Geometry of manifolds

Lecture 7: Categories and locally trivial fibrations

Misha Verbitsky

Math in Moscow and HSE
April 1, 2013

Locally trivial fibrations

DEFINITION: A smooth map $f: X \longrightarrow Y$ is called a locally trivial fibration if each point $y \in Y$ has a neighbourhood $U \ni y$ such that $f^{-1}(U)$ is diffeomorphic to $U \times F$, and the $\operatorname{map} f: f^{-1}(U)=U \times F \longrightarrow U$ is a projection. In such situation, F is called the fiber of a locally trivial fibration.

DEFINITION: A trivial fibration is a map $X \times Y \longrightarrow Y$.

EXAMPLE: The projection $S^{3} \subset \mathbb{C}^{2} \backslash 0 \xrightarrow{f} \mathbb{C} P^{1}$ is called the Hopf fibration. Given $U=\{x: 1\} \subset \mathbb{C} P^{1}$, with $|x| \leqslant 1$, one has

$$
f^{-1}(U)=\left\{z_{1},\left.z_{2} \in S^{3} \quad|\quad| z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1,\left|z_{1}\right| \leqslant 1\right\}
$$

(here z_{i} are complex coordinates in \mathbb{C}^{2}). Then

$$
f^{-1}(U)=\left\{\left(z_{1}, z_{2}\right) \quad \mid \quad z_{2} \in U(1) \cdot \sqrt{1-\left|z_{1}\right|^{2}}\right\}
$$

where $U(1)=\{z \in \mathbb{C}|\quad| z \mid=1\}$. Therefore, the Hopf fibration $f: S^{3} \longrightarrow S^{2}$ is a locally trivial fibration.

REMARK: Since $\pi_{1}\left(S^{3}\right)=0$ and $\pi_{1}\left(S^{1} \times S^{2}\right)=\mathbb{Z}$, the Hopf fibration is non-trivial.

Vector bundles

DEFINITION: A vector bundle on Y is a locally trivial fibration $f: X \longrightarrow Y$ with fiber \mathbb{R}^{n}, with each fiber $V:=f^{-1}(y)$ equipped with a structure of a vector space, smoothly depending on $y \in Y$.

REMARK: This definition is not very precise or rigorous, because "smoothly depending on $y \in Y^{\prime \prime}$ needs to be explained.

REMARK: This definition is compatible with the one we used previously ("a vector bundle is a locally free sheaf of $C^{\infty} M$-modules"). This will be explained later.

For a more rigorous approach:

1. Define categories.
2. Define group objects and vector space objects
3. Formulate "smoothly depending on $y \in Y$ " in these terms.

Categories: data
DEFINITION: A category \mathcal{C} is a collection of data called "objects" and "morphisms between objects" which satisfies the axioms below.

DATA.

Objects: The set $\mathcal{O b}(\mathcal{C})$ of objects of \mathcal{C}.
Morphisms: For each $X, Y \in \mathcal{O b}(\mathcal{C})$, one has a set $\operatorname{Mor}(X, Y)$ of morphisms from X to Y.

Composition of morphisms: For each $\varphi \in \operatorname{Mor}(X, Y), \psi \in \operatorname{Mor}(Y, Z)$ there exists the composition $\varphi \circ \psi \in \mathcal{M o r}(X, Z)$

Identity morphism: For each $A \in \mathcal{O b}(\mathcal{C})$ there exists a morphism $\mathrm{Id}_{A} \in$ $\operatorname{Mor}(A, A)$.

REMARK: In some versions of axiomatic set theory, one considers not a set, but a class of objects, which could be arbitrarily big, such as the class of all sets, or the class of all linear spaces. The category with a set of morphisms and objects is called a small category, and one with a class a big category.

In ZFC, one postulates existence of so-called Grothendieck universe (that is, a strongly inaccessible cardinal). Small sets are ones which belong to the Grothendieck universe, the rest of the sets are big.

Existence of a strongly inaccessible cardinal implies consistency of ZFC (Goedel).

Categories: axioms

AXIOMS.

Associativity of composition: $\varphi_{1} \circ\left(\varphi_{2} \circ \varphi_{3}\right)=\left(\varphi_{1} \circ \varphi_{2}\right) \circ \varphi_{3}$.
Properties of identity morphism: For each $\varphi \in \operatorname{Mor}(X, Y)$, one has $\operatorname{Id}_{x} \circ \varphi=\varphi=\varphi \circ \operatorname{Id}_{Y}$

DEFINITION: Let $X, Y \in \mathcal{O b}(\mathcal{C})$ - objects of \mathcal{C}. A morphism $\varphi \in \mathcal{M o r}(X, Y)$ is called an isomorphism if there exists $\psi \in \mathcal{M o r}(Y, X)$ such that $\varphi \circ \psi=\operatorname{Id}_{X}$ and $\psi \circ \varphi=\mathrm{Id}_{Y}$. In this case, the objects X and Y are called isomorphic.

