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Locally trivial fibrations

DEFINITION: A smooth map f: X —Y is called a locally trivial fi-
bration if each point y € Y has a neighbourhood U > y such that f~1(U) is
diffeomorphic to U x F', and the map [ : f—l(U) = UxF — U is a projection.
In such situation, F'is called the fiber of a locally trivial fibration.

DEFINITION: A trivial fibrationisa map X xY —Y.

DEFINITION: A total space of a vector bundle on Y is a locally trivial
fibration f : X — Y with fiber R, with each fiber V := f~1(y) equipped
with a structure of a vector space, smoothly depending on y € Y.

DEFINITION: A vector bundle is a locally free sheaf of C°°M-modules.

REMARK: Let 7: B— M be a total space of a vector bundle, U C M open
subset, and B(U) the space of all smooth sections of #~1(U) =5 U. Then
B is a locally free sheaf of C°°M-modules.

REMARK: This construction is an “equivalence of categories”; see

below for a definition.
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Categories

DEFINITION: A category C is a collection of data called “objects” and
“morphisms between objects’ which satisfies the axioms below.

DATA.

Objects: The set Ob(C) of objects of C.

Morphisms: For each X,Y € Ob(C), one has a set Mor(X,Y) of mor-
phisms from X to Y.

Composition of morphisms: For each ¢ € Mor(X,Y),y € Mor(Y, Z)
there exists the composition oy € Mor(X, Z)

Identity morphism: For each A € Ob(C) there exists a morphism Id4 €
Mor(A, A).

AXIOMS.
Associativity of composition: ¢ o (o0 p3) = (@1 0 ps) o V3.
Properties of identity morphism: For each ¢ € Mor(X,Y ), one has

Idyop = ¢ = poldy.
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Functors and equivalence of categories

DEFINITION: Let Cq,C> be categories. A covariant functor from C; to C»
is the following collection of data.
(i) Amap F: Ob(C1) — Ob((Cy).
(ii) Amap F: Mor(X,Y) — Mor(F(X),F(Y)),
defined for each X,Y € Ob(C7).
These data define a functor from C; to Co, if F'(p)o F(y) = F(po4), and

DEFINITION: Two functors F,G : (C1 — Co are called equivalent if for
each X € Ob(Cy1) there exists an isomorphism Wy : F(X)— G(X), such
that for each ¢ € Mor(X,Y) one has F(p)o Wy = Wy o G(p).

DEFINITION: A functor F': C; — Co is called equivalence of categories
if there exist functors G,G’ : Co» — C; such that F o G is equivalent to an
identity functor on Cq1, and G’ o F is equivalent to identity functor on C-.

EXAMPLE: Let C be a category of finite-dimensional vector spaces ovet
R with a fixed basis (morphisms are linear maps), and C’ a category with
Ob(C") = {0,R,R?,R3, ...}, and morphisms also linear maps. Prove that the
inclusion map C’ — C is an equivalence of categories, but not an isomor-
phism.
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Total space of a vector bundle from its sheaf of sections

DEFINITION: Category of vector bundles C, is a category where objects
are locally free C°°M-sheaves, and morphisms are morphisms of C°°M-sheaves
such that all kernels and cokernels are locally free.

EXERCISE: Prove that it is a category.

DEFINITION: Category of total spaces of vector bundles C; is a category
where objects are total spaces of vector bundles, and morphisms of total
spaces over M are maps B — B> compatible with projection to M, the
multiplicative structure, and of constant rank at each fiber.

EXERCISE: Prove that it is a category.

THEOREM: Let 1 : B— M be a total space of a vector bundle, U C M
open subset, and B(U) the space of all smooth sections of =~ 1(U) I U.
Then this map defines an equivalence of categories C, — C;.

REMARK: The proof was given in the last lecture, using different lan-
guage.

