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Locally trivial fibrations

DEFINITION: A smooth map f : X −→ Y is called a locally trivial fi-

bration if each point y ∈ Y has a neighbourhood U 3 y such that f−1(U) is

diffeomorphic to U×F , and the map f : f−1(U) = U×F −→ U is a projection.

In such situation, F is called the fiber of a locally trivial fibration.

DEFINITION: A trivial fibration is a map X × Y −→ Y .

EXAMPLE: The projection S3 ⊂ C2\0 f−→ CP1 is called the Hopf fibration.

Given U = {x : 1} ⊂ CP1, with |x| 6 1, one has

f−1(U) = {z1, z2 ∈ S3 | |z1|2 + |z2|2 = 1, |z1| 6 1}

(here zi are complex coordinates in C2). Then

f−1(U) =
{

(z1, z2) | z2 ∈ U(1) ·
√

1− |z1|2
}
,

where U(1) = {z ∈ C | |z| = 1}. Therefore, the Hopf fibration f : S3 −→ S2

is a locally trivial fibration.

REMARK: Since π1(S3) = 0 and π1(S1 × S2) = Z, the Hopf fibration is

non-trivial.
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Vector bundles

DEFINITION: A vector bundle on Y is a locally trivial fibration f : X −→ Y

with fiber Rn, with each fiber V := f−1(y) equipped with a structure of a

vector space, smoothly depending on y ∈ Y .

REMARK: This definition is not very precise or rigorous, because “smoothly

depending on y ∈ Y ” needs to be explained.

REMARK: This definition is compatible with the one we used previously

(“a vector bundle is a locally free sheaf of C∞M-modules”). This will be

explained later.

For a more rigorous approach:

1. Define categories.

2. Define group objects and vector space objects

3. Formulate “smoothly depending on y ∈ Y ” in these terms.
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Categories: data

DEFINITION: A category C is a collection of data called “objects” and
“morphisms between objects” which satisfies the axioms below.

DATA.
Objects: The set Ob(C) of objects of C.
Morphisms: For each X,Y ∈ Ob(C), one has a set Mor(X,Y ) of mor-

phisms from X to Y .
Composition of morphisms: For each ϕ ∈ Mor(X,Y ), ψ ∈ Mor(Y, Z)

there exists the composition ϕ ◦ ψ ∈Mor(X,Z)
Identity morphism: For each A ∈ Ob(C) there exists a morphism IdA ∈

Mor(A,A).

REMARK: In some versions of axiomatic set theory, one considers not a set,
but a class of objects, which could be arbitrarily big, such as the class of all
sets, or the class of all linear spaces. The category with a set of morphisms
and objects is called a small category, and one with a class a big category.

In ZFC, one postulates existence of so-called Grothendieck universe (that
is, a strongly inaccessible cardinal). Small sets are ones which belong to
the Grothendieck universe, the rest of the sets are big.

Existence of a strongly inaccessible cardinal implies consistency of ZFC (Goedel).
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Categories: axioms

AXIOMS.

Associativity of composition: ϕ1 ◦ (ϕ2 ◦ ϕ3) = (ϕ1 ◦ ϕ2) ◦ ϕ3.

Properties of identity morphism: For each ϕ ∈ Mor(X,Y ), one has

Idx ◦ϕ = ϕ = ϕ ◦ IdY

DEFINITION: Let X,Y ∈ Ob(C) – objects of C. A morphism ϕ ∈Mor(X,Y )

is called an isomorphism if there exists ψ ∈Mor(Y,X) such that ϕ ◦ψ = IdX
and ψ ◦ ϕ = IdY . In this case, the objects X and Y are called isomorphic.

Examples of categories:

Category of sets: its morphisms are arbitrary maps.

Category of vector spaces: its morphisms are linear maps.

Categories of rings, groups, fields: morphisms are homomorphisms.

Category of topological spaces: morphisms are continuous maps.

Category of smooth manifolds: morphisms are smooth maps.

It is often convenient to express morphisms by arrows, and call them

“maps”.
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Some categorical constructions

DEFINITION: A product X1 × X2 of X1, X2 ∈ Ob(cac) is an object of
C equipped with projection maps πi : X1 × X2 −→Xi such that for any
pair of morphisms ϕi ∈ Mor(Y,Xi) there is a unique morphism ϕ ∈
Mor(Y,X1 ×X2) such that ϕ ◦ πi = ϕi.

EXERCISE: Prove that a product is unique up to isomorphism, if it
exists.

