Geometry of manifolds

Lecture 9: Serre-Swan theorem

Misha Verbitsky

Math in Moscow and HSE
April 15, 2013

Locally trivial fibrations

DEFINITION: A smooth map $f: X \longrightarrow Y$ is called a locally trivial fibration if each point $y \in Y$ has a neighbourhood $U \ni y$ such that $f^{-1}(U)$ is diffeomorphic to $U \times F$, and the map $f: f^{-1}(U)=U \times F \longrightarrow U$ is a projection. In such situation, F is called the fiber of a locally trivial fibration.

DEFINITION: A trivial fibration is a map $X \times Y \longrightarrow Y$.

DEFINITION: A total space of a vector bundle on Y is a locally trivial fibration $f: X \longrightarrow Y$ with fiber \mathbb{R}^{n}, with each fiber $V:=f^{-1}(y)$ equipped with a structure of a vector space, smoothly depending on $y \in Y$.

DEFINITION: A vector bundle is a locally free sheaf of $C^{\infty} M$-modules.

REMARK: Let $\pi: B \longrightarrow M$ be a total space of a vector bundle, $U \subset M$ open subset, and $\mathcal{B}(U)$ the space of all smooth sections of $\pi^{-1}(U) \xrightarrow{\pi} U$. Then \mathcal{B} is a locally free sheaf of $C^{\infty} M$-modules.

REMARK: This construction is an "equivalence of categories"; see below for a definition.

Categories

DEFINITION: A category \mathcal{C} is a collection of data called "objects" and "morphisms between objects" which satisfies the axioms below.

DATA.
Objects: The set $\mathcal{O b}(\mathcal{C})$ of objects of \mathcal{C}.
Morphisms: For each $X, Y \in \mathcal{O b}(\mathcal{C})$, one has a set $\operatorname{Mor}(X, Y)$ of morphisms from X to Y.

Composition of morphisms: For each $\varphi \in \operatorname{Mor}(X, Y), \psi \in \mathcal{M o r}(Y, Z)$ there exists the composition $\varphi \circ \psi \in \mathcal{M o r}(X, Z)$

Identity morphism: For each $A \in \mathcal{O b}(\mathcal{C})$ there exists a morphism $\operatorname{Id}_{A} \in$ $\operatorname{Mor}(A, A)$.

AXIOMS.

Associativity of composition: $\varphi_{1} \circ\left(\varphi_{2} \circ \varphi_{3}\right)=\left(\varphi_{1} \circ \varphi_{2}\right) \circ \varphi_{3}$.
Properties of identity morphism: For each $\varphi \in \operatorname{Mor}(X, Y)$, one has $\operatorname{Id}_{x} \circ \varphi=\varphi=\varphi \circ \mathrm{Id}_{Y}$.

Functors and equivalence of categories

DEFINITION: Let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be categories. A covariant functor from \mathcal{C}_{1} to \mathcal{C}_{2} is the following collection of data.
(i) A map $F: \mathcal{O b}\left(\mathcal{C}_{1}\right) \longrightarrow \mathcal{O b}\left(\mathcal{C}_{2}\right)$.
(ii) A map $F: \mathcal{M o r}(X, Y) \longrightarrow \mathcal{M o r}(F(X), F(Y))$, defined for each $X, Y \in \mathcal{O b}\left(\mathcal{C}_{1}\right)$.
These data define a functor from \mathcal{C}_{1} to \mathcal{C}_{2}, if $F(\varphi) \circ F(\psi)=F(\varphi \circ \psi)$, and $F\left(\operatorname{Id}_{X}\right)=\operatorname{Id}_{F(X)}$.

DEFINITION: Two functors $F, G: \mathcal{C}_{1} \longrightarrow \mathcal{C}_{2}$ are called equivalent if for each $X \in \mathcal{O b}\left(\mathcal{C}_{1}\right)$ there exists an isomorphism $\Psi_{X}: F(X) \longrightarrow G(X)$, such that for each $\varphi \in \mathcal{M o r}(X, Y)$ one has $F(\varphi) \circ \Psi_{Y}=\Psi_{X} \circ G(\varphi)$.

