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Locally trivial fibrations

DEFINITION: A smooth map f: X —Y is called a locally trivial fi-
bration if each point y € Y has a neighbourhood U 3> y such that f~1(U) is
diffeomorphic to U x F, and the map f: f~1(U) =Ux F — U is a projection.
In such situation, F'is called the fiber of a locally trivial fibration.

DEFINITION: A trivial fibrationisa map X xY —Y.

EXAMPLE: The projection $3 ¢ C2\0 J, cPlis called the Hopf fibration.

Given U = {z : 1} ¢ CP1, with |z| < 1, one has
FHU) ={21,220€ 8% | |21 + |22 =1,]z1] < 1}
(here z; are complex coordinates in CQ). Then
FO) ={Gr22) | 2 U@ V1-[aP],

where U(1) = {z € C | |z| = 1}. Therefore, the Hopf fibration f: S3 — 52
IS a locally trivial fibration.

REMARK: Since 71(S3) = 0 and n1(S! x S2) = Z, the Hopf fibration is
non-trivial.
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Vector bundles
DEFINITION: A vector bundle on Y is a locally trivial fibration f: X — Y
with fiber R™, with each fiber V := f~1(y) equipped with a structure of a

vector space, smoothly depending on y € Y.

REMARK: This definition is not very precise or rigorous, because ‘“smoothly
depending on y € Y needs to be explained.

REMARK: This definition is compatible with the one we used previously
(“a vector bundle is a locally free sheaf of C*°M-modules” ). This will be
explained later.

For a more rigorous approach:

1. Define categories.

2. Define group objects and vector space objects

3. Formulate “smoothly depending on y € YY" in these terms.
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Categories: data

DEFINITION: A category C is a collection of data called “objects” and
“morphisms between objects” which satisfies the axioms below.

DATA.

Objects: The set Ob(C) of objects of C.

Morphisms: For each X,Y € Ob(C), one has a set Mor(X,Y) of mor-
phisms from X to Y.

Composition of morphisms: For each ¢ € Mor(X,Y ),y € Mor(Y, Z)
there exists the composition oy € Mor(X, Z)

Identity morphism: For each A € Ob(C) there exists a morphism Id4 €
Mor(A, A).

REMARK: In some versions of axiomatic set theory, one considers not a set,
but a class of objects, which could be arbitrarily big, such as the class of all
sets, or the class of all linear spaces. The category with a set of morphisms
and objects is called a small category, and one with a class a big category.

In ZFC, one postulates existence of so-called Grothendieck universe (that
is, a strongly inaccessible cardinal). Small sets are ones which belong to
the Grothendieck universe, the rest of the sets are big.

Existence of a strongly inaccessible cardinal implies consistency of ZFC (Goedel).
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Categories: axioms

AXIOMS.
Associativity of composition: ¢ o (p5 0 ¢3) = (1 0 @) o Y3.
Properties of identity morphism: For each ¢ € Mor(X,Y), one has
Idgzop = ¢ = poldy

DEFINITION: Let X,Y € Ob(C) — objects of C. A morphism ¢ € Mor(X,Y)
is called an isomorphism if there exists ¥ € Mor(Y, X) such that poy =1Idy
and 9 o = Idy. In this case, the objects X and Y are called isomorphic.

Examples of categories:

Category of sets: its morphisms are arbitrary maps.

Category of vector spaces: its morphisms are linear maps.
Categories of rings, groups, fields: morphisms are homomorphisms.
Category of topological spaces: morphisms are continuous maps.
Category of smooth manifolds: morphisms are smooth maps.

It iIs often convenient to express morphisms by arrows, and call them
umapsn .
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Some categorical constructions

DEFINITION: A product Xq x X5 of Xq,X> € Ob(cac) is an object of
C equipped with projection maps w; : X1 x Xo — X; such that for any
pair of morphisms ¢, € Mor(Y,X;) there is a unique morphism ¢ €
Mor(Y, X1 x X5) such that pom; = ;.

EXERCISE: Prove that a product is unique up to isomorphism, if it
exists.

