Geometry of manifolds

Lecture 7: Categories and locally trivial fibrations

Misha Verbitsky

Math in Moscow and HSE

April 1, 2013

Locally trivial fibrations

DEFINITION: A smooth map $f : X \longrightarrow Y$ is called a locally trivial fibration if each point $y \in Y$ has a neighbourhood $U \ni y$ such that $f^{-1}(U)$ is diffeomorphic to $U \times F$, and the map $f : f^{-1}(U) = U \times F \longrightarrow U$ is a projection. In such situation, F is called **the fiber** of a locally trivial fibration.

DEFINITION: A trivial fibration is a map $X \times Y \longrightarrow Y$.

EXAMPLE: The projection $S^3 \subset \mathbb{C}^2 \setminus 0 \xrightarrow{f} \mathbb{C}P^1$ is called **the Hopf fibration**. Given $U = \{x : 1\} \subset \mathbb{C}P^1$, with $|x| \leq 1$, one has

$$f^{-1}(U) = \{z_1, z_2 \in S^3 \mid |z_1|^2 + |z_2|^2 = 1, |z_1| \leq 1\}$$

(here z_i are complex coordinates in \mathbb{C}^2). Then

$$f^{-1}(U) = \left\{ (z_1, z_2) \mid z_2 \in U(1) \cdot \sqrt{1 - |z_1|^2} \right\},$$

where $U(1) = \{z \in \mathbb{C} \mid |z| = 1\}$. Therefore, the Hopf fibration $f : S^3 \longrightarrow S^2$ is a locally trivial fibration.

REMARK: Since $\pi_1(S^3) = 0$ and $\pi_1(S^1 \times S^2) = \mathbb{Z}$, the Hopf fibration is non-trivial.

Vector bundles

DEFINITION: A vector bundle on Y is a locally trivial fibration $f : X \longrightarrow Y$ with fiber \mathbb{R}^n , with each fiber $V := f^{-1}(y)$ equipped with a structure of a vector space, smoothly depending on $y \in Y$.

REMARK: This definition is not very precise or rigorous, because "smoothly depending on $y \in Y$ " needs to be explained.

REMARK: This definition is compatible with the one we used previously ("a vector bundle is a locally free sheaf of $C^{\infty}M$ -modules"). This will be explained later.

For a more rigorous approach:

- 1. Define categories.
- 2. Define group objects and vector space objects
- 3. Formulate "smoothly depending on $y \in Y$ " in these terms.

Categories: data

DEFINITION: A category C is a collection of data called "objects" and "morphisms between objects" which satisfies the axioms below.

DATA.

Objects: The set $\mathcal{O}b(\mathcal{C})$ of **objects** of \mathcal{C} .

Morphisms: For each $X, Y \in Ob(\mathcal{C})$, one has a set Mor(X, Y) of morphisms from X to Y.

Composition of morphisms: For each $\varphi \in \mathcal{M}or(X, Y), \psi \in \mathcal{M}or(Y, Z)$ there exists the composition $\varphi \circ \psi \in \mathcal{M}or(X, Z)$

Identity morphism: For each $A \in Ob(C)$ there exists a morphism $Id_A \in Mor(A, A)$.

REMARK: In some versions of axiomatic set theory, one considers not a set, but **a class** of objects, which could be arbitrarily big, such as the class of all sets, or the class of all linear spaces. The category with **a set** of morphisms and objects is called **a small category**, and one with a class **a big category**.

In ZFC, one postulates existence of so-called **Grothendieck universe** (that is, **a strongly inaccessible cardinal**). **Small sets** are ones which belong to the Grothendieck universe, the rest of the sets are **big**.

Existence of a strongly inaccessible cardinal implies consistency of ZFC (Goedel).

Categories: axioms

AXIOMS.

Associativity of composition: $\varphi_1 \circ (\varphi_2 \circ \varphi_3) = (\varphi_1 \circ \varphi_2) \circ \varphi_3$.

Properties of identity morphism: For each $\varphi \in \mathcal{M}or(X, Y)$, one has $Id_x \circ \varphi = \varphi = \varphi \circ Id_Y$

DEFINITION: Let $X, Y \in Ob(\mathcal{C})$ – objects of \mathcal{C} . A morphism $\varphi \in Mor(X, Y)$ is called **an isomorphism** if there exists $\psi \in Mor(Y, X)$ such that $\varphi \circ \psi = Id_X$ and $\psi \circ \varphi = Id_Y$. In this case, the objects X and Y are called **isomorphic**.