EXERCISE: Prove that the product is associative: X×(Y ×Z) ∼= (X×Y )×Z
and commutative: X × Y ∼= Y ×X.

EXERCISE: Find the product in the categories of a. groups b. rings c.
vector spaces d. sets e. topological spaces.

DEFINITION: An initial object of a category is an object I ∈ Ob(C) such
that Mor(I,X) is always a set of one element. A terminal object is T ∈
Ob(C) such that Mor(X,T ) is always a set of one element.

EXERCISE: Prove that the initial and the terminal object is unique, up
to isomorphism.
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Group objects in categories

EXERCISE: Let T be a terminal object. Prove that X × T ∼= X for each

X ∈ Ob(C).

DEFINITION: An object G ∈ Ob(C) is called a group object if there exists
a morphism µ ∈ Mor(G × G,G) (the product), a morphism e ∈ Mor(T,G)
from the terminal object (the unit), and a morphism i ∈ Mor(G,G) (the

inverse), satisfying the following axioms.

Associativity: Consider the morphisms µ12, µ23 : G × G × G−→G × G, the
first map takes the product on the first two objects, and acts as identity on
the third, the second maps is a product on last 2 and identity on the first.
Then µ12 ◦ µ = µ23 ◦ µ : G×G×G−→G.

Unit: The compositions G = G × T IdG×e−→ G × G µ−→ G and G = G × T e×IdG−→
G×G µ−→ G are identities.

Inverse: Let ∆ : G−→G×G be the diagonal map, that is, a map G−→G×G
obtained from a pair of identity maps. Then the composition G

∆−→ G ×
G

IdG×i−→ G×G µ−→ G is equal to G−→ T
e−→ G.
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Examples of group objects

EXAMPLE: A topological group is a group object in the category of topo-
logical spaces.

EXAMPLE: A Lie group is a group object in the category of smooth man-
ifolds.

DEFINITION: Let C be a category. An opposite category C◦ is a category
with the same sets of objects, MorCo(X,Y ) = MorC(Y,X), with the same
compositions as in C taken in inverse order.

EXAMPLE: The category of finitely generated algebras withous nilpo-
tents over C is equivalent to C◦, where C is a category with objects al-
gebraic subsets in Cn (common zeros of a system of polynomial equations)
and morphisms polynomial functions. This statement is called “Hilbert’s
Nullstellensatz”.

EXAMPLE: An algebraic group is a group object in the category C◦, where
C is a category of rings.

EXAMPLE: A formal group is a group object in the category Co, where C
is a category of complete local rings (over C, these are local rings, obtained
as quotients of the ring of formal power series by an ideal).

8



Geometry of manifolds, lecture 7 M. Verbitsky

Topological groups over a base

DEFINITION: Fix a topological space M , and let CM be a category of pairs
(X, f : X −→M) with morphisms being continuous maps from X1 to X2
commuting with the projections to M . The product in CM is called fiber
product: X1 ×M X2 := {(x1, x2) ∈ X1 × X2 | f1(x1) = f2(x2)}. A group
object in CM is called a topological group over M .

REMARK: This definition is equivalent to the following.

DEFINITION: Let B
π−→ M be a continuous map, and B ×M B

Ψ−→ M - a
morphism over M . This morphism is called associative multiplication if it
is associative on the fibers of π, that is, satisfies Ψ(a,Ψ(b, c)) = Ψ(Ψ(a, b), c)
for every triple a, b, c in the same fiber.

A section M
e−→ B is called the unit if the maps B

IdB ×e−→ B ×M B
Ψ−→ B

and B
e×IdB−→ B ×M B

Ψ−→ B are equal to IdB.
A morphism ν : B −→B over M is called a group inverse if each of

the maps B
∆−→ B ×M B

IdB ×ν−→ B ×M B
Ψ−→ B and B

∆−→ B ×M B
ν×IdB−→

B ×M B
Ψ−→ B is a constant map, mapping b to e(π(b)).

A map B
π−→ M equipped with associative multiplication, unit and group

inverse is called a topological group over M .
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Vector spaces over a base

REMARK: Let π : G−→M be a topological group over M . Then the fiber

π−1(m) is a group for each m ∈ M . This group structure depends on

m ∈ M continuously, but to state this dependency formaly, one needs

to define a topological group over M.

DEFINITION: Let k be a field. A k-vector space object in a category

C is a group object V equipped with a set of morphisms λx ∈ Mor(V, V ),

parametrized by x ∈ k, and satisfying the following conditions.