DEFINITION: A functor $F: \mathcal{C}_{1} \longrightarrow \mathcal{C}_{2}$ is called equivalence of categories if there exist functors $G, G^{\prime}: \mathcal{C}_{2} \longrightarrow \mathcal{C}_{1}$ such that $F \circ G$ is equivalent to an identity functor on \mathcal{C}_{1}, and $G^{\prime} \circ F$ is equivalent to identity functor on \mathcal{C}_{2}.

EXAMPLE: Let \mathcal{C} be a category of finite-dimensional vector spaces ovet \mathbb{R} with a fixed basis (morphisms are linear maps), and \mathcal{C}^{\prime} a category with $\mathcal{O b}\left(\mathcal{C}^{\prime}\right)=\left\{\emptyset, \mathbb{R}, \mathbb{R}^{2}, \mathbb{R}^{3}, \ldots\right\}$, and morphisms also linear maps. Prove that the inclusion $\operatorname{map} \mathcal{C}^{\prime} \longrightarrow \mathcal{C}$ is an equivalence of categories, but not an isomorphism.

Total space of a vector bundle from its sheaf of sections
DEFINITION: Category of vector bundles \mathcal{C}_{b} is a category where objects are locally free $C^{\infty} M$-sheaves, and morphisms are morphisms of $C^{\infty} M$-sheaves such that all kernels and cokernels are locally free.

EXERCISE: Prove that it is a category.
DEFINITION: Category of total spaces of vector bundles \mathcal{C}_{t} is a category where objects are total spaces of vector bundles, and morphisms of total spaces over M are maps $B_{1} \longrightarrow B_{2}$ compatible with projection to M, the multiplicative structure, and of constant rank at each fiber.

EXERCISE: Prove that it is a category.
THEOREM: Let $\pi: B \longrightarrow M$ be a total space of a vector bundle, $U \subset M$ open subset, and $\mathcal{B}(U)$ the space of all smooth sections of $\pi^{-1}(U) \xrightarrow{\pi} U$. Then this map defines an equivalence of categories $\mathcal{C}_{b} \xrightarrow{\sim} \mathcal{C}_{t}$.

REMARK: The proof was given in the last lecture, using different language.

EXERCISE: Produce a proof of this theorem.

Tensor product

DEFINITION: Let V, V^{\prime} be R-modules, W a free abelian group generated by $v \otimes v^{\prime}$, with $v \in V, v^{\prime} \in V^{\prime}$, and $W_{1} \subset W$ a subgroup generated by combinations $r v \otimes v^{\prime}-v \otimes r v^{\prime},\left(v_{1}+v_{2}\right) \otimes v^{\prime}-v_{1} \otimes v^{\prime}-v_{2} \otimes v^{\prime}$ and $v \otimes\left(v_{1}^{\prime}+v_{2}^{\prime}\right)-v \otimes v_{1}^{\prime}-v \otimes v_{2}^{\prime}$. Define the tensor product $V \otimes_{R} V^{\prime}$ as a quotient group W / W_{1}.

EXERCISE: Show that $r \cdot v \otimes v^{\prime} \mapsto(r v) \otimes v^{\prime}$ defines an R-module structure on $V \otimes_{R} V^{\prime}$.

REMARK: Let \mathcal{F} be a sheaf of rings, and \mathcal{B}_{1} and \mathcal{B}_{2} be sheaves of locally free (M, \mathcal{F})-modules. Then

$$
U \longrightarrow \mathcal{B}_{1}(U) \otimes_{\mathcal{F}(U)} \mathcal{B}_{2}(U)
$$

is also a locally free sheaf of modules.

DEFINITION: Tensor product of vector bundles is a tensor product of the corresponding sheaves of modules.

Dual bundle and bilinear forms

DEFINITION: Let V be an R-module. A dual R-module V^{*} is $\operatorname{Hom}_{R}(V, R)$ with the R-module structure defined as follows: $r \cdot h(\ldots) \mapsto r h(\ldots)$.

