordinate to the cover $\{U_{\alpha}\}$ is a family of smooth functions $f_i: M \to [0,1]$ with compact support indexed by the same indices as the U_i 's and satisfying the following conditions.

- (a) Every function f_i vanishes outside U_i
- (b) $\sum_i f_i = 1$

THEOREM: Let $\{U_{\alpha}\}$ be a countable, locally finite cover of a manifold M, with all U_{α} diffeomorphic to \mathbb{R}^n . Then there exists a partition of unity subordinate to $\{U_{\alpha}\}$.

DEFINITION: Let $U \subset V$ be open subsets in M. We write $U \in V$ if the closure of U is contained in V.

DEFINITION: Let $f \in \mathcal{F}(M)$ be a section of a sheaf \mathcal{F} on M. A point $x \in M$ does not lie in the support Sup(f) of f if $f|_U = 0$ for some neighbourhood $U \ni x$.

REMARK: Support of a section is obviously closed.

Direct limits

DEFINITION: Commutative diagram of vector spaces is given by the following data. There is a directed graph (graph with arrows). For each vertex of this graph we have a vector space, and each arrow corresponds to a homomorphism of the associated vector spaces. **These homomorphism are compatible, in the following way.** Whenever there exist two ways of going from one vertex to another, the compositions of the corresponding arrows are equal.

DEFINITION: Let \mathcal{C} be a commutative diagram of vector spaces, A, B – vector spaces, corresponding to two vertices of a diagram, and $a \in A, b \in B$ elements of these vector spaces. Write $a \sim b$ if a and b are mapped to the same element $d \in D$ by a composition of arrows from \mathcal{C} . Let \sim be an equivalence relation generated by such $a \sim b$. A quotient $\bigoplus_i C_i/E$ is called a **direct limit** of a diagram $\{C_i\}$. The same notion is also called **colimit** and **inductive limit**. Direct limit is denoted \varinjlim .

DEFINITION: Let \mathcal{F} be a sheaf on M, $x \in M$ a point, and $\{U_i\}$ the set of all neighbourhoods of x. Consider a diagram with the set of vertices indexed by $\{U_i\}$, and arrows from U_i to U_j corresponding to inclusions $U_j \hookrightarrow U_i$. The space of germs of \mathcal{F} in x is a direct limit $\lim_{\longrightarrow} \mathcal{F}(U_i)$ over this diagram. The space of germs is also called a stalk of a sheaf.

Germs of functions

DEFINITION: A diagram C is called **filtered** if for any two vertices C_i, C_j , there exists a third vertex C_k , and sequences of arrows leading from C_i to C_k and from C_j to C_k .

EXAMPLE: The diagram formed by all neighbourhoods of a point is obviously filtered.

CLAIM: Let \mathcal{C} be a commutative diagram of vector spaces C_i , with all C_i equipped with a ring structure, and all arrows ring homomorphisms. Suppose that the diagram \mathcal{C} is filtered. Then there exists a unique ring structure on $C := \varinjlim C_i$ such that all the maps $C_i \longrightarrow C$ are ring homomorphisms.

DEFINITION: Let M, \mathcal{F} be a ringed space, $x \in M$ its point, and $\{U_i\}$ the set of all its neighbourhoods. Consider a commutative diagram with vertices indexed by $\{U_i\}$, and arrows from U_i to U_j corresponding to inclusions $U_j \hookrightarrow U_i$. For each vertex U_i we take a vector space of sections $\mathcal{F}(U_i)$, and for each arrow the corresponding restriction map. The direct limit of this diagram is called **the ring of germs of the sheaf** \mathcal{F} **in** x.

Morphisms of sheaves

DEFINITION: Let $\mathcal{B}, \mathcal{B}'$ be sheaves on M. A sheaf morphism from \mathcal{B} to \mathcal{B}' is a collection of homomorphisms $\mathcal{B}(U) \longrightarrow \mathcal{B}'(U)$, defined for each open subset $U \subset M$, and compatible with the restriction maps:

$$\mathcal{B}(U) \longrightarrow \mathcal{B}'(U)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{B}(U_1) \longrightarrow \mathcal{B}'(U_1)$$

DEFINITION: A sheaf morphism is called **injective**, or **a monomorphism** if it is injective on stalks and **surjective**, or **epimorphism** if it is surjective on stalks.

EXERCISE: Let $\mathcal{B} \xrightarrow{\varphi} \mathcal{B}'$ be an injective morphism of sheaves on M. Prove that φ induces an injective map $\mathcal{B}(U) \longrightarrow \mathcal{B}'(U)$ for each U.