EXERCISE: Produce a proof of this theorem.
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Tensor product

DEFINITION: Let V,V/ be R-modules, W a free abelian group generated by
v®7V, with v € Vo' € V!, and W1 C W a subgroup generated by combinations
ro@v —vrv, (v1+v2)®v —v1 @V —vo®v and Vv (V] F+v5) —v V] —v 5.
Define the tensor product V ®p V’/ as a quotient group W/Wj.

EXERCISE: Show that r-v®v' — (rv) ® v defines an R-module structure
on V®rV.

REMARK: Let F be a sheaf of rings, and By and B> be sheaves of locally

free (M, F)-modules. Then

U— B1(U) @z B2(U)

IS also a locally free sheaf of modules.

DEFINITION: Tensor product of vector bundles is a tensor product of the
corresponding sheaves of modules.
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Dual bundle and bilinear forms

DEFINITION: Let V be an R-module. A dual R-module V* is Homg(V, R)
with the R-module structure defined as follows: r-h(...) — rh(...).

CLAIM: Let B be a vector bundle, that is, a locally free sheaf of C°°M-
modules, and TotB —— M its total space. Define B*(U) as a space of
smooth functions on =~ 1(U) linear in the fibers of #. Then B*(U) is a
locally free sheaf over C°°(M).

DEFINITION: This sheaf is called the dual vector bundle, denoted by B*.
Its fibers are dual to the fibers of B.

DEFINITION: Bilinear form on a bundle B is a section of (B® B)*. A
symmetric bilinear form on a real bundle B is called positive definite if it
gives a positive definite form on all fibers of B. Symmetric positive definite
form is also called a metric. A skew-symmetric bilinear form on B is called
non-degenerate if it is non-degenerate on all fibers of B.
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Subbundles

DEFINITION: A subbundle By C B is a subsheaf of modules which is also
a vector bundle, and such that the quotient B/B; is also a vector bundle.

DEFINITION: Direct sum @ of vector bundles is a direct sum of corre-
sponding sheaves.

EXAMPLE: Let B be a vector bundle equipped with a metric (that is, a
positive definite symmetric form), and B1 C B a subbundle. Consider a subset
TotBi C TotB, consisting of all v € B|; orthogonal to Bils C Blz. Then
Tot B is a total space of a subbundle, denoted as Bi C B, and we have
an isomorphism B = By @ By

REMARK: A total space of a direct sum of vector bundles B&® B’ is home-
omorphic to TotB x; TotB'.

EXERCISE: Let B be a real vector bundle. Prove that 5 admits a metric.
PROPOSITION: Let A C B be a sub-bundle. Then B= A& C.

Proof: Find a positive definite metric on B, and set C = Bt m
8
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Tangent bundle

PROPOSITION: Let M C R"™ be a smooth submanifold of R"™, and TM C
R™ x R™ the set of all pairs (v,z) € M x R", where x €¢ M x R" is a point of M,
and v € R™ a vector tangent to M in m, that is, satisfying

. d(M,m + tv)
lim
t— 0 (4

Then the natural additive operation on TM C M x R"™ (addition of the second
argument) and a multiplication by real numbers defines on T'M a structure
of a relative vector space over M, that is, makes T'M a total space of
a vector bundle. Moreover, this vector bundle is isomorphic to a tangent
bundle, that is, to the sheaf Derr(C°M).

> 0.

Proof. Step 1: For each z € M, we can choose coordinates in a neighbour-
hood of z in R™ in such a way that M = RF ¢ R™*. Therefore, it would suffice
to prove proposition when M = Rk c R™,

Proof. Step 2: In this case, TM = R*F x R* is a total space of a vector
bundle, of the same dimension as the tangent bundle. It remains to construct
a sheaf morphism from the sheaf of sections of TM to Derp(C*°M), inducing
an isomorphism.

O]
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Tangent bundle (cont.)

