Test assignment #1

Rules: Please solve this in class, before 21:30 February 04, 2013, and give me the written solutions. The score for the test is computed using the formula $s = 2p - (\max(p - 4, 0))$ (rounded down). Results will be announced at http://bogomolov-lab.ru/KURSY/GEOM-2013/

Exercise 1.1. Find a smooth map $\mathbb{R} \longrightarrow S^3$ with dense image, or prove that it does not exist.

Exercise 1.2. Find a smooth map $[0, 1] \longrightarrow S^3$ with dense image, or prove that it does not exist.

Exercise 1.3. Let $Z \subset M$ be a dense subset in a manifold, and $U \supset Z$ an open subset of M containing Z. Show that U = M, or find a counterexample.

Exercise 1.4. Let M be a countable, connected metric space. Show that M is never infinite.

Exercise 1.5 (2 points). Let M be a compact Hausdorff space, R – ring of continuous functions on M with values in $\mathbb{Z}/2\mathbb{Z}$, and $I \subset R$ a maximal ideal. Prove that there exists a point $x \in M$ such that all functions $f \in I$ vanish at x.

Exercise 1.6. A continuous map $f : X \longrightarrow Y$ of topological spaces is called **proper** if a preimage of any compact set is compact, **closed** if an image of any closed set is closed, and **open** if an image of any open set is open. Find an example of a continuous map $f : X \longrightarrow Y$ of Hausdorff topological spaces which is

- a. open, not proper, not closed
- b. (2 points) closed, not proper, not open
- c. (2 points) proper, not open, not closed

or show that it does not exist.

Exercise 1.7. Let $M := \mathbb{R}^2 \setminus \mathbb{Q}^2$. Prove that M is connected.

Exercise 1.8. Let $X = \mathbb{R}P^n$, and $Y = (S^1)^m$. Show that any continuus map $f: X \longrightarrow Y$ is homotopic to a trivial one.

Exercise 1.9. Let $Z \subset \mathbb{R}^n$ be a countable set. Construct a function $\mu : \mathbb{R}^n \longrightarrow \mathbb{R}$ which is continuous at $x \notin Z$ and discontinuous at Z.

Exercise 1.10. Let $f_i : [0,1] \longrightarrow [0,1]$ be a sequence of continuous functions, and $f(z) := \lim_{i \to \infty} f_i(z)$. Prove that f is continuous, and find a counterexample.

Issued 04.02.2013