Examples of categories:

Category of sets: its morphisms are arbitrary maps.
Category of vector spaces: its morphisms are linear maps.
Categories of rings, groups, fields: morphisms are homomorphisms.
Category of topological spaces: morphisms are continuous maps.
Category of smooth manifolds: morphisms are smooth maps.

It is often convenient to express morphisms by arrows, and call them "maps".

Some categorical constructions

DEFINITION: A product $X_1 \times X_2$ of $X_1, X_2 \in \mathcal{O}b(cac)$ is an object of \mathcal{C} equipped with projection maps $\pi_i : X_1 \times X_2 \longrightarrow X_i$ such that for any pair of morphisms $\varphi_i \in \mathcal{M}or(Y, X_i)$ there is a unique morphism $\varphi \in \mathcal{M}or(Y, X_1 \times X_2)$ such that $\varphi \circ \pi_i = \varphi_i$.

EXERCISE: Prove that a product is unique up to isomorphism, if it exists.

EXERCISE: Prove that the product is **associative:** $X \times (Y \times Z) \cong (X \times Y) \times Z$ and **commutative:** $X \times Y \cong Y \times X$.

EXERCISE: Find the product in the categories of a. groups b. rings c. vector spaces d. sets e. topological spaces.

DEFINITION: An initial object of a category is an object $I \in Ob(C)$ such that Mor(I, X) is always a set of one element. A terminal object is $T \in Ob(C)$ such that Mor(X, T) is always a set of one element.

EXERCISE: Prove that **the initial and the terminal object is unique**, up to isomorphism.

Group objects in categories

EXERCISE: Let T be a terminal object. Prove that $X \times T \cong X$ for each $X \in Ob(C)$.

DEFINITION: An object $G \in Ob(C)$ is called a group object if there exists a morphism $\mu \in Mor(G \times G, G)$ (the product), a morphism $e \in Mor(T, G)$ from the terminal object (the unit), and a morphism $i \in Mor(G, G)$ (the inverse), satisfying the following axioms.

Associativity: Consider the morphisms μ_{12}, μ_{23} : $G \times G \times G \to G \times G$, the first map takes the product on the first two objects, and acts as identity on the third, the second maps is a product on last 2 and identity on the first. Then $\mu_{12} \circ \mu = \mu_{23} \circ \mu$: $G \times G \times G \to G$.

Unit: The compositions $G = G \times T \xrightarrow{\operatorname{Id}_G \times e} G \times G \xrightarrow{\mu} G$ and $G = G \times T \xrightarrow{e \times \operatorname{Id}_G} G \times G \xrightarrow{\mu} G$ are identities.

Inverse: Let $\Delta : G \longrightarrow G \times G$ be the diagonal map, that is, a map $G \longrightarrow G \times G$ obtained from a pair of identity maps. Then the composition $G \xrightarrow{\Delta} G \times G \times G \xrightarrow{\operatorname{Id}_G \times i} G \times G \xrightarrow{\mu} G$ is equal to $G \longrightarrow T \xrightarrow{e} G$.

Examples of group objects

EXAMPLE: A topological group is a group object in the category of topological spaces.

EXAMPLE: A Lie group is a group object in the category of smooth manifolds.

DEFINITION: Let C be a category. An opposite category C° is a category with the same sets of objects, $Mor_{C^{\circ}}(X,Y) = Mor_{\mathcal{C}}(Y,X)$, with the same compositions as in C taken in inverse order.

EXAMPLE: The category of finitely generated algebras withous nilpotents over \mathbb{C} is equivalent to \mathcal{C}° , where \mathcal{C} is a category with objects algebraic subsets in \mathbb{C}^n (common zeros of a system of polynomial equations) and morphisms polynomial functions. This statement is called "Hilbert's Nullstellensatz".

EXAMPLE: An algebraic group is a group object in the category C° , where C is a category of rings.

EXAMPLE: A formal group is a group object in the category C^o , where C is a category of complete local rings (over \mathbb{C} , these are local rings, obtained as quotients of the ring of formal power series by an ideal).