Examples of categories:

Category of sets: its morphisms are arbitrary maps.
Category of vector spaces: its morphisms are linear maps.
Categories of rings, groups, fields: morphisms are homomorphisms.
Category of topological spaces: morphisms are continuous maps.
Category of smooth manifolds: morphisms are smooth maps.
It is often convenient to express morphisms by arrows, and call them "maps".

Some categorical constructions
DEFINITION: A product $X_{1} \times X_{2}$ of $X_{1}, X_{2} \in \mathcal{O b}(c a c)$ is an object of \mathcal{C} equipped with projection maps $\pi_{i}: X_{1} \times X_{2} \longrightarrow X_{i}$ such that for any pair of morphisms $\varphi_{i} \in \mathcal{M o r}\left(Y, X_{i}\right)$ there is a unique morphism $\varphi \in$ $\operatorname{Mor}\left(Y, X_{1} \times X_{2}\right)$ such that $\varphi \circ \pi_{i}=\varphi_{i}$.

EXERCISE: Prove that a product is unique up to isomorphism, if it exists.

EXERCISE: Prove that the product is associative: $X \times(Y \times Z) \cong(X \times Y) \times Z$ and commutative: $X \times Y \cong Y \times X$.

EXERCISE: Find the product in the categories of a. groups b. rings c. vector spaces d. sets e. topological spaces.

DEFINITION: An initial object of a category is an object $I \in \mathcal{O b}(\mathcal{C})$ such that $\operatorname{Mor}(I, X)$ is always a set of one element. A terminal object is $T \in$ $\mathcal{O b}(\mathcal{C})$ such that $\operatorname{Mor}(X, T)$ is always a set of one element.

EXERCISE: Prove that the initial and the terminal object is unique, up to isomorphism.

Group objects in categories

EXERCISE: Let T be a terminal object. Prove that $X \times T \cong X$ for each $X \in \mathcal{O b}(\mathcal{C})$.

DEFINITION: An object $G \in \mathcal{O} b(\mathcal{C})$ is called a group object if there exists a morphism $\mu \in \operatorname{Mor}(G \times G, G)$ (the product), a morphism $e \in \operatorname{Mor}(T, G)$ from the terminal object (the unit), and a morphism $i \in \mathcal{M o r}(G, G)$ (the inverse), satisfying the following axioms.

Associativity: Consider the morphisms $\mu_{12}, \mu_{23}: G \times G \times G \longrightarrow G \times G$, the first map takes the product on the first two objects, and acts as identity on the third, the second maps is a product on last 2 and identity on the first. Then $\mu_{12} \circ \mu=\mu_{23} \circ \mu: G \times G \times G \longrightarrow G$.

Unit: The compositions $G=G \times T \xrightarrow{\mathrm{Id}_{G} \times e} G \times G \xrightarrow{\mu} G$ and $G=G \times T \xrightarrow{e \times \mathrm{Id}_{G}}$ $G \times G \xrightarrow{\mu} G$ are identities.

Inverse: Let $\Delta: G \longrightarrow G \times G$ be the diagonal map, that is, a map $G \longrightarrow G \times G$ obtained from a pair of identity maps. Then the composition $G \xrightarrow{\Delta} G \times$ $G \xrightarrow{\mathrm{Id}_{G} \times i} G \times G \xrightarrow{\mu} G$ is equal to $G \longrightarrow T \xrightarrow{e} G$.

Examples of group objects

EXAMPLE: A topological group is a group object in the category of topological spaces.

EXAMPLE: A Lie group is a group object in the category of smooth manifolds.

DEFINITION: Let \mathcal{C} be a category. An opposite category \mathcal{C}° is a category with the same sets of objects, $\mathcal{M o r}_{\mathcal{C}}{ }^{o}(X, Y)=\mathcal{M o r}_{\mathcal{C}}(Y, X)$, with the same compositions as in \mathcal{C} taken in inverse order.

EXAMPLE: The category of finitely generated algebras withous nilpotents over \mathbb{C} is equivalent to \mathcal{C}°, where \mathcal{C} is a category with objects algebraic subsets in \mathbb{C}^{n} (common zeros of a system of polynomial equations) and morphisms polynomial functions. This statement is called "Hilbert's Nullstellensatz".

EXAMPLE: An algebraic group is a group object in the category \mathcal{C}°, where \mathcal{C} is a category of rings.

