Geometry of manifolds

Lecture 8: Vector bundles and locally trivial fibrations

Misha Verbitsky

Math in Moscow and HSE

April 1, 2013

Locally trivial fibrations

DEFINITION: A smooth map $f: X \longrightarrow Y$ is called a locally trivial fibration if each point $y \in Y$ has a neighbourhood $U \ni y$ such that $f^{-1}(U)$ is diffeomorphic to $U \times F$, and the map $f: f^{-1}(U)=U \times F \longrightarrow U$ is a projection. In such situation, F is called the fiber of a locally trivial fibration.

DEFINITION: A trivial fibration is a map $X \times Y \longrightarrow Y$.

DEFINITION: A vector bundle on Y is a locally trivial fibration $f: X \longrightarrow Y$ with fiber \mathbb{R}^{n}, with each fiber $V:=f^{-1}(y)$ equipped with a structure of a vector space, smoothly depending on $y \in Y$.

REMARK: This definition is not very precise or rigorous, because "smoothly depending on $y \in Y^{\prime \prime}$ needs to be explained.

REMARK: This definition is compatible with the one we used previously ("a vector bundle is a locally free sheaf of $C^{\infty} M$-modules"). This will be explained later today.

Fiber product

DEFINITION: Fix a topological space M, and let $\pi_{1}: X_{1} \longrightarrow M$ and π_{2} : $X_{2} \longrightarrow M$ be continuous maps. The fiber product is defined as

$$
X_{1} \times_{M} X_{2}:=\left\{\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2} \quad \mid \pi_{1}\left(x_{1}\right)=\pi_{2}\left(x_{2}\right)\right\} .
$$

REMARK: Consider the projection $X_{1} \times_{M} X_{2} \xrightarrow{\pi} M$. Then

$$
\pi^{-1}(m)=\pi_{1}^{-1}(m) \times \pi_{2}^{-1}(m) .
$$

EXERCISE: Let $\pi_{i}: X_{i} \longrightarrow M, i=1,2$ be trivial fibrations, $X_{i}=M \times F_{i}$. Prove that $X_{1} \times{ }_{M} X_{2}=M \times F_{1} \times F_{2}$.

REMARK: If X_{i} are locally trivial fibrations over M with fiber F_{i}, the fiber product $X_{1} \times_{M} X_{2}$ is a locally trivial fibration over M with fiber $F_{1} \times F_{2}$.

Fiber product: universal property

REMARK: The fiber product satisfies the following universal property. Let $X_{1} \times_{M} X_{2} \xrightarrow{\tilde{\pi}_{i}} X_{i}$ be the natural projection. Then any commutative square

induces a unique continuous map $f: Y \longrightarrow X_{1} \times_{M} X_{2}$ such that $f \circ \tilde{\pi}_{i}=f_{i}$. Moreover, any space satisfying the universal property is homeomorphic to $X_{1} \times{ }_{M} X_{2}$.

REMARK: This statement is awkward, because I avoided the language of categories.

EXERCISE: Translate this property to the language of categories.

Topological groups over a base

DEFINITION: Fix a topological space M. A space over $M(X, f: X \longrightarrow M)$ is a topological space equipped with a continuous map to M. A morphisms $\varphi:\left(X_{1}, f_{1}\right) \longrightarrow\left(X_{2}, f_{2}\right)$ is a continuous map $\varphi: X_{1} \longrightarrow X_{2}$ commuting with projections to M.

DEFINITION: Let $B \xrightarrow{\pi} M$ be a continuous map, and $B \times_{M} B \xrightarrow{\Psi} M$ - a morphism over M. This morphism is called associative multiplication if it is associative on the fibers of π, that is, satisfies $\Psi(a, \Psi(b, c))=\Psi(\Psi(a, b), c)$ for every triple a, b, c in the same fiber.

A section $M \xrightarrow{e} B$ is called the unit if the maps $B \xrightarrow{\operatorname{Id}_{B} \times e} B \times_{M} B \xrightarrow{\Psi} B$ and $B \xrightarrow{e \times \mathrm{Id}_{B}} B \times_{M} B \xrightarrow{\Psi} B$ are equal to $I d_{B}$.

A morphism $\nu: B \longrightarrow B$ over M is called a group inverse if each of the maps $B \xrightarrow{\Delta} B \times_{M} B \xrightarrow{\mathrm{Id}_{B} \times \nu} B \times_{M} B \xrightarrow{\Psi} B$ and $B \xrightarrow{\Delta} B \times_{M} B \xrightarrow{\nu \times \mathrm{Id}_{B}}$ $B \times_{M} B \xrightarrow{\Psi} B$ is a constant map, mapping b to $e(\pi(b))$.

A map $B \xrightarrow{\pi} M$ equipped with associative multiplication, unit and group inverse is called a topological group over M.