CLAIM: Let \mathcal{B} be a vector bundle, that is, a locally free sheaf of $C^{\infty} M$ modules, and $\operatorname{Tot} \mathcal{B} \xrightarrow{\pi} M$ its total space. Define $\mathcal{B}^{*}(U)$ as a space of smooth functions on $\pi^{-1}(U)$ linear in the fibers of π. Then $\mathcal{B}^{*}(U)$ is a locally free sheaf over $C^{\infty}(M)$.

DEFINITION: This sheaf is called the dual vector bundle, denoted by B^{*}. Its fibers are dual to the fibers of B.

DEFINITION: Bilinear form on a bundle \mathcal{B} is a section of $(\mathcal{B} \otimes \mathcal{B})^{*}$. A symmetric bilinear form on a real bundle \mathcal{B} is called positive definite if it gives a positive definite form on all fibers of \mathcal{B}. Symmetric positive definite form is also called a metric. A skew-symmetric bilinear form on \mathcal{B} is called non-degenerate if it is non-degenerate on all fibers of \mathcal{B}.

Subbundles

DEFINITION: A subbundle $\mathcal{B}_{1} \subset \mathcal{B}$ is a subsheaf of modules which is also a vector bundle, and such that the quotient $\mathcal{B} / \mathcal{B}_{1}$ is also a vector bundle.

DEFINITION: Direct sum \oplus of vector bundles is a direct sum of corresponding sheaves.

EXAMPLE: Let \mathcal{B} be a vector bundle equipped with a metric (that is, a positive definite symmetric form), and $\mathcal{B}_{1} \subset \mathcal{B}$ a subbundle. Consider a subset $\operatorname{Tot} \mathcal{B}_{1}^{\perp} \subset \operatorname{Tot} \mathcal{B}$, consisting of all $\left.v \in \mathcal{B}\right|_{x}$ orthogonal to $\left.\left.\mathcal{B}_{1}\right|_{x} \subset \mathcal{B}\right|_{x}$. Then Tot \mathcal{B}_{1}^{\perp} is a total space of a subbundle, denoted as $\mathcal{B}_{1}^{\perp} \subset \mathcal{B}$, and we have an isomorphism $\mathcal{B}=\mathcal{B}_{1} \oplus \mathcal{B}_{1}^{\perp}$.

REMARK: A total space of a direct sum of vector bundles $\mathcal{B} \oplus \mathcal{B}^{\prime}$ is homeomorphic to $\operatorname{Tot} \mathcal{B} \times{ }_{M} \operatorname{Tot} \mathcal{B}^{\prime}$.

EXERCISE: Let \mathcal{B} be a real vector bundle. Prove that \mathcal{B} admits a metric.
PROPOSITION: Let $A \subset B$ be a sub-bundle. Then $B \cong A \oplus C$.
Proof: Find a positive definite metric on B, and set $C:=B^{\perp}$.

Tangent bundle

PROPOSITION: Let $M \subset \mathbb{R}^{n}$ be a smooth submanifold of \mathbb{R}^{n}, and $T M \subset$ $\mathbb{R}^{n} \times \mathbb{R}^{n}$ the set of all pairs $(v, x) \in M \times \mathbb{R}^{n}$, where $x \in M \times \mathbb{R}^{n}$ is a point of M, and $v \in \mathbb{R}^{n}$ a vector tangent to M in m, that is, satisfying

$$
\lim _{t \longrightarrow 0} \frac{d(M, m+t v)}{t} \longrightarrow 0 .
$$

Then the natural additive operation on $T M \subset M \times \mathbb{R}^{n}$ (addition of the second argument) and a multiplication by real numbers defines on $T M$ a structure of a relative vector space over M, that is, makes $T M$ a total space of a vector bundle. Moreover, this vector bundle is isomorphic to a tangent bundle, that is, to the sheaf $\operatorname{Der}_{\mathbb{R}}\left(C^{\infty} M\right)$.

Proof. Step 1: For each $z \in M$, we can choose coordinates in a neighbourhood of z in \mathbb{R}^{n} in such a way that $M=\mathbb{R}^{k} \subset \mathbb{R}^{n}$. Therefore, it would suffice to prove proposition when $M=\mathbb{R}^{k} \subset \mathbb{R}^{n}$.