EXAMPLE: A formal group is a group object in the category \mathcal{C}^{o}, where \mathcal{C} is a category of complete local rings (over \mathbb{C}, these are local rings, obtained as quotients of the ring of formal power series by an ideal).

Topological groups over a base

DEFINITION: Fix a topological space M, and let \mathcal{C}_{M} be a category of pairs ($X, f: X \longrightarrow M$) with morphisms being continuous maps from X_{1} to X_{2} commuting with the projections to M. The product in \mathcal{C}_{M} is called fiber product: $X_{1} \times_{M} X_{2}:=\left\{\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2} \quad \mid \quad f_{1}\left(x_{1}\right)=f_{2}\left(x_{2}\right)\right\}$. A group object in \mathcal{C}_{M} is called a topological group over M.

REMARK: This definition is equivalent to the following.
DEFINITION: Let $B \xrightarrow{\pi} M$ be a continuous map, and $B \times_{M} B \xrightarrow{\Psi} M$ - a morphism over M. This morphism is called associative multiplication if it is associative on the fibers of π, that is, satisfies $\Psi(a, \Psi(b, c))=\Psi(\Psi(a, b), c)$ for every triple a, b, c in the same fiber.

A section $M \xrightarrow{e} B$ is called the unit if the maps $B \xrightarrow{\operatorname{Id}_{B} \times e} B \times_{M} B \xrightarrow{\Psi} B$ and $B \xrightarrow{e \times \mathrm{Id}_{B}} B \times_{M} B \xrightarrow{\Psi} B$ are equal to $I d_{B}$.

A morphism $\nu: B \longrightarrow B$ over M is called a group inverse if each of the maps $B \xrightarrow{\Delta} B \times_{M} B \xrightarrow{\mathrm{Id}_{B} \times \nu} B \times_{M} B \xrightarrow{\Psi} B$ and $B \xrightarrow{\Delta} B \times_{M} B \xrightarrow{\nu \times \mathrm{Id}_{B}}$ $B \times_{M} B \xrightarrow{\Psi} B$ is a constant map, mapping b to $e(\pi(b))$.

A map $B \xrightarrow{\pi} M$ equipped with associative multiplication, unit and group inverse is called a topological group over M.

Vector spaces over a base

REMARK: Let $\pi: G \longrightarrow M$ be a topological group over M. Then the fiber $\pi^{-1}(m)$ is a group for each $m \in M$. This group structure depends on $m \in M$ continuously, but to state this dependency formaly, one needs to define a topological group over M.

DEFINITION: Let k be a field. A k-vector space object in a category \mathcal{C} is a group object V equipped with a set of morphisms $\lambda_{x} \in \mathcal{M o r}(V, V)$, parametrized by $x \in k$, and satisfying the following conditions.

Multiplicativity: $\lambda_{x} \lambda_{y}=\lambda_{x y}$,
Zero: $\lambda_{1}=\operatorname{Id}_{V}$
Unit: $\lambda_{0}: V \longrightarrow V$ is a composition $V \longrightarrow T \xrightarrow{e} V$.
Additivity: Let Δ be the diagonal map. Then the composition $G \xrightarrow{\Delta}$ $G \times G \longrightarrow \lambda_{x} \times \lambda_{y} \xrightarrow{\mu} G$ is equal to λ_{x+y}.

Distributivity: The composition $G \times G \xrightarrow{\lambda_{x \times \lambda}} G \times G \xrightarrow{\mu} G$ is equal to $\mu \circ \lambda_{x}$.

DEFINITION: Let k be a topological field (for instance, \mathbb{C} or \mathbb{R}). A topological vector space B over a base M is a vector space object in \mathcal{C}_{M}, such that the map $\lambda_{x}: k \times B \longrightarrow B$ is continuous.

Vector spaces over a base (category-free definition)

DEFINITION: Let G be an abelian group, and k a field. Suppose that for each non-zero $\lambda \in k$ there exists an automorphism $\varphi_{\lambda}: G \longrightarrow G$, such that $\varphi_{\lambda} \circ \varphi_{\lambda^{\prime}}=\varphi_{\lambda \lambda^{\prime}}$, and $\varphi_{\lambda+\lambda^{\prime}}(g)=\varphi_{\lambda}(g)+\varphi_{\lambda^{\prime}}(g)$. Then G is called a vector space over k.

DEFINITION: Let $k=\mathbb{R}$ or \mathbb{C}. An abelian topological group $B \xrightarrow{\pi} M$ over M is called a vector space over a base M, or a relative vector space over M if for each non-zero $\lambda \in k$ there exists a continuous automorphism $\varphi_{\lambda}: B \longrightarrow B$ of a group B over M satisfying assumptions of the above definition.