REMARK: A sheaf epimorphism $\mathcal{B} \stackrel{\varphi}{\longrightarrow} \mathcal{B}'$ does not necessarily induce a surjective map $\mathcal{B}(U) \longrightarrow \mathcal{B}'(U)$.

DEFINITION: A sheaf isomorphism is a homomorphism $\Psi: \mathcal{F}_1 \longrightarrow \mathcal{F}_2$, for which there exists an homomorphism $\Phi: \mathcal{F}_2 \longrightarrow \mathcal{F}_1$, such that $\Phi \circ \Psi = \mathrm{Id}$ and $\Psi \circ \Phi = \mathrm{Id}$.

EXERCISE: Show that a morphism of sheaves $\Psi : \mathcal{F}_1 \longrightarrow \mathcal{F}_2$ is an isomorphism if and only if it is epi and mono.

Sheaves of modules

REMARK: Let $A: \varphi \longrightarrow B$ be a ring homomorphism, and V a B-module. Then V is equipped with a natural A-module structure: $av := \varphi(a)v$.

DEFINITION: Let \mathcal{F} be a sheaf of rings on a topological space M, and \mathcal{B} another sheaf. It is called **a sheaf of** \mathcal{F} -modules if for all $U \subset M$ the space of sections $\mathcal{B}(U)$ is equipped with a structure of $\mathcal{F}(U)$ -module, and for all $U' \subset U$, the restriction map $\mathcal{B}(U) \stackrel{\varphi_{U,U'}}{\longrightarrow} \mathcal{B}(U')$ is a homomorphism of $\mathcal{F}(U)$ -modules (use the remark above to obtain a structure of $\mathcal{F}(U)$ -module on $\mathcal{B}(U')$).

DEFINITION: A free sheaf of modules \mathcal{F}^n over a ring sheaf \mathcal{F} maps an open set U to the space $\mathcal{F}(U)^n$.

DEFINITION: Locally free sheaf of modules over a sheaf of rings \mathcal{F} is a sheaf of modules \mathcal{B} satisfying the following condition. For each $x \in M$ there exists a neighbourhood $U \ni x$ such that the restriction $\mathcal{B}|_U$ is free.

DEFINITION: A vector bundle on a smooth manifold M is a locally free sheaf of $C^{\infty}M$ -modules.

Dual sheaves

CLAIM: Let $U \subset V$ be open subsets of a Hausdorff space M. A section $s \in \mathcal{F}(U)$ with compact support $Z \subset U$ can be uniquely extended to $\tilde{s} \in \mathcal{F}(U)$, also with support in Z.

Proof: Z is a closed subset of U, not intersecting $M \setminus V$. Let U_1 be an open neighbourhood of Z not intersecting $M \setminus V$, and $U_2 := M \setminus Z$. Then $\{U_1, U_2\}$ is a cover of M, and $s |_{U_1 \cap U_2} = 0$, hence \tilde{s} can be glued from $s \in \mathcal{F}(U_1)$ and $0 \in \mathcal{F}(U_2)$.

DEFINITION: Let \mathcal{F} be a sheaf. Denote the space of sections of \mathcal{F} on U with compact support by $\mathcal{F}_c(U)$. Let $\mathcal{F}^*(U)$ map U to the dual space $\mathcal{F}_c(U)^*$. Using the claim above, we obtain a restriction map $\mathcal{F}^*(V) \longrightarrow \mathcal{F}^*(U)$ for each open $V \supset U$. This gives dual presheaf \mathcal{F}^*

EXERCISE: Let M be a manifold, and \mathcal{F} a sheaf of modules over $C^{\infty}M$. Prove that \mathcal{F}^* is a sheaf.

HINT: Use partition of unity.

Rings and derivations (reminder)

REMARK: All rings in these handouts are assumed to be commutative and with unit. Algebras are associative, but not necessarily commutative (such as the matrix algebra). Rings over a field k are rings containing a field k. We assume that k has characteristic 0.

DEFINITION: Let R be a ring over a field k. A k-linear map $D R \longrightarrow R$ is called a derivation if it satisfies the Leibnitz equation D(fg) = D(f)g + gD(f). The space of derivations is denoted as $Der_k(R)$.

EXAMPLE:
$$\frac{d}{dt}: \mathbb{C}[t] \longrightarrow \mathbb{C}[t].$$
 $\frac{d}{dt}: C^{\infty}\mathbb{R} \longrightarrow C^{\infty}\mathbb{R}.$

THEOREM: Let $x_1,...,x_n$ be coordinate functions on \mathbb{R}^n , $R = C^{\infty}\mathbb{R}^n$, and $Der(R) \xrightarrow{\Pi} (C^{\infty}\mathbb{R}^n)^n$ map D to $(D(x_1),D(x_2),...,D(x_n))$. Then

$$\Pi: \operatorname{Der}(C^{\infty}\mathbb{R}^n) \longrightarrow R^n$$

is an isomorphism.