Proof. Step 2: In this case, $T M=\mathbb{R}^{k} \times \mathbb{R}^{k}$ is a total space of a vector bundle, of the same dimension as the tangent bundle. It remains to construct a sheaf morphism from the sheaf of sections of $T M$ to $\operatorname{Der}_{\mathbb{R}}\left(C^{\infty} M\right)$, inducing an isomorphism.

Tangent bundle (cont.)

Proof. Step 3: Let $\pi_{x}: \mathbb{R}^{n} \longrightarrow T_{x} M$ be an orthogonal projection map. By the inverse function theorem, $\left.\pi_{x}\right|_{M}: M \longrightarrow T_{x} M$ is a diffeomorphism in a neighbourhood of $x \in M$. Let $U_{x} \subset T_{x} M$ be such an open neighbourhood and $\pi_{x}^{-1}\left(U_{x}\right) \xrightarrow{\pi_{x}} U_{x}$ a diffeomphism.

Proof. Step 4: For each vector $v \in T_{x} M$, and $f \in C^{\infty} M$, let $D_{v}(f)$ be the derivative of $\tilde{f} \in C^{\infty} U_{x}$ along v, where $\tilde{f}(z)=f\left(\pi_{x}^{-1}(z)\right)$. Then a section $\gamma \in T M(U)$ defines a derivation $D_{\gamma}(f)(z):=D_{\gamma \mid z}(f)$. We obtained a sheaf homomorphism $T M \xrightarrow{\Psi} \operatorname{Der}_{\mathbb{R}}\left(C^{\infty} M\right)$.

Proof. Step 5: The vector bundles $T M$ and $\operatorname{Der}_{\mathbb{R}}\left(C^{\infty} M\right)$ have the same dimension, and for each non-zero vector $v \in T_{x} M$, the corresponding derivation is non-zero, hence $\operatorname{ker} \psi=0$.

DEFINITION: The tangent bundle of M, as well as its total space, is denoted by $T M$. When one wants to distinguish the total space and the tangent bundle, one writes $\operatorname{Tot}(T M)$.

Pullback

CLAIM: Let $M_{1} \xrightarrow{\varphi} M$ be a smooth map of manifolds, and $B \xrightarrow{\pi} M$ a total space of a vector bundle. Then $B \times_{M} M_{1}$ is a total space of a vector bundle on M_{1}.

Proof. Step 1: $B \times_{M} M_{1}$ is obviously a relative vector space. Indeed, the fibers of projection $\pi_{1}: B \times_{M} M_{1} \longrightarrow M_{1}$ are vector spaces, $\pi_{1}^{-1}\left(m_{1}\right)=$ $\pi^{-1}\left(\varphi\left(m_{1}\right)\right)$. It remains only to show that it is locally trivial.

Step 2: Consider an open set $U \subset M$ that $\left.B\right|_{U}=U \times \mathbb{R}^{n}$, and let $U_{1}:=\varphi^{-1} U$. Then $B \times_{U} U_{1}=U_{1} \times \mathbb{R}^{n}$. Since M_{1} is covered by such U_{1}, this implies that π_{1} is a locally trivial fibration, and the additive structure smoothly depends on $m_{1} \in M_{1}$.

DEFINITION: The bundle $\pi_{1}: B \times_{M} M_{1} \longrightarrow M_{1}$ is denoted $\varphi^{*} B$, and called inverse image, or a pullback of B.

Pullback and the tangent bundle

CLAIM: Let $j: M \hookrightarrow N$ be a closed embedding of smooth bundles. Then there is a natural injective morphism of vector bundles $T M \hookrightarrow j^{*} T N$.

Proof: Using Whitney's theorem, we embed N to \mathbb{R}^{n}. Then $j^{*} T N \subset M \times \mathbb{R}^{n}$ is the set of pairs $x \in M, v \in T_{x} N$. The bundle $T M$ is embedded to $j^{*} T N$, because each tangent vector to M is also tangent to N.

EXERCISE: Prove that the map $T M \hookrightarrow j^{*} T N$ is independent from the choice of embedding $N \subset \mathbb{R}^{n}$.

COROLLARY: Let M be a manifold, and $j: M \hookrightarrow \mathbb{R}^{n}$ a closed embedding. Then $T M$ is a direct summand of a trivial bundle $j^{*} T \mathbb{R}^{n}$.

