Geometry of manifolds

Lecture 8: Vector bundles and locally trivial fibrations

Misha Verbitsky

Math in Moscow and HSE

April 1, 2013

Locally trivial fibrations

DEFINITION: A smooth map $f : X \longrightarrow Y$ is called a locally trivial fibration if each point $y \in Y$ has a neighbourhood $U \ni y$ such that $f^{-1}(U)$ is diffeomorphic to $U \times F$, and the map $f : f^{-1}(U) = U \times F \longrightarrow U$ is a projection. In such situation, F is called **the fiber** of a locally trivial fibration.

DEFINITION: A trivial fibration is a map $X \times Y \longrightarrow Y$.

DEFINITION: A vector bundle on Y is a locally trivial fibration $f: X \longrightarrow Y$ with fiber \mathbb{R}^n , with each fiber $V := f^{-1}(y)$ equipped with a structure of a vector space, smoothly depending on $y \in Y$.

REMARK: This definition is not very precise or rigorous, because "smoothly depending on $y \in Y$ " needs to be explained.

REMARK: This definition is compatible with the one we used previously ("a vector bundle is a locally free sheaf of $C^{\infty}M$ -modules"). This will be explained later today.

Fiber product

DEFINITION: Fix a topological space M, and let $\pi_1 : X_1 \longrightarrow M$ and $\pi_2 : X_2 \longrightarrow M$ be continuous maps. The **fiber product** is defined as

$$X_1 \times_M X_2 := \{ (x_1, x_2) \in X_1 \times X_2 \mid \pi_1(x_1) = \pi_2(x_2) \}.$$

REMARK: Consider the projection $X_1 \times_M X_2 \xrightarrow{\pi} M$. Then

$$\pi^{-1}(m) = \pi_1^{-1}(m) \times \pi_2^{-1}(m).$$

EXERCISE: Let π_i : $X_i \longrightarrow M$, i = 1, 2 be trivial fibrations, $X_i = M \times F_i$. **Prove that** $X_1 \times_M X_2 = M \times F_1 \times F_2$.

REMARK: If X_i are locally trivial fibrations over M with fiber F_i , the fiber product $X_1 \times_M X_2$ is a locally trivial fibration over M with fiber $F_1 \times F_2$.

Fiber product: universal property

REMARK: The fiber product satisfies the following **universal property**. Let $X_1 \times_M X_2 \xrightarrow{\tilde{\pi}_i} X_i$ be the natural projection. Then any commutative square

$$\begin{array}{cccc} Y & \xrightarrow{f_1} & X_1 \\ f_2 & & & \downarrow \pi_1 \\ X_2 & \xrightarrow{\pi_2} & M \end{array}$$

induces a unique continuous map $f: Y \longrightarrow X_1 \times_M X_2$ such that $f \circ \tilde{\pi}_i = f_i$. Moreover, any space satisfying the universal property is homeomorphic to $X_1 \times_M X_2$.

REMARK: This statement is awkward, because I avoided the language of categories.

EXERCISE: Translate this property to the language of categories.

Topological groups over a base

DEFINITION: Fix a topological space M. A space over M $(X, f : X \to M)$ is a topological space equipped with a continuous map to M. A morphisms $\varphi : (X_1, f_1) \to (X_2, f_2)$ is a continuous map $\varphi : X_1 \to X_2$ commuting with projections to M.

DEFINITION: Let $B \xrightarrow{\pi} M$ be a continuous map, and $B \times_M B \xrightarrow{\Psi} M$ - a morphism over M. This morphism is called **associative multiplication** if it is associative on the fibers of π , that is, satisfies $\Psi(a, \Psi(b, c)) = \Psi(\Psi(a, b), c)$ for every triple a, b, c in the same fiber.

A section $M \xrightarrow{e} B$ is called **the unit** if the maps $B \xrightarrow{\operatorname{Id}_B \times e} B \times_M B \xrightarrow{\Psi} B$ and $B \xrightarrow{e \times \operatorname{Id}_B} B \times_M B \xrightarrow{\Psi} B$ are equal to Id_B .

A morphism $\nu : B \longrightarrow B$ over M is called a group inverse if each of the maps $B \xrightarrow{\Delta} B \times_M B \xrightarrow{\operatorname{Id}_B \times \nu} B \times_M B \xrightarrow{\Psi} B$ and $B \xrightarrow{\Delta} B \times_M B \xrightarrow{\nu \times \operatorname{Id}_B} B \times_M B \xrightarrow{\Psi} B$ is a constant map, mapping b to $e(\pi(b))$.