Proof. Step 3: Let n, : R" —T,M be an orthogonal projection map. By
the inverse function theorem, ng|y; : M — T M is a diffeomorphism in a
neighbourhood of x € M. Let U, C T, M be such an open neighbourhood
and 7, 1(U;) =% U, a diffeomphism.

Proof. Step 4: For each vector v € T;M, and f € C*®°M, let D,(f) be the
derivative of f € C>®U, along v, where f(z) = f(x;1(z)). Then a section
v € TM(U) defines a derivation D~(f)(z) = D’le(f)' We obtained a sheaf

homomorphism T M Y, Derp(C*®°M).

Proof. Step 5: The vector bundles TM and Derr(C°M) have the same
dimension, and for each non-zero vector v € T, M, the corresponding deriva-
tion is non-zero, hence kerw =0. =

DEFINITION: The tangent bundle of M, as well as its total space, is denoted
by T'M. When one wants to distinguish the total space and the tangent
bundle, one writes Tot(T'M).
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Pullback

CLAIM: Let M; -2 M be a smooth map of manifolds, and B -+ M a
total space of a vector bundle. Then B x,; M4 is a total space of a vector
bundle on M;.

Proof. Step 1: B x,; M; is obviously a relative vector space. Indeed,
the fibers of projection w1 : B x; M1 — My are vector spaces, wl_l(ml) =
7~ 1(o(m1)). It remains only to show that it is locally trivial.

Step 2: Consider an open set U C M that Bl = U xR", and let Uy := go_lU.
Then B x;; U;p = Up x R". Since M, is covered by such U;j, this implies
that 71 is a locally trivial fibration, and the additive structure smoothly
depends on m; € M7. =

DEFINITION: The bundle w1 : B x; M1 — My is denoted ¢*B, and called
iInverse image, or a pullback of B.
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Pullback and the tangent bundle

CLAIM: Let 3 : M — N be a closed embedding of smooth bundles. Then
there is a natural injective morphism of vector bundles TM «— j*TN.

Proof: Using Whitney's theorem, we embed N to R"®. Then j*TN C M x R"
is the set of pairs t € M,v € T, N. The bundle TM is embedded to j*T'N,
because each tangent vector to M is also tangent to N. m

EXERCISE: Prove that the map TM — j*T'N is independent from the
choice of embedding N C R".

COROLLARY: Let M be a manifold, and 5 : M — R"™ a closed embedding.
Then TM is a direct summand of a trivial bundle j*TR".

12
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Any bundle is a direct summand of a trivial bundle

THEOREM: Any vector bundle on a metrizable manifold is a direct
summand of a trivial bundle.

Proof. Step 1: Let B be a vector bundle on M, and Tot B its total space.
Consider the tangent bundle T'Tot B, and let M <f> Tot B be an embedding
corresponding to a zero section. Then the pullback ™1 Tot B is isomorphic
(as a bundle) to the direct sum TM ¢ B.

Step 2: Using Whitney's theorem, find a closed embedding 5 : Tot B — R".
This gives injective morphisms of vector bundles

B TM® B = ¢*(T Tot B) — (¢7)*TR™.

However, (¢j)*TR" is trivial, because the bundle TR" is trivial. m

13
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Projective modules

DEFINITION: Let V be an R-module, and V/ C V its submodule. Assume
that V contains a submodule V', not intersecting V/, such that V/ together
with V" generate V. In this case, V/ and V' are called direct summands of
V, and V — a direct sum of V/ and V”. This is denoted V =V' g V".

DEFINITION: An R-module is called projective if it is a direct summand
of a free module @; R (possibly of infinite rank).

COROLLARY: Let B be a vector bundle, and B its space of sections,
considered as a C°°M-module. Then B is projective.

THEOREM: (Serre-Swan theorem) Let C, be a category with objects
projective C°°M-modules, and morphisms homomorphism of C°°M-modules
with kernels and cokernels projective, C, the category of vector bundles, and
W C, — Cp a functor mapping B to its space of global sections. Then W
IS an equivalence of categories.