EXERCISE: Prove that the product is associative: X x(YxZ2) = (XxY)xZ
and commutative: X xY =Y x X.

EXERCISE: Find the product in the categories of a. groups b. rings c.
vector spaces d. sets e. topological spaces.

DEFINITION: An initial object of a category is an object I € Ob(C) such
that Mor(I,X) is always a set of one element. A terminal object is T ¢
Ob(C) such that Mor(X,T) is always a set of one element.

EXERCISE: Prove that the initial and the terminal object is unique, up
to isomorphism.
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Group objects in categories

EXERCISE: Let T be a terminal object. Prove that X x T = X for each
X € Ob(C).

DEFINITION: An object G € Ob(C) is called a group object if there exists
a morphism p € Mor(G x G,G) (the product), a morphism e € Mor(T,G)
from the terminal object (the unit), and a morphism i € Mor(G,G) (the
inverse), satisfying the following axioms.

Associativity: Consider the morphisms pio,u23 : G X G X G— G x G, the
first map takes the product on the first two objects, and acts as identity on
the third, the second maps is a product on last 2 and identity on the first.
Then pipoopu=purzou: GXGXG—G.

Xe eXIdG

Unit: The compositions G =G xT CX°axG % Gand G=G x T
G x G -2 @ are identities.

Inverse: Let A : G — GxG be the diagonal map, thatis, amap G — GxG
obtained from a pair of identity maps. Then the composition GG A> G X
R AN IVNC IR G is equal to G — T -% Q.
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Examples of group objects

EXAMPLE: A topological group is a group object in the category of topo-
logical spaces.

EXAMPLE: A Lie group is a group object in the category of smooth man-
ifolds.

DEFINITION: Let C be a category. An opposite category C° is a category
with the same sets of objects, Morgo(X,Y) = More(Y, X), with the same
compositions as in C taken in inverse order.

EXAMPLE: The category of finitely generated algebras withous nilpo-
tents over C is equivalent to C° where C is a category with objects al-
gebraic subsets in C"* (common zeros of a system of polynomial equations)
and morphisms polynomial functions. This statement is called *“Hilbert’s
Nullstellensatz”.

EXAMPLE: An algebraic group is a group object in the category C°, where
C is a category of rings.

EXAMPLE: A formal group is a group object in the category C°, where C
is a category of complete local rings (over C, these are local rings, obtained
as quotients of the ring of formal power series by an ideal).
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Topological groups over a base

DEFINITION: Fix a topological space M, and let C),; be a category of pairs
(X,f : X — M) with morphisms being continuous maps from X; to X,
commuting with the projections to M. The product in C,; is called fiber
product: X xp; Xo = {(z1,72) € X1 X Xo | fi(x1) = fa(x2)}. A group
object in Cys is called a topological group over M.

REMARK: This definition is equivalent to the following.

DEFINITION: Let B — M be a continuous map, and B x; B Y M- a3
morphism over M. This morphism is called associative multiplication if it
is associative on the fibers of «, that is, satisfies W(a, W(b,c)) = V(W (a,b),c)

for every triple a,b,c in the same fiber.

L Id
A section M - B is called the unit if the maps B B3 B X B Y. B

Id
and B2 B x,y B - B are equal to Idp.

A morphism v : B— B over M is called a group inverse if each of

Id Id
the maps B A> B Xy B B—X>VB><MB i> B and B A) BxMBVX—>B

B x) B Y, Bis a constant map, mapping b to e(w(b)).

A map B e M equipped with associative multiplication, unit and group
inverse is called a topological group over M.
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Vector spaces over a base

REMARK: Let 7 : G — M be a topological group over M. Then the fiber
7~ 1(m) is a group for each m € M. This group structure depends on
m € M continuously, but to state this dependency formaly, one needs
to define a topological group over M.

DEFINITION: Let k£ be a field. A k-vector space object in a category
C is a group object V equipped with a set of morphisms A\, € Mor(V,V),
parametrized by x € k, and satisfying the following conditions.