A map $B \xrightarrow{\pi} M$ equipped with associative multiplication, unit and group inverse is called a topological group over M.

Vector spaces over a base

DEFINITION: Let G be an abelian group, and k a field. Suppose that for each non-zero $\lambda \in k$ there exists an automorphism φ_{λ} : $G \longrightarrow G$, such that $\varphi_{\lambda} \circ \varphi_{\lambda'} = \varphi_{\lambda\lambda'}$, and $\varphi_{\lambda+\lambda'}(g) = \varphi_{\lambda}(g) + \varphi_{\lambda'}(g)$. Then G is called a vector space over k.

DEFINITION: Let $k = \mathbb{R}$ or \mathbb{C} . An abelian topological group $B \xrightarrow{\pi} M$ over M is called a vector space over a base M, or a relative vector space over M if for each non-zero $\lambda \in k$ there exists a continuous automorphism $\varphi_{\lambda} : B \longrightarrow B$ of a group B over M satisfying assumptions of the above definition.

REMARK: Let $B \xrightarrow{\pi} M$ be a relative vector space over $M, U \subset M$ an open subset, and $\mathcal{B}(U)$ the space of sections of a map $\pi^{-1}(U) \xrightarrow{\pi} U$. Then $\mathcal{B}(U)$ defines a sheaf of modules over a sheaf $C^0(M)$ of continuous functions.

EXAMPLE: Let $S \subset \mathbb{R}^n$ be a subset (not necessarily a smooth submanifold), $s \in S$ a point, and $v \in T_s \mathbb{R}^n$ a vector. We sat that v belongs to a **tangent cone** $C_s S$ if the distance from S to a point s + tv converges to 0 as $t \to 0$ faster than linearly: $\lim_{t\to 0} \frac{d(S,s+tv)}{t} = 0$. Then the set CS of all pairs $(s,v), s \in S, v \in C_s S$ is a relative vector space over S.

Total space of a vector bundle

DEFINITION: Let $B \rightarrow M$ be a smooth locally trivial fibration with fiber \mathbb{R}^n . Assume that B is equipped with a structure of relative vector space over M, and all the maps used in the definition of a relative vector space are smooth. Then B is called a total space of a vector bundle.

REMARK: Let $\pi : B \longrightarrow M$ be a total space of a vector bundle, $U \subset M$ open subset, and $\mathcal{B}(U)$ the space of all smooth sections of $\pi^{-1}(U) \xrightarrow{\pi} U$. Then \mathcal{B} is a locally free sheaf of $C^{\infty}M$ -modules.

THEOREM: Every locally free sheaf $C^{\infty}M$ -modules is defined from a total space of a vector bundle, which is determined uniquely by a sheaf.

The proof will be a couple of slides below.

Fiber of a locally free sheaf

DEFINITION: Let \mathcal{B} be an *n*-dimensional locally free sheaf of C^{∞} -modules on M, $x \in M$ a point, \mathcal{B}_x the space of germs of \mathcal{B} in x, and $\mathfrak{m}_x \subset C_x^{\infty}M$ the maximal ideal in the ring of germs $C_x^{\infty}M$ of smooth functions. Define **the fiber** of \mathcal{B} in x as a quotient $\mathcal{B}_x/\mathfrak{m}_x\mathcal{B}_x$. A fiber of \mathcal{B} is denoted $\mathcal{B}|_x$.

REMARK: A fiber of an *n*-dimensional bundle is an *n*-dimensional vector space.

REMARK: Let $\mathcal{B} = C^{\infty}M^n$, and $b \in \mathcal{B}|_x$ a point of a fiber, represented by a germ $\varphi \in \mathcal{B}_x = C_m^{\infty}M^n$, $\varphi = (f_1, ..., f_n)$. Consider a map Ψ from the set of all fibers \mathcal{B} to $M \times \mathbb{R}^n$, mapping $(x, \varphi = (f_1, ..., f_n))$ to $(f_1(x), ..., f_n(x))$. Then Ψ is bijective. Indeed, $\mathcal{B}|_x = \mathbb{R}^n$.

Total space of a vector bundle from its sheaf of sections

DEFINITION: Let \mathcal{B} be an *n*-dimensional locally free sheaf of C^{∞} -modules. Denote the set of all vectors in all fibers of \mathcal{B} over all points of M by Tot \mathcal{B} . Let $U \subset M$ be an open subset of M, with $\mathcal{B}|_U$ a trivial bundle. Using the local bijection Tot $\mathcal{B}(U) = U \times \mathbb{R}^n$ we consider topology on Tot \mathcal{B} induced by open subsets in Tot $\mathcal{B}(U) = U \times \mathbb{R}^n$ for all open subsets $U \subset M$ and all trivializations of $\mathcal{B}|_U$. Then Tot \mathcal{B} is called a total space of a vector bundle \mathcal{B} .

