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Locally trivial fibrations

DEFINITION: A smooth map f : X −→ Y is called a locally trivial fi-

bration if each point y ∈ Y has a neighbourhood U 3 y such that f−1(U) is

diffeomorphic to U×F , and the map f : f−1(U) = U×F −→ U is a projection.

In such situation, F is called the fiber of a locally trivial fibration.

DEFINITION: A trivial fibration is a map X × Y −→ Y .

DEFINITION: A total space of a vector bundle on Y is a locally trivial

fibration f : X −→ Y with fiber Rn, with each fiber V := f−1(y) equipped

with a structure of a vector space, smoothly depending on y ∈ Y .

DEFINITION: A vector bundle is a locally free sheaf of C∞M-modules.

REMARK: Let π : B −→M be a total space of a vector bundle, U ⊂M open

subset, and B(U) the space of all smooth sections of π−1(U)
π−→ U . Then

B is a locally free sheaf of C∞M-modules.

REMARK: This construction is an “equivalence of categories”; see

below for a definition.
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Categories

DEFINITION: A category C is a collection of data called “objects” and

“morphisms between objects” which satisfies the axioms below.

DATA.

Objects: The set Ob(C) of objects of C.

Morphisms: For each X,Y ∈ Ob(C), one has a set Mor(X,Y ) of mor-

phisms from X to Y .

Composition of morphisms: For each ϕ ∈ Mor(X,Y ), ψ ∈ Mor(Y, Z)

there exists the composition ϕ ◦ ψ ∈Mor(X,Z)

Identity morphism: For each A ∈ Ob(C) there exists a morphism IdA ∈
Mor(A,A).

AXIOMS.

Associativity of composition: ϕ1 ◦ (ϕ2 ◦ ϕ3) = (ϕ1 ◦ ϕ2) ◦ ϕ3.

Properties of identity morphism: For each ϕ ∈ Mor(X,Y ), one has

Idx ◦ϕ = ϕ = ϕ ◦ IdY .
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Functors and equivalence of categories

DEFINITION: Let C1, C2 be categories. A covariant functor from C1 to C2
is the following collection of data.

(i) A map F : Ob(C1)−→ Ob(C2).
(ii) A map F : Mor(X,Y )−→ Mor(F (X), F (Y )),

defined for each X,Y ∈ Ob(C1).
These data define a functor from C1 to C2, if F (ϕ) ◦ F (ψ) = F (ϕ ◦ ψ), and
F (IdX) = IdF (X).

DEFINITION: Two functors F,G : C1 −→ C2 are called equivalent if for
each X ∈ Ob(C1) there exists an isomorphism ΨX : F (X)−→G(X), such
that for each ϕ ∈Mor(X,Y ) one has F (ϕ) ◦ΨY = ΨX ◦G(ϕ).

DEFINITION: A functor F : C1 −→ C2 is called equivalence of categories
if there exist functors G,G′ : C2 −→ C1 such that F ◦ G is equivalent to an
identity functor on C1, and G′ ◦ F is equivalent to identity functor on C2.

EXAMPLE: Let C be a category of finite-dimensional vector spaces ovet
R with a fixed basis (morphisms are linear maps), and C′ a category with
Ob(C′) = {∅,R,R2,R3, ...}, and morphisms also linear maps. Prove that the
inclusion map C′ −→ C is an equivalence of categories, but not an isomor-
phism.
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Total space of a vector bundle from its sheaf of sections

DEFINITION: Category of vector bundles Cb is a category where objects
are locally free C∞M-sheaves, and morphisms are morphisms of C∞M-sheaves
such that all kernels and cokernels are locally free.

EXERCISE: Prove that it is a category.

DEFINITION: Category of total spaces of vector bundles Ct is a category
where objects are total spaces of vector bundles, and morphisms of total
spaces over M are maps B1 −→B2 compatible with projection to M , the
multiplicative structure, and of constant rank at each fiber.

EXERCISE: Prove that it is a category.

THEOREM: Let π : B −→M be a total space of a vector bundle, U ⊂ M

open subset, and B(U) the space of all smooth sections of π−1(U)
π−→ U .

Then this map defines an equivalence of categories Cb −̃→ Ct.

REMARK: The proof was given in the last lecture, using different lan-
guage.