Vector spaces over a base

DEFINITION: Let G be an abelian group, and k a field. Suppose that for each non-zero $\lambda \in k$ there exists an automorphism $\varphi_{\lambda}: G \longrightarrow G$, such that $\varphi_{\lambda} \circ \varphi_{\lambda^{\prime}}=\varphi_{\lambda \lambda^{\prime}}$, and $\varphi_{\lambda+\lambda^{\prime}}(g)=\varphi_{\lambda}(g)+\varphi_{\lambda^{\prime}}(g)$. Then G is called a vector space over k.

DEFINITION: Let $k=\mathbb{R}$ or \mathbb{C}. An abelian topological group $B \xrightarrow{\pi} M$ over M is called a vector space over a base M, or a relative vector space over M if for each non-zero $\lambda \in k$ there exists a continuous automorphism $\varphi_{\lambda}: B \longrightarrow B$ of a group B over M satisfying assumptions of the above definition.

REMARK: Let $B \xrightarrow{\pi} M$ be a relative vector space over $M, U \subset M$ an open subset, and $\mathcal{B}(U)$ the space of sections of a map $\pi^{-1}(U) \xrightarrow{\pi} U$. Then $\mathcal{B}(U)$ defines a sheaf of modules over a sheaf $C^{0}(M)$ of continuous functions.

EXAMPLE: Let $S \subset \mathbb{R}^{n}$ be a subset (not necessarily a smooth submanifold), $s \in S$ a point, and $v \in T_{s} \mathbb{R}^{n}$ a vector. We sat that v belongs to a tangent cone $C_{s} S$ if the distance from S to a point $s+t v$ converges to 0 as $t \rightarrow 0$ faster than linearly: $\lim _{t \rightarrow 0} \frac{d(S, s+t v)}{t}=0$. Then the set $C S$ of all pairs $(s, v), s \in S, v \in C_{s} S$ is a relative vector space over S.

Total space of a vector bundle

DEFINITION: Let $B \longrightarrow M$ be a smooth locally trivial fibration with fiber \mathbb{R}^{n}. Assume that B is equipped with a structure of relative vector space over M, and all the maps used in the definition of a relative vector space are smooth. Then B is called a total space of a vector bundle.

REMARK: Let $\pi: B \longrightarrow M$ be a total space of a vector bundle, $U \subset M$ open subset, and $\mathcal{B}(U)$ the space of all smooth sections of $\pi^{-1}(U) \xrightarrow{\pi} U$. Then \mathcal{B} is a locally free sheaf of $C^{\infty} M$-modules.

THEOREM: Every locally free sheaf $C^{\infty} M$-modules is defined from a total space of a vector bundle, which is determined uniquely by a sheaf.

The proof will be a couple of slides below.

Fiber of a locally free sheaf

DEFINITION: Let \mathcal{B} be an n-dimensional locally free sheaf of C^{∞}-modules on $M, x \in M$ a point, \mathcal{B}_{x} the space of germs of \mathcal{B} in x, and $\mathfrak{m}_{x} \subset C_{x}^{\infty} M$ the maximal ideal in the ring of germs $C_{x}^{\infty} M$ of smooth functions. Define the fiber of \mathcal{B} in x as a quotient $\mathcal{B}_{x} / \mathfrak{m}_{x} \mathcal{B}_{x}$. A fiber of \mathcal{B} is denoted $\left.\mathcal{B}\right|_{x}$.

REMARK: A fiber of an n-dimensional bundle is an n-dimensional vector space.

REMARK: Let $\mathcal{B}=C^{\infty} M^{n}$, and $\left.b \in \mathcal{B}\right|_{x}$ a point of a fiber, represented by a germ $\varphi \in \mathcal{B}_{x}=C_{m}^{\infty} M^{n}, \varphi=\left(f_{1}, \ldots, f_{n}\right)$. Consider a map ψ from the set of all fibers \mathcal{B} to $M \times \mathbb{R}^{n}$, mapping $\left(x, \varphi=\left(f_{1}, \ldots, f_{n}\right)\right.$) to $\left(f_{1}(x), \ldots, f_{n}(x)\right)$. Then ψ is bijective. Indeed, $\left.\mathcal{B}\right|_{x}=\mathbb{R}^{n}$.

Total space of a vector bundle from its sheaf of sections

DEFINITION: Let \mathcal{B} be an n-dimensional locally free sheaf of C^{∞}-modules. Denote the set of all vectors in all fibers of \mathcal{B} over all points of M by Tot \mathcal{B}. Let $U \subset M$ be an open subset of M, with $\left.\mathcal{B}\right|_{U}$ a trivial bundle. Using the local bijection $\operatorname{Tot} \mathcal{B}(U)=U \times \mathbb{R}^{n}$ we consider topology on $\operatorname{Tot} \mathcal{B}$ induced by open subsets in $\operatorname{Tot} \mathcal{B}(U)=U \times \mathbb{R}^{n}$ for all open subsets $U \subset M$ and all trivializations of $\left.\mathcal{B}\right|_{U}$. Then $\operatorname{Tot} \mathcal{B}$ is called a total space of a vector bundle \mathcal{B}.