Any bundle is a direct summand of a trivial bundle

THEOREM: Any vector bundle on a metrizable manifold is a direct summand of a trivial bundle.

Proof. Step 1: Let B be a vector bundle on M, and Tot B its total space. Consider the tangent bundle T Tot B, and let $M \stackrel{\varphi}{\hookrightarrow}$ Tot B be an embedding corresponding to a zero section. Then the pullback $\varphi^{*} T$ Tot B is isomorphic (as a bundle) to the direct sum $T M \oplus B$.

Step 2: Using Whitney's theorem, find a closed embedding $j: \operatorname{Tot} B \longrightarrow \mathbb{R}^{n}$. This gives injective morphisms of vector bundles

$$
B \hookrightarrow T M \oplus B=\varphi^{*}(T \operatorname{Tot} B) \hookrightarrow(\varphi j)^{*} T \mathbb{R}^{n}
$$

However, $(\varphi j)^{*} T \mathbb{R}^{n}$ is trivial, because the bundle $T \mathbb{R}^{n}$ is trivial.

Projective modules

DEFINITION: Let V be an R-module, and $V^{\prime} \subset V$ its submodule. Assume that V contains a submodule $V^{\prime \prime}$, not intersecting V^{\prime}, such that V^{\prime} together with $V^{\prime \prime}$ generate V. In this case, V^{\prime} and $V^{\prime \prime}$ are called direct summands of V, and V - a direct sum of V^{\prime} and $V^{\prime \prime}$. This is denoted $V=V^{\prime} \oplus V^{\prime \prime}$.

DEFINITION: An R-module is called projective if it is a direct summand of a free module $\oplus_{I} R$ (possibly of infinite rank).

COROLLARY: Let \mathcal{B} be a vector bundle, and B its space of sections, considered as a $C^{\infty} M$-module. Then B is projective.

THEOREM: (Serre-Swan theorem) Let \mathcal{C}_{p} be a category with objects projective $C^{\infty} M$-modules, and morphisms homomorphism of $C^{\infty} M$-modules with kernels and cokernels projective, \mathcal{C}_{b} the category of vector bundles, and $\psi: \mathcal{C}_{b} \longrightarrow \mathcal{C}_{b}$ a functor mapping B to its space of global sections. Then ψ is an equivalence of categories.

Proof later.

Determinant bundle

DEFINITION: A line bundle is a 1-dimensional vector bundle.

EXERCISE: Let M be a simply connected manifold. Prove that any real line bundle on M is trivial.

DEFINITION: Let B be a vector bundle of rank n, and $\wedge^{n} B$ its top exterior product. This bundle is called determinant bundle of B.

REMARK: It is a line bundle.

REMARK: Let M be an n-manifold, and $\wedge^{n} T M$ a determinant bundle of its tangent bundle. Prove that $\wedge^{n} T M$ is trivial if and only if M is orientable.

DEFINITION: A real vector bundle is called orientable if its determinant bundle is trivial.

Trivializations and determinant

DEFINITION: Recall that a trivialization of a vector bundle B over U is a set of free generators of B, that is, sections $x_{1}, \ldots, x_{n} \in B$ such that the map $\nu:\left.\left(C^{\infty} U\right)^{n} \longrightarrow B\right|_{U}$ mapping generators $e_{i} \in\left(C^{\infty} U\right)^{n}$ to x_{i} is an isomorphism.

DEFINITION: Let $x \in M$ be a point on a manifold. Denote by $\mathfrak{m}_{x} \subset C^{\infty} M$ the ideal of all functions vanishing in x. Let \mathcal{B} be a sheaf of $C^{\infty} M$-modules, and b a section of \mathcal{B}. We say that b nowhere vanishes on $U \subset M$ if its germ b_{x} does not lie in $\mathfrak{m}_{x} \mathcal{B}$ for each $x \in U$.