EXERCISE: Produce a proof of this theorem.
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Tensor product

DEFINITION: Let V, V ′ be R-modules, W a free abelian group generated by

v⊗ v′, with v ∈ V, v′ ∈ V ′, and W1 ⊂W a subgroup generated by combinations

rv⊗v′−v⊗ rv′, (v1 +v2)⊗v′−v1⊗v′−v2⊗v′ and v⊗ (v′1 +v′2)−v⊗v′1−v⊗v
′
2.

Define the tensor product V ⊗R V ′ as a quotient group W/W1.

EXERCISE: Show that r · v⊗ v′ 7→ (rv)⊗ v′ defines an R-module structure

on V ⊗R V ′.

REMARK: Let F be a sheaf of rings, and B1 and B2 be sheaves of locally

free (M,F)-modules. Then

U −→B1(U)⊗F(U) B2(U)

is also a locally free sheaf of modules.

DEFINITION: Tensor product of vector bundles is a tensor product of the

corresponding sheaves of modules.
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Dual bundle and bilinear forms

DEFINITION: Let V be an R-module. A dual R-module V ∗ is HomR(V,R)

with the R-module structure defined as follows: r · h(. . . ) 7→ rh(. . . ).

CLAIM: Let B be a vector bundle, that is, a locally free sheaf of C∞M-

modules, and TotB π−→ M its total space. Define B∗(U) as a space of

smooth functions on π−1(U) linear in the fibers of π. Then B∗(U) is a

locally free sheaf over C∞(M).

DEFINITION: This sheaf is called the dual vector bundle, denoted by B∗.
Its fibers are dual to the fibers of B.

DEFINITION: Bilinear form on a bundle B is a section of (B ⊗ B)∗. A

symmetric bilinear form on a real bundle B is called positive definite if it

gives a positive definite form on all fibers of B. Symmetric positive definite

form is also called a metric. A skew-symmetric bilinear form on B is called

non-degenerate if it is non-degenerate on all fibers of B.
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Subbundles

DEFINITION: A subbundle B1 ⊂ B is a subsheaf of modules which is also
a vector bundle, and such that the quotient B/B1 is also a vector bundle.

DEFINITION: Direct sum ⊕ of vector bundles is a direct sum of corre-
sponding sheaves.

EXAMPLE: Let B be a vector bundle equipped with a metric (that is, a
positive definite symmetric form), and B1 ⊂ B a subbundle. Consider a subset
TotB⊥1 ⊂ TotB, consisting of all v ∈ B|x orthogonal to B1|x ⊂ B|x. Then
TotB⊥1 is a total space of a subbundle, denoted as B⊥1 ⊂ B, and we have
an isomorphism B = B1 ⊕ B⊥1 .

REMARK: A total space of a direct sum of vector bundles B ⊕ B′ is home-
omorphic to TotB ×M TotB′.

EXERCISE: Let B be a real vector bundle. Prove that B admits a metric.

PROPOSITION: Let A ⊂ B be a sub-bundle. Then B ∼= A⊕ C.

Proof: Find a positive definite metric on B, and set C := B⊥.
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Tangent bundle

PROPOSITION: Let M ⊂ Rn be a smooth submanifold of Rn, and TM ⊂
Rn×Rn the set of all pairs (v, x) ∈M ×Rn, where x ∈M ×Rn is a point of M ,

and v ∈ Rn a vector tangent to M in m, that is, satisfying

lim
t−→ 0

d(M,m+ tv)

t
−→ 0.

Then the natural additive operation on TM ⊂M ×Rn (addition of the second

argument) and a multiplication by real numbers defines on TM a structure

of a relative vector space over M , that is, makes TM a total space of

a vector bundle. Moreover, this vector bundle is isomorphic to a tangent

bundle, that is, to the sheaf DerR(C∞M).

Proof. Step 1: For each z ∈M , we can choose coordinates in a neighbour-

hood of z in Rn in such a way that M = Rk ⊂ Rn. Therefore, it would suffice

to prove proposition when M = Rk ⊂ Rn.

Proof. Step 2: In this case, TM = Rk × Rk is a total space of a vector

bundle, of the same dimension as the tangent bundle. It remains to construct

a sheaf morphism from the sheaf of sections of TM to DerR(C∞M), inducing

an isomorphism.
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Tangent bundle (cont.)