Topological groups over a base

DEFINITION: Fix a topological space M, and let \mathcal{C}_M be a category of pairs $(X, f : X \longrightarrow M)$ with morphisms being continuous maps from X_1 to X_2 commuting with the projections to M. The product in \mathcal{C}_M is called **fiber product:** $X_1 \times_M X_2 := \{(x_1, x_2) \in X_1 \times X_2 \mid f_1(x_1) = f_2(x_2)\}$. A group object in \mathcal{C}_M is called a topological group over M.

REMARK: This definition is equivalent to the following.

DEFINITION: Let $B \xrightarrow{\pi} M$ be a continuous map, and $B \times_M B \xrightarrow{\Psi} M$ - a morphism over M. This morphism is called **associative multiplication** if it is associative on the fibers of π , that is, satisfies $\Psi(a, \Psi(b, c)) = \Psi(\Psi(a, b), c)$ for every triple a, b, c in the same fiber.

A section $M \xrightarrow{e} B$ is called **the unit** if the maps $B \xrightarrow{\operatorname{Id}_B \times e} B \times_M B \xrightarrow{\Psi} B$ and $B \xrightarrow{e \times \operatorname{Id}_B} B \times_M B \xrightarrow{\Psi} B$ are equal to Id_B .

A morphism $\nu : B \longrightarrow B$ over M is called a group inverse if each of the maps $B \xrightarrow{\Delta} B \times_M B \xrightarrow{\operatorname{Id}_B \times \nu} B \times_M B \xrightarrow{\Psi} B$ and $B \xrightarrow{\Delta} B \times_M B \xrightarrow{\nu \times \operatorname{Id}_B} B \times_M B \xrightarrow{\Psi} B$ is a constant map, mapping b to $e(\pi(b))$.

A map $B \xrightarrow{\pi} M$ equipped with associative multiplication, unit and group inverse is called a topological group over M.

Vector spaces over a base

REMARK: Let $\pi : G \longrightarrow M$ be a topological group over M. Then the fiber $\pi^{-1}(m)$ is a group for each $m \in M$. This group structure depends on $m \in M$ continuously, but to state this dependency formaly, one needs to define a topological group over M.

DEFINITION: Let k be a field. A k-vector space object in a category C is a group object V equipped with a set of morphisms $\lambda_x \in \mathcal{M}or(V,V)$, parametrized by $x \in k$, and satisfying the following conditions.

Multiplicativity: $\lambda_x \lambda_y = \lambda_{xy}$,

Zero: $\lambda_1 = \mathrm{Id}_V$

Unit: $\lambda_0: V \longrightarrow V$ is a composition $V \longrightarrow T \stackrel{e}{\longrightarrow} V$.

Additivity: Let Δ be the diagonal map. Then the composition $G \xrightarrow{\Delta} G \times G \longrightarrow \lambda_x \times \lambda_y \xrightarrow{\mu} G$ is equal to λ_{x+y} .

Distributivity: The composition $G \times G \xrightarrow{\lambda_x \times \lambda_x} G \times G \xrightarrow{\mu} G$ is equal to $\mu \circ \lambda_x$.

DEFINITION: Let k be a topological field (for instance, \mathbb{C} or \mathbb{R}). A topological vector space B over a base M is a vector space object in \mathcal{C}_M , such that the map $\lambda_x : k \times B \longrightarrow B$ is continuous.

Vector spaces over a base (category-free definition)

DEFINITION: Let G be an abelian group, and k a field. Suppose that for each non-zero $\lambda \in k$ there exists an automorphism φ_{λ} : $G \longrightarrow G$, such that $\varphi_{\lambda} \circ \varphi_{\lambda'} = \varphi_{\lambda\lambda'}$, and $\varphi_{\lambda+\lambda'}(g) = \varphi_{\lambda}(g) + \varphi_{\lambda'}(g)$. Then G is called a vector space over k.

DEFINITION: Let $k = \mathbb{R}$ or \mathbb{C} . An abelian topological group $B \xrightarrow{\pi} M$ over M is called a vector space over a base M, or a relative vector space over M if for each non-zero $\lambda \in k$ there exists a continuous automorphism $\varphi_{\lambda} : B \longrightarrow B$ of a group B over M satisfying assumptions of the above definition.