Multiplicativity: AzAy = Azy,

Zero: \ = Idy,

Unit: \g: V — V is a composition V —T - V.

Additivity: Let A be the diagonal map. Then the composition G A>
G X G — Az X Ay £, @ is equal to Apty-

Distributivity: The composition G X GG ’\M”j GxG X Gis equal to po ;.

DEFINITION: Let k£ be a topological field (for instance, C or R). A topo-
logical vector space B over a base M is a vector space object in Cys, such
that the map Ay : £k x B— B is continuous.

10



Geometry of manifolds, lecture 7 M. Verbitsky

Vector spaces over a base (category-free definition)

DEFINITION: Let G be an abelian group, and k a field. Suppose that for
each non-zero A € k there exists an automorphism ¢, : G — G, such that

)0 @y = @y, and oy (g) = or(g) + wy(g). Then G is called a vector
space over k.

DEFINITION: Let £ =R or C. An abelian topological group B s M over
M is called a vector space over a base M, or a relative vector space
over M if for each non-zero X € k there exists a continuous automorphism
) . B— B of a group B over M satisfying assumptions of the above
definition.

REMARK: Let B — M be a relative vector space over M, U C M an open
subset, and B(U) the space of sections of a map =~ 3(U) - U. Then B(U)
defines a sheaf of modules over a sheaf C°(M) of continuous functions.

EXAMPLE: Let S C R"™ be a subset (not necessarily a smooth submanifold),
s € S apoint, and v € TxsR™ a vector. We sat that v belongs to a tangent cone
CsS if the distance from S to a point s+tv converges to 0 as ¢t — O faster than
linearly: lim d(5,5+%) — 9. Then the set CS of all pairs (s,v),s € S,v € CsS

t
IS a relative vector space over S.
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Total space of a vector bundle

DEFINITION: Let B— M be a smooth locally trivial fibration with fiber
R™. Assume that B is equipped with a structure of relative vector space
over M, and all the maps used in the definition of a relative vector space are
smooth. Then B is called a total space of a vector bundile.

REMARK: Let 71 : B— M be a total space of a vector bundle, U C M open
subset, and B(U) the space of all smooth sections of #~1(U) %5 U. Then

B is a locally free sheaf of C°°M-modules.

THEOREM: Every locally free sheaf C°°M-modules is defined from a
total space of a vector bundle, which is determined uniquely by a sheaf.

The proof will be a couple of slides below.
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Fiber of a locally free sheaf

DEFINITION: Let B be an n-dimensional locally free sheaf of C°°-modules
on M, x € M a point, B; the space of germs of B in =, and m, C C°M the
maximal ideal in the ring of germs C2°M of smooth functions. Define the
fiber of B in x as a quotient By /mzB;. A fiber of B is denoted Bj;.

REMARK: A fiber of an n-dimensional bundle is an n-dimensional vec-
tor space.

REMARK: Let B=C*M", and b € B|; a point of a fiber, represented by a
germ ¢ € By = CPM™, ¢ = (f1,.--, fn). Consider a map W from the set of all
fibers B to M x R"™, mapping (x,¢ = (f1,..., fn)) to (f1(x), ..., fn(x)). Then W
iIs bijective. Indeed, B|; = R".
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Total space of a vector bundle from its sheaf of sections

DEFINITION: Let B be an n-dimensional locally free sheaf of C'°°~-modules.
Denote the set of all vectors in all fibers of B over all points of M by TotB.
Let U C M be an open subset of M, with Bl a trivial bundle. Using the local
bijection Tot B(U) = U x R™ we consider topology on TotB induced by open
subsets in Tot B(U) = U xR" for all open subsets U C M and all trivializations
of B|;y;. Then TotB is called a total space of a vector bundle B.

CLAIM: The space TotB with this topology is a locally trivial fibration
over M, with fiber R"™. Moreover, it is a relative vector space over M, and
the sheaf of smooth sections of TotB — M is isomorphic to B.

REMARK: This gives an equivalence between locally free sheaves of
C°°-modules and the total spaces of vector bundles, defined abstractly
in terms of locally trivial fibrations.
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