Proof later.
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Determinant bundle

DEFINITION: A line bundle is a 1-dimensional vector bundle.

EXERCISE: Let M be a simply connected manifold. Prove that any real
line bundle on M is trivial.

DEFINITION: Let B be a vector bundle of rank n, and A"B its top exterior
product. This bundle is called determinant bundle of B.

REMARK: It is a line bundle.

REMARK: Let M be an n-manifold, and A" T'M a determinant bundle of its
tangent bundle. Prove that A™T'M is trivial if and only if M is orientable.

DEFINITION: A real vector bundle is called orientable if its determinant
bundle is trivial.
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Trivializations and determinant

DEFINITION: Recall that a trivialization of a vector bundle B over U is a
set of free generators of B, that is, sections zq,...,x, € B such that the map
v: (C®U)" — B|y mapping generators e¢; € (C*U)™ to x; is an isomorphism.

DEFINITION: Let £ € M be a point on a manifold. Denote by m, C C°°M
the ideal of all functions vanishing in . Let B be a sheaf of C°°M-modules,
and b a section of B. We say that b nowhere vanishes on U C M if its germ
by does not lie in m;B for each x € U.

PROPOSITION: Let B be a vector bundle, and x1,...,xnn, € B be a set of
sections which are linearly independent in B/mZOB and generate B/szB, for
a fixed point zg € M. Let £ € A"B, £ .= x1 ANxo N ... Nz, De the determinant
of x;, considered as a section of a line bundle det B. Suppose that & nowhere
vanishes on U C M. Then {z;|;;} are free generators of B|;.

Proof: Define a map v : (C*®U)™ — Bl mapping generators ¢; € (C®U)"
to ;. This map induces an isomorphism on each fiber, hence bijective.
The inverse function theorem implies that it is a diffeomorphism. =
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A stalk of a C°°M-module

DEFINITION: Let x € M be a point on a manifold. A stalk of a C®°M-
module V' is a tensor product C°M Qceops V', Where CZ°M is a ring of germs
of C°M in x. We consider a stalk V; as a CZ°M-module.

REMARK: Let V be a free C*°M-module. Then stalk of the space of sections
V(M) in x is a stalk of the sheaf V in x.

CLAIM: Let A be a free C*°M-module of rank n, decomposed as a direct
sum of two projective modules: A = B ® C. We identify A with a space of
sections of a trivial sheaf of C°°M-modules, denoted by A. Let B C A be a
subsheaf consisting of all sections v € V(U), such that the germs of ~
at each z € M lie in the stalk B,. Define C C A in a similar fashion. Then

(i) B, C are sheaves of C*°M-modules.

(i) A=BaC.

(iii) The sheaves B, C are locally free.

Proof: Next slide.

17
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The proof of Serre-Swan theorem

CLAIM: Let A be a free C®°M-module of rank n, decomposed as a direct
sum of two projective modules: A = B & C. We identify A with a space of
sections of a trivial sheaf of C°°M-modules, denoted by A. Let B C A be a
subsheaf consisting of all sections v € V(U), such that the germs of ~
at each z € M lie in the stalk B;. Define C C A in a similar fashion. Then

(i) B, C are sheaves of C°°M-modules.

(i) A=BaC.

(iii) The sheaves B, C are locally free.

Proof: The first two claims are clear.

Fix 2 € M. Let zq,...,z; be sections of B generating B/m.B and y1,...,y;
sections of C generating C/m.C. Choose them to be linearly independent, and
let U be an open neighbourhood of z such that the section 1 Axzo A ... Axp A
y1/\...Ay; € A"B is nowhere degenerate on U. Then {z;,y,} are free generators
of A, hence {z;} are free generators of B and {y;} are free generators of C.
We have shown that these sheaves are locally free. m

REMARK: This gives a way of reconstructing a vector bundle from a pro-
jective C°°M-module. The rest of the proof of Serre-Swan is left as an
exercise.
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