REMARK: Let $B \xrightarrow{\pi} M$ be a relative vector space over $M, U \subset M$ an open subset, and $\mathcal{B}(U)$ the space of sections of a map $\pi^{-1}(U) \xrightarrow{\pi} U$. Then $\mathcal{B}(U)$ defines a sheaf of modules over a sheaf $C^0(M)$ of continuous functions.

EXAMPLE: Let $S \subset \mathbb{R}^n$ be a subset (not necessarily a smooth submanifold), $s \in S$ a point, and $v \in T_s \mathbb{R}^n$ a vector. We sat that v belongs to a **tangent cone** $C_s S$ if the distance from S to a point s + tv converges to 0 as $t \to 0$ faster than linearly: $\lim_{t \to 0} \frac{d(S,s+tv)}{t} = 0$. Then the set CS of all pairs $(s,v), s \in S, v \in C_s S$ is a relative vector space over S.

Total space of a vector bundle

DEFINITION: Let $B \rightarrow M$ be a smooth locally trivial fibration with fiber \mathbb{R}^n . Assume that B is equipped with a structure of relative vector space over M, and all the maps used in the definition of a relative vector space are smooth. Then B is called a total space of a vector bundle.

REMARK: Let $\pi : B \longrightarrow M$ be a total space of a vector bundle, $U \subset M$ open subset, and $\mathcal{B}(U)$ the space of all smooth sections of $\pi^{-1}(U) \xrightarrow{\pi} U$. Then \mathcal{B} is a locally free sheaf of $C^{\infty}M$ -modules.

THEOREM: Every locally free sheaf $C^{\infty}M$ -modules is defined from a total space of a vector bundle, which is determined uniquely by a sheaf.

The proof will be a couple of slides below.

Fiber of a locally free sheaf

DEFINITION: Let \mathcal{B} be an *n*-dimensional locally free sheaf of C^{∞} -modules on M, $x \in M$ a point, \mathcal{B}_x the space of germs of \mathcal{B} in x, and $\mathfrak{m}_x \subset C_x^{\infty}M$ the maximal ideal in the ring of germs $C_x^{\infty}M$ of smooth functions. Define **the fiber** of \mathcal{B} in x as a quotient $\mathcal{B}_x/\mathfrak{m}_x\mathcal{B}_x$. A fiber of \mathcal{B} is denoted $\mathcal{B}|_x$.

REMARK: A fiber of an *n*-dimensional bundle is an *n*-dimensional vector space.

REMARK: Let $\mathcal{B} = C^{\infty}M^n$, and $b \in \mathcal{B}|_x$ a point of a fiber, represented by a germ $\varphi \in \mathcal{B}_x = C_m^{\infty}M^n$, $\varphi = (f_1, ..., f_n)$. Consider a map Ψ from the set of all fibers \mathcal{B} to $M \times \mathbb{R}^n$, mapping $(x, \varphi = (f_1, ..., f_n))$ to $(f_1(x), ..., f_n(x))$. Then Ψ is bijective. Indeed, $\mathcal{B}|_x = \mathbb{R}^n$.

Total space of a vector bundle from its sheaf of sections

DEFINITION: Let \mathcal{B} be an *n*-dimensional locally free sheaf of C^{∞} -modules. Denote the set of all vectors in all fibers of \mathcal{B} over all points of M by Tot \mathcal{B} . Let $U \subset M$ be an open subset of M, with $\mathcal{B}|_U$ a trivial bundle. Using the local bijection Tot $\mathcal{B}(U) = U \times \mathbb{R}^n$ we consider topology on Tot \mathcal{B} induced by open subsets in Tot $\mathcal{B}(U) = U \times \mathbb{R}^n$ for all open subsets $U \subset M$ and all trivializations of $\mathcal{B}|_U$. Then Tot \mathcal{B} is called a total space of a vector bundle \mathcal{B} .

CLAIM: The space Tot \mathcal{B} with this topology is a locally trivial fibration over M, with fiber \mathbb{R}^n . Moreover, it is a relative vector space over M, and the sheaf of smooth sections of $\operatorname{Tot} \mathcal{B} \longrightarrow M$ is isomorphic to \mathcal{B} .

REMARK: This gives an equivalence between locally free sheaves of \mathbb{C}^{∞} -modules and the total spaces of vector bundles, defined abstractly in terms of locally trivial fibrations.