Derivations of an algebra of compactly supported functions

SUBLEMMA: Let M be a smooth manifold, and $C_c^{\infty}(U)$ the space of compactly supported smooth functions, equipped with natural multiplication. Consider the space $\mathrm{Der}(M,C_c^{\infty}(M))$ of derivations of $C_c^{\infty}(M)$ with values in $C^{\infty}(M)$. Let f be a function with support in $Z \subset M$. Then D(f) has support in Z for each $D \in Der(M,C_c^{\infty}(M))$.

Proof: For each g with support outside of Z, we have 0 = D(fg) = fD(g) + gD(f), hence for each $U \subset M \setminus Z$, we have $0 = gD(f)|_U$ whenever $Sup(g) \subset U$. Then, $D(f)|_U = 0$ as well.

LEMMA: Let φ be a smooth function with compact support which is equal to 1 on $U \subset M$, and $D \in C_c^{\infty}(M)$. Then $D(\varphi f)|_U = D(f)|_U$.

Proof. Step 1: $D(\varphi f) = D(\varphi)f - \varphi D(f)$, hence it would suffice to prove that $D(\varphi)|_U = 0$.

Step 2: Now, $\varphi^2 - \varphi = 0$ on U. By the Sublemma above, $0 = D(\varphi^2 - \varphi)|_U = [2D(\varphi)\varphi - D(\varphi)]|_U = D(\varphi)|_U$.

Derivations with compact support and without

THEOREM: Define the tautological map $Der(C^{\infty}(M)) \xrightarrow{\tau} Der(M, C_c^{\infty}(M))$, taking D to itself. Then τ is an isomorphism:

$$\operatorname{Der}(M, C_c^{\infty}(M)) = \operatorname{Der}(C^{\infty}(M)).$$

Proof. Step 1: For each $x \in M$, consider a smooth function ψ_x with compact support which is equal to 1 in some neighbourhood $U_x \ni x$. Let $D \in \ker \tau$, and $f \in C^{\infty}M$. Then $0 = D(\psi_x f)\big|_{U_x} = D(f)\big|_{U_x}$, hence D(f) = 0 in a neighbourhood of any $x \in M$. This implies that $\ker \tau = 0$.

Step 2: Consider $D \in \text{Der}(M, C_c^{\infty}(M))$, and let $D(f)|_{U_x} := D(\psi_x f)$. For any U_x, U_y , the Lemma above implies

$$D(\psi_x f)\big|_{U_x \cap U_y} = D(\psi_y f)\big|_{U_x \cap U_y} = D(f)\big|_{U_x \cap U_y}$$

Therefore, the sections $D(f)|_{U_x}$ agree on pairwise intersections, and define a section $\tilde{D}(f) \in C^{\infty}M$.

Step 3: On germs, $\tilde{D}(f) = D(f)$, hence it satisfies Leibnitz rule on each germ, and therefore, \tilde{D} is a derivation (exercise: check this directly).

Step 4: By the Lemma above, $\tilde{D}(f)\big|_{U_x} = D(f)\big|_{U_x}$ for each f with compact support. Therefore, $\tau(\tilde{D}) = D$, and τ is surjective.

Derivations as a sheaf

DEFINITION: Let $U \subset V$ be open subsets of a smooth manifold M, and $D \in \text{Der}(V, C_c^{\infty}(V))$. For any $f \in C_c^{\infty}(U)$, extend f to $\tilde{f} \in C_c^{\infty}(V)$ with the same support, (zero extension), and let $D|_U(f) := D(\tilde{f})$. This defines a structure of presheaf $U \longrightarrow C_c^{\infty}(U)$.

CLAIM: $U \longrightarrow C_c^{\infty}(U)$ is a sheaf.

Proof. Step 1: A vector field is uniquely determined by its restriction to the germs of all sections, hence a derivation D which vanishes on all germs for all $x \in M$ vanishes everywhere. This takes care of the first sheaf axiom.

Proof. Step 2: Let $\{U_i\}$ be a cover of M. To glue a derivation D from its bits $D_i \in \text{Der}(C^{\infty}(U_i))$, consider a partition of unity ψ_i subordinate to $\{U_i\}$. Then $D(f) := \sum D_i(\psi_i f)$ is a derivation which restricts to all D_i .

COROLLARY: The sheaf of derivations is locally free, that is, $Der C^{\infty}M$ defines a vector bundle on M.

DEFINITION: It is called the tangent bundle, and denoted TM.

NEXT TIME.

Next time: TEST ASSIGNMENT # 2!