CLAIM: The space Tot \mathcal{B} with this topology is a locally trivial fibration over M, with fiber \mathbb{R}^n . Moreover, it is a relative vector space over M, and the sheaf of smooth sections of $\operatorname{Tot} \mathcal{B} \longrightarrow M$ is isomorphic to \mathcal{B} .

REMARK: This gives an equivalence between locally free sheaves of \mathbb{C}^{∞} -modules and the total spaces of vector bundles, defined abstractly in terms of locally trivial fibrations.

Tensor product

DEFINITION: Let V, V' be R-modules, W a free abelian group generated by $v \otimes v'$, with $v \in V, v' \in V'$, and $W_1 \subset W$ a subgroup generated by combinations $rv \otimes v' - v \otimes rv'$, $(v_1 + v_2) \otimes v' - v_1 \otimes v' - v_2 \otimes v'$ and $v \otimes (v'_1 + v'_2) - v \otimes v'_1 - v \otimes v'_2$. Define **the tensor product** $V \otimes_R V'$ as a quotient group W/W_1 .

EXERCISE: Show that $r \cdot v \otimes v' \mapsto (rv) \otimes v'$ defines an *R*-module structure on $V \otimes_R V'$.

REMARK: Let \mathcal{F} be a sheaf of rings, and \mathcal{B}_1 and \mathcal{B}_2 be sheaves of locally free (M, \mathcal{F}) -modules. Then

 $U \longrightarrow \mathcal{B}_1(U) \otimes_{\mathcal{F}(U)} \mathcal{B}_2(U)$

is also a locally free sheaf of modules.

DEFINITION: Tensor product of vector bundles is a tensor product of the corresponding sheaves of modules.

Dual bundle and bilinear forms

DEFINITION: Let V be an R-module. A dual R-module V^* is $\text{Hom}_R(V, R)$ with the R-module structure defined as follows: $r \cdot h(...) \mapsto rh(...)$.

CLAIM: Let \mathcal{B} be a vector bundle, that is, a locally free sheaf of $C^{\infty}M$ modules, and Tot $\mathcal{B} \xrightarrow{\pi} M$ its total space. Define $\mathcal{B}^*(U)$ as a space of smooth functions on $\pi^{-1}(U)$ linear in the fibers of π . Then $\mathcal{B}^*(U)$ is a locally free sheaf over $C^{\infty}(M)$.

DEFINITION: This sheaf is called **the dual vector bundle**, denoted by B^* . Its fibers are dual to the fibers of B.

DEFINITION: Bilinear form on a bundle \mathcal{B} is a section of $(\mathcal{B} \otimes \mathcal{B})^*$. A symmetric bilinear form on a real bundle \mathcal{B} is called **positive definite** if it gives a positive definite form on all fibers of \mathcal{B} . Symmetric positive definite form is also called a metric. A skew-symmetric bilinear form on \mathcal{B} is called **non-degenerate** if it is non-degenerate on all fibers of \mathcal{B} .

Subbundles

DEFINITION: A subbundle $\mathcal{B}_1 \subset \mathcal{B}$ is a subsheaf of modules which is also a vector bundle.

DEFINITION: Direct sum \oplus of vector bundles is a direct sum of corresponding sheaves.

EXAMPLE: Let \mathcal{B} be a vector bundle equipped with a metric (that is, a positive definite symmetric form), and $\mathcal{B}_1 \subset \mathcal{B}$ a subbundle. Consider a subset $\operatorname{Tot} \mathcal{B}_1^{\perp} \subset \operatorname{Tot} \mathcal{B}$, consisting of all $v \in \mathcal{B}|_x$ orthogonal to $\mathcal{B}_1|_x \subset \mathcal{B}|_x$. Then $\operatorname{Tot} \mathcal{B}_1^{\perp}$ is a total space of a subbundle, denoted as $\mathcal{B}_1^{\perp} \subset \mathcal{B}$, and we have an isomorphism $\mathcal{B} = \mathcal{B}_1 \oplus \mathcal{B}_1^{\perp}$.

REMARK: A total space of a direct sum of vector bundles $\mathcal{B} \oplus \mathcal{B}'$ is homeomorphic to $\operatorname{Tot} \mathcal{B} \times_M \operatorname{Tot} \mathcal{B}'$.

EXERCISE: Let \mathcal{B} be a real vector bundle. **Prove that** \mathcal{B} **admits a metric.**