PROPOSITION: Let B be a vector bundle, and $x_{1}, \ldots, x_{n} \in B$ be a set of sections which are linearly independent in $B / \mathfrak{m}_{z_{0}} B$ and generate $B / \mathfrak{m}_{z_{0}} B$, for a fixed point $z_{0} \in M$. Let $\xi \in \wedge^{n} B, \xi:=x_{1} \wedge x_{2} \wedge \ldots \wedge x_{n}$ be the determinant of x_{i}, considered as a section of a line bundle det B. Suppose that ξ nowhere vanishes on $U \subset M$. Then $\left\{\left.x_{i}\right|_{U}\right\}$ are free generators of $\left.B\right|_{U}$.

Proof: Define a map $\nu:\left.\left(C^{\infty} U\right)^{n} \longrightarrow B\right|_{U}$ mapping generators $e_{i} \in\left(C^{\infty} U\right)^{n}$ to x_{i}. This map induces an isomorphism on each fiber, hence bijective.
The inverse function theorem implies that it is a diffeomorphism.

A stalk of a $C^{\infty} M$-module

DEFINITION: Let $x \in M$ be a point on a manifold. A stalk of a $C^{\infty} M$ module V is a tensor product $C_{x}^{\infty} M \otimes_{C^{\infty} M} V$, where $C_{x}^{\infty} M$ is a ring of germs of $C^{\infty} M$ in x. We consider a stalk V_{x} as a $C_{x}^{\infty} M$-module.

REMARK: Let V be a free $C^{\infty} M$-module. Then stalk of the space of sections $V(M)$ in x is a stalk of the sheaf V in x.

CLAIM: Let A be a free $C^{\infty} M$-module of rank n, decomposed as a direct sum of two projective modules: $A=B \oplus C$. We identify A with a space of sections of a trivial sheaf of $C^{\infty} M$-modules, denoted by \mathcal{A}. Let $\mathcal{B} \subset \mathcal{A}$ be a subsheaf consisting of all sections $\gamma \in \mathcal{V}(U)$, such that the germs of γ at each $x \in M$ lie in the stalk B_{x}. Define $\mathcal{C} \subset \mathcal{A}$ in a similar fashion. Then
(i) \mathcal{B}, \mathcal{C} are sheaves of $C^{\infty} M$-modules.
(ii) $\mathcal{A}=\mathcal{B} \oplus \mathcal{C}$.
(iii) The sheaves \mathcal{B}, \mathcal{C} are locally free.

Proof: Next slide.

The proof of Serre-Swan theorem

CLAIM: Let A be a free $C^{\infty} M$-module of rank n, decomposed as a direct sum of two projective modules: $A=B \oplus C$. We identify A with a space of sections of a trivial sheaf of $C^{\infty} M$-modules, denoted by \mathcal{A}. Let $\mathcal{B} \subset \mathcal{A}$ be a subsheaf consisting of all sections $\gamma \in \mathcal{V}(U)$, such that the germs of γ at each $x \in M$ lie in the stalk B_{x}. Define $\mathcal{C} \subset \mathcal{A}$ in a similar fashion. Then
(i) \mathcal{B}, \mathcal{C} are sheaves of $C^{\infty} M$-modules.
(ii) $\mathcal{A}=\mathcal{B} \oplus \mathcal{C}$.
(iii) The sheaves \mathcal{B}, \mathcal{C} are locally free.

Proof: The first two claims are clear.
Fix $z \in M$. Let x_{1}, \ldots, x_{k} be sections of \mathcal{B} generating $\mathcal{B} / \mathfrak{m}_{z} \mathcal{B}$ and y_{1}, \ldots, y_{l} sections of \mathcal{C} generating $\mathcal{C} / \mathfrak{m}_{z} \mathcal{C}$. Choose them to be linearly independent, and let U be an open neighbourhood of z such that the section $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{k} \wedge$ $y_{1} \wedge \ldots \wedge y_{l} \in \wedge^{n} B$ is nowhere degenerate on U. Then $\left\{x_{i}, y_{j}\right\}$ are free generators of \mathcal{A}, hence $\left\{x_{i}\right\}$ are free generators of \mathcal{B} and $\left\{y_{j}\right\}$ are free generators of \mathcal{C}. We have shown that these sheaves are locally free.

REMARK: This gives a way of reconstructing a vector bundle from a projective $C^{\infty} M$-module. The rest of the proof of Serre-Swan is left as an exercise.