CLAIM: The space Tot \mathcal{B} with this topology is a locally trivial fibration over M, with fiber \mathbb{R}^{n}. Moreover, it is a relative vector space over M, and the sheaf of smooth sections of $\operatorname{Tot} \mathcal{B} \longrightarrow M$ is isomorphic to \mathcal{B}.

REMARK: This gives an equivalence between locally free sheaves of \mathbb{C}^{∞}-modules and the total spaces of vector bundles, defined abstractly in terms of locally trivial fibrations.

Tensor product

DEFINITION: Let V, V^{\prime} be R-modules, W a free abelian group generated by $v \otimes v^{\prime}$, with $v \in V, v^{\prime} \in V^{\prime}$, and $W_{1} \subset W$ a subgroup generated by combinations $r v \otimes v^{\prime}-v \otimes r v^{\prime},\left(v_{1}+v_{2}\right) \otimes v^{\prime}-v_{1} \otimes v^{\prime}-v_{2} \otimes v^{\prime}$ and $v \otimes\left(v_{1}^{\prime}+v_{2}^{\prime}\right)-v \otimes v_{1}^{\prime}-v \otimes v_{2}^{\prime}$. Define the tensor product $V \otimes_{R} V^{\prime}$ as a quotient group W / W_{1}.

EXERCISE: Show that $r \cdot v \otimes v^{\prime} \mapsto(r v) \otimes v^{\prime}$ defines an R-module structure on $V \otimes_{R} V^{\prime}$.

REMARK: Let \mathcal{F} be a sheaf of rings, and \mathcal{B}_{1} and \mathcal{B}_{2} be sheaves of locally free (M, \mathcal{F})-modules. Then

$$
U \longrightarrow \mathcal{B}_{1}(U) \otimes_{\mathcal{F}(U)} \mathcal{B}_{2}(U)
$$

is also a locally free sheaf of modules.

DEFINITION: Tensor product of vector bundles is a tensor product of the corresponding sheaves of modules.

Dual bundle and bilinear forms

DEFINITION: Let V be an R-module. A dual R-module V^{*} is $\operatorname{Hom}_{R}(V, R)$ with the R-module structure defined as follows: $r \cdot h(\ldots) \mapsto r h(\ldots)$.

CLAIM: Let \mathcal{B} be a vector bundle, that is, a locally free sheaf of $C^{\infty} M$ modules, and $\operatorname{Tot} \mathcal{B} \xrightarrow{\pi} M$ its total space. Define $\mathcal{B}^{*}(U)$ as a space of smooth functions on $\pi^{-1}(U)$ linear in the fibers of π. Then $\mathcal{B}^{*}(U)$ is a locally free sheaf over $C^{\infty}(M)$.

DEFINITION: This sheaf is called the dual vector bundle, denoted by B^{*}. Its fibers are dual to the fibers of B.

DEFINITION: Bilinear form on a bundle \mathcal{B} is a section of $(\mathcal{B} \otimes \mathcal{B})^{*}$. A symmetric bilinear form on a real bundle \mathcal{B} is called positive definite if it gives a positive definite form on all fibers of \mathcal{B}. Symmetric positive definite form is also called a metric. A skew-symmetric bilinear form on \mathcal{B} is called non-degenerate if it is non-degenerate on all fibers of \mathcal{B}.

Subbundles

DEFINITION: A subbundle $\mathcal{B}_{1} \subset \mathcal{B}$ is a subsheaf of modules which is also a vector bundle.

DEFINITION: Direct sum \oplus of vector bundles is a direct sum of corresponding sheaves.

EXAMPLE: Let \mathcal{B} be a vector bundle equipped with a metric (that is, a positive definite symmetric form), and $\mathcal{B}_{1} \subset \mathcal{B}$ a subbundle. Consider a subset Tot $\mathcal{B}_{1}^{\perp} \subset \operatorname{Tot} \mathcal{B}$, consisting of all $\left.v \in \mathcal{B}\right|_{x}$ orthogonal to $\left.\left.\mathcal{B}_{1}\right|_{x} \subset \mathcal{B}\right|_{x}$. Then Tot \mathcal{B}_{1}^{\perp} is a total space of a subbundle, denoted as $\mathcal{B}_{1}^{\perp} \subset \mathcal{B}$, and we have an isomorphism $\mathcal{B}=\mathcal{B}_{1} \oplus \mathcal{B}_{1}^{\perp}$.

REMARK: A total space of a direct sum of vector bundles $\mathcal{B} \oplus \mathcal{B}^{\prime}$ is homeomorphic to $\operatorname{Tot} \mathcal{B} \times{ }_{M} \operatorname{Tot} \mathcal{B}^{\prime}$.

EXERCISE: Let \mathcal{B} be a real vector bundle. Prove that \mathcal{B} admits a metric.