Multiplicativity: λxλy = λxy,

Zero: λ1 = IdV
Unit: λ0 : V −→ V is a composition V −→ T

e−→ V .

Additivity: Let ∆ be the diagonal map. Then the composition G
∆−→

G×G−→ λx × λy
µ−→ G is equal to λx+y.

Distributivity: The composition G×G λx×λx−→ G×G µ−→ G is equal to µ◦λx.

DEFINITION: Let k be a topological field (for instance, C or R). A topo-

logical vector space B over a base M is a vector space object in CM , such

that the map λx : k ×B −→B is continuous.

10



Geometry of manifolds, lecture 7 M. Verbitsky

Vector spaces over a base (category-free definition)

DEFINITION: Let G be an abelian group, and k a field. Suppose that for
each non-zero λ ∈ k there exists an automorphism ϕλ : G−→G, such that
ϕλ ◦ ϕλ′ = ϕλλ′, and ϕλ+λ′(g) = ϕλ(g) + ϕλ′(g). Then G is called a vector
space over k.

DEFINITION: Let k = R or C. An abelian topological group B
π−→ M over

M is called a vector space over a base M , or a relative vector space
over M if for each non-zero λ ∈ k there exists a continuous automorphism
ϕλ : B −→B of a group B over M satisfying assumptions of the above
definition.

REMARK: Let B
π−→ M be a relative vector space over M , U ⊂M an open

subset, and B(U) the space of sections of a map π−1(U)
π−→ U . Then B(U)

defines a sheaf of modules over a sheaf C0(M) of continuous functions.

EXAMPLE: Let S ⊂ Rn be a subset (not necessarily a smooth submanifold),
s ∈ S a point, and v ∈ TsRn a vector. We sat that v belongs to a tangent cone
CsS if the distance from S to a point s+tv converges to 0 as t→ 0 faster than
linearly: lim

t→0

d(S,s+tv)
t = 0. Then the set CS of all pairs (s, v), s ∈ S, v ∈ CsS

is a relative vector space over S.
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Total space of a vector bundle

DEFINITION: Let B −→M be a smooth locally trivial fibration with fiber

Rn. Assume that B is equipped with a structure of relative vector space

over M , and all the maps used in the definition of a relative vector space are

smooth. Then B is called a total space of a vector bundle.

REMARK: Let π : B −→M be a total space of a vector bundle, U ⊂M open

subset, and B(U) the space of all smooth sections of π−1(U)
π−→ U . Then

B is a locally free sheaf of C∞M-modules.

THEOREM: Every locally free sheaf C∞M-modules is defined from a

total space of a vector bundle, which is determined uniquely by a sheaf.

The proof will be a couple of slides below.
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Fiber of a locally free sheaf

DEFINITION: Let B be an n-dimensional locally free sheaf of C∞-modules

on M , x ∈ M a point, Bx the space of germs of B in x, and mx ⊂ C∞x M the

maximal ideal in the ring of germs C∞x M of smooth functions. Define the

fiber of B in x as a quotient Bx/mxBx. A fiber of B is denoted B|x.

REMARK: A fiber of an n-dimensional bundle is an n-dimensional vec-

tor space.

REMARK: Let B = C∞Mn, and b ∈ B|x a point of a fiber, represented by a

germ ϕ ∈ Bx = C∞mM
n, ϕ = (f1, ..., fn). Consider a map Ψ from the set of all

fibers B to M ×Rn, mapping (x, ϕ = (f1, ..., fn)) to (f1(x), ..., fn(x)). Then Ψ

is bijective. Indeed, B|x = Rn.
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Total space of a vector bundle from its sheaf of sections

DEFINITION: Let B be an n-dimensional locally free sheaf of C∞-modules.

Denote the set of all vectors in all fibers of B over all points of M by TotB.

Let U ⊂M be an open subset of M , with B|U a trivial bundle. Using the local

bijection TotB(U) = U × Rn we consider topology on TotB induced by open

subsets in TotB(U) = U×Rn for all open subsets U ⊂M and all trivializations

of B|U . Then TotB is called a total space of a vector bundle B.

CLAIM: The space TotB with this topology is a locally trivial fibration

over M, with fiber Rn. Moreover, it is a relative vector space over M , and

the sheaf of smooth sections of TotB −→M is isomorphic to B.

REMARK: This gives an equivalence between locally free sheaves of

C∞-modules and the total spaces of vector bundles, defined abstractly

in terms of locally trivial fibrations.
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