REMARK: Let $B \xrightarrow{\pi} M$ be a relative vector space over $M, U \subset M$ an open subset, and $\mathcal{B}(U)$ the space of sections of a map $\pi^{-1}(U) \xrightarrow{\pi} U$. Then $\mathcal{B}(U)$ defines a sheaf of modules over a sheaf $C^{0}(M)$ of continuous functions.

EXAMPLE: Let $S \subset \mathbb{R}^{n}$ be a subset (not necessarily a smooth submanifold), $s \in S$ a point, and $v \in T_{s} \mathbb{R}^{n}$ a vector. We sat that v belongs to a tangent cone $C_{s} S$ if the distance from S to a point $s+t v$ converges to 0 as $t \rightarrow 0$ faster than linearly: $\lim _{t \rightarrow 0} \frac{d(S, s+t v)}{t}=0$. Then the set $C S$ of all pairs $(s, v), s \in S, v \in C_{s} S$ is a relative vector space over S.

Total space of a vector bundle

DEFINITION: Let $B \longrightarrow M$ be a smooth locally trivial fibration with fiber \mathbb{R}^{n}. Assume that B is equipped with a structure of relative vector space over M, and all the maps used in the definition of a relative vector space are smooth. Then B is called a total space of a vector bundle.

REMARK: Let $\pi: B \longrightarrow M$ be a total space of a vector bundle, $U \subset M$ open subset, and $\mathcal{B}(U)$ the space of all smooth sections of $\pi^{-1}(U) \xrightarrow{\pi} U$. Then \mathcal{B} is a locally free sheaf of $C^{\infty} M$-modules.

THEOREM: Every locally free sheaf $C^{\infty} M$-modules is defined from a total space of a vector bundle, which is determined uniquely by a sheaf.

The proof will be a couple of slides below.

Fiber of a locally free sheaf

DEFINITION: Let \mathcal{B} be an n-dimensional locally free sheaf of C^{∞}-modules on $M, x \in M$ a point, \mathcal{B}_{x} the space of germs of \mathcal{B} in x, and $\mathfrak{m}_{x} \subset C_{x}^{\infty} M$ the maximal ideal in the ring of germs $C_{x}^{\infty} M$ of smooth functions. Define the fiber of \mathcal{B} in x as a quotient $\mathcal{B}_{x} / \mathfrak{m}_{x} \mathcal{B}_{x}$. A fiber of \mathcal{B} is denoted $\left.\mathcal{B}\right|_{x}$.

REMARK: A fiber of an n-dimensional bundle is an n-dimensional vector space.

REMARK: Let $\mathcal{B}=C^{\infty} M^{n}$, and $\left.b \in \mathcal{B}\right|_{x}$ a point of a fiber, represented by a germ $\varphi \in \mathcal{B}_{x}=C_{m}^{\infty} M^{n}, \varphi=\left(f_{1}, \ldots, f_{n}\right)$. Consider a map ψ from the set of all fibers \mathcal{B} to $M \times \mathbb{R}^{n}$, mapping $\left(x, \varphi=\left(f_{1}, \ldots, f_{n}\right)\right.$) to $\left(f_{1}(x), \ldots, f_{n}(x)\right)$. Then ψ is bijective. Indeed, $\left.\mathcal{B}\right|_{x}=\mathbb{R}^{n}$.

Total space of a vector bundle from its sheaf of sections

DEFINITION: Let \mathcal{B} be an n-dimensional locally free sheaf of C^{∞}-modules. Denote the set of all vectors in all fibers of \mathcal{B} over all points of M by $\operatorname{Tot} \mathcal{B}$. Let $U \subset M$ be an open subset of M, with $\left.\mathcal{B}\right|_{U}$ a trivial bundle. Using the local bijection $\operatorname{Tot} \mathcal{B}(U)=U \times \mathbb{R}^{n}$ we consider topology on $\operatorname{Tot} \mathcal{B}$ induced by open subsets in $\operatorname{Tot} \mathcal{B}(U)=U \times \mathbb{R}^{n}$ for all open subsets $U \subset M$ and all trivializations of $\left.\mathcal{B}\right|_{U}$. Then Tot \mathcal{B} is called a total space of a vector bundle \mathcal{B}.

CLAIM: The space Tot \mathcal{B} with this topology is a locally trivial fibration over M, with fiber \mathbb{R}^{n}. Moreover, it is a relative vector space over M, and the sheaf of smooth sections of $\operatorname{Tot} \mathcal{B} \longrightarrow M$ is isomorphic to \mathcal{B}.

REMARK: This gives an equivalence between locally free sheaves of \mathbb{C}^{∞}-modules and the total spaces of vector bundles, defined abstractly in terms of locally trivial fibrations.