Proof. Step 3: Let πx : Rn −→ TxM be an orthogonal projection map. By

the inverse function theorem, πx|M : M −→ TxM is a diffeomorphism in a

neighbourhood of x ∈ M. Let Ux ⊂ TxM be such an open neighbourhood

and π−1
x (Ux)

πx−→ Ux a diffeomphism.

Proof. Step 4: For each vector v ∈ TxM , and f ∈ C∞M , let Dv(f) be the

derivative of f̃ ∈ C∞Ux along v, where f̃(z) = f(π−1
x (z)). Then a section

γ ∈ TM(U) defines a derivation Dγ(f)(z) := Dγ|z(f). We obtained a sheaf

homomorphism TM
Ψ−→ DerR(C∞M).

Proof. Step 5: The vector bundles TM and DerR(C∞M) have the same

dimension, and for each non-zero vector v ∈ TxM , the corresponding deriva-

tion is non-zero, hence ker Ψ = 0.

DEFINITION: The tangent bundle of M , as well as its total space, is denoted

by TM . When one wants to distinguish the total space and the tangent

bundle, one writes Tot(TM).
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Pullback

CLAIM: Let M1
ϕ−→ M be a smooth map of manifolds, and B

π−→ M a

total space of a vector bundle. Then B×MM1 is a total space of a vector

bundle on M1.

Proof. Step 1: B ×M M1 is obviously a relative vector space. Indeed,

the fibers of projection π1 : B ×M M1 −→M1 are vector spaces, π−1
1 (m1) =

π−1(ϕ(m1)). It remains only to show that it is locally trivial.

Step 2: Consider an open set U ⊂M that B|U = U×Rn, and let U1 := ϕ−1U .

Then B ×U U1 = U1 × Rn. Since M1 is covered by such U1, this implies

that π1 is a locally trivial fibration, and the additive structure smoothly

depends on m1 ∈M1.

DEFINITION: The bundle π1 : B×M M1 −→M1 is denoted ϕ∗B, and called

inverse image, or a pullback of B.
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Pullback and the tangent bundle

CLAIM: Let j : M ↪→ N be a closed embedding of smooth bundles. Then

there is a natural injective morphism of vector bundles TM ↪→ j∗TN.

Proof: Using Whitney’s theorem, we embed N to Rn. Then j∗TN ⊂M × Rn

is the set of pairs x ∈ M, v ∈ TxN . The bundle TM is embedded to j∗TN,

because each tangent vector to M is also tangent to N.

EXERCISE: Prove that the map TM ↪→ j∗TN is independent from the

choice of embedding N ⊂ Rn.

COROLLARY: Let M be a manifold, and j : M ↪→ Rn a closed embedding.

Then TM is a direct summand of a trivial bundle j∗TRn.
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Any bundle is a direct summand of a trivial bundle

THEOREM: Any vector bundle on a metrizable manifold is a direct

summand of a trivial bundle.

Proof. Step 1: Let B be a vector bundle on M , and TotB its total space.

Consider the tangent bundle T TotB, and let M
ϕ
↪→ TotB be an embedding

corresponding to a zero section. Then the pullback ϕ∗T TotB is isomorphic

(as a bundle) to the direct sum TM ⊕B.

Step 2: Using Whitney’s theorem, find a closed embedding j : TotB −→ Rn.

This gives injective morphisms of vector bundles

B ↪→ TM ⊕B = ϕ∗(T TotB) ↪→ (ϕj)∗TRn.

However, (ϕj)∗TRn is trivial, because the bundle TRn is trivial.
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Projective modules

DEFINITION: Let V be an R-module, and V ′ ⊂ V its submodule. Assume

that V contains a submodule V ′′, not intersecting V ′, such that V ′ together

with V ′′ generate V . In this case, V ′ and V ′′ are called direct summands of

V , and V – a direct sum of V ′ and V ′′. This is denoted V = V ′ ⊕ V ′′.

DEFINITION: An R-module is called projective if it is a direct summand

of a free module
⊕
I R (possibly of infinite rank).

COROLLARY: Let B be a vector bundle, and B its space of sections,

considered as a C∞M-module. Then B is projective.

THEOREM: (Serre-Swan theorem) Let Cp be a category with objects

projective C∞M-modules, and morphisms homomorphism of C∞M-modules

with kernels and cokernels projective, Cb the category of vector bundles, and

Ψ : Cb −→ Cb a functor mapping B to its space of global sections. Then Ψ

is an equivalence of categories.

Proof later.
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Determinant bundle

DEFINITION: A line bundle is a 1-dimensional vector bundle.

EXERCISE: Let M be a simply connected manifold. Prove that any real

line bundle on M is trivial.

DEFINITION: Let B be a vector bundle of rank n, and ΛnB its top exterior

product. This bundle is called determinant bundle of B.

REMARK: It is a line bundle.

REMARK: Let M be an n-manifold, and ΛnTM a determinant bundle of its

tangent bundle. Prove that ΛnTM is trivial if and only if M is orientable.

DEFINITION: A real vector bundle is called orientable if its determinant

bundle is trivial.
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Trivializations and determinant

DEFINITION: Recall that a trivialization of a vector bundle B over U is a

set of free generators of B, that is, sections x1, ..., xn ∈ B such that the map

ν : (C∞U)n −→B|U mapping generators ei ∈ (C∞U)n to xi is an isomorphism.

DEFINITION: Let x ∈ M be a point on a manifold. Denote by mx ⊂ C∞M
the ideal of all functions vanishing in x. Let B be a sheaf of C∞M-modules,

and b a section of B. We say that b nowhere vanishes on U ⊂M if its germ

bx does not lie in mxB for each x ∈ U .

PROPOSITION: Let B be a vector bundle, and x1, ..., xn ∈ B be a set of

sections which are linearly independent in B/mz0B and generate B/mz0B, for

a fixed point z0 ∈ M . Let ξ ∈ ΛnB, ξ := x1 ∧ x2 ∧ ... ∧ xn be the determinant

of xi, considered as a section of a line bundle detB. Suppose that ξ nowhere

vanishes on U ⊂M . Then {xi|U } are free generators of B|U .

Proof: Define a map ν : (C∞U)n −→B|U mapping generators ei ∈ (C∞U)n

to xi. This map induces an isomorphism on each fiber, hence bijective.

The inverse function theorem implies that it is a diffeomorphism.
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A stalk of a C∞M-module

DEFINITION: Let x ∈ M be a point on a manifold. A stalk of a C∞M-

module V is a tensor product C∞x M ⊗C∞M V , where C∞x M is a ring of germs

of C∞M in x. We consider a stalk Vx as a C∞x M-module.

REMARK: Let V be a free C∞M-module. Then stalk of the space of sections

V (M) in x is a stalk of the sheaf V in x.

CLAIM: Let A be a free C∞M-module of rank n, decomposed as a direct

sum of two projective modules: A = B ⊕ C. We identify A with a space of

sections of a trivial sheaf of C∞M-modules, denoted by A. Let B ⊂ A be a

subsheaf consisting of all sections γ ∈ V(U), such that the germs of γ

at each x ∈M lie in the stalk Bx. Define C ⊂ A in a similar fashion. Then

(i) B, C are sheaves of C∞M-modules.

(ii) A = B ⊕ C.

(iii) The sheaves B, C are locally free.

Proof: Next slide.
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The proof of Serre-Swan theorem

CLAIM: Let A be a free C∞M-module of rank n, decomposed as a direct
sum of two projective modules: A = B ⊕ C. We identify A with a space of
sections of a trivial sheaf of C∞M-modules, denoted by A. Let B ⊂ A be a
subsheaf consisting of all sections γ ∈ V(U), such that the germs of γ
at each x ∈M lie in the stalk Bx. Define C ⊂ A in a similar fashion. Then

(i) B, C are sheaves of C∞M-modules.
(ii) A = B ⊕ C.
(iii) The sheaves B, C are locally free.

Proof: The first two claims are clear.

Fix z ∈ M . Let x1, ..., xk be sections of B generating B/mzB and y1, ..., yl
sections of C generating C/mzC. Choose them to be linearly independent, and
let U be an open neighbourhood of z such that the section x1 ∧ x2 ∧ ... ∧ xk ∧
y1∧...∧yl ∈ ΛnB is nowhere degenerate on U . Then {xi, yj} are free generators
of A, hence {xi} are free generators of B and {yj} are free generators of C.
We have shown that these sheaves are locally free.

REMARK: This gives a way of reconstructing a vector bundle from a pro-
jective C∞M-module. The rest of the proof of Serre-Swan is left as an